
PHYSICAL REVIEW B 102, 035423 (2020)

Spin Berry phase in a helical edge state: Sz nonconservation and transport signatures
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Topological protection of edge state in quantum spin Hall systems relies only on time-reversal symmetry.
Hence, Sz conservation on the edge can be relaxed which can have an interferometric manifestation in terms
of spin Berry phase. Primarily it could lead to the generation of spin Berry phase arising from a closed
loop dynamics of electrons. Our work provides a minimal framework to generate and detect these effects by
employing both spin-unpolarized and spin-polarized leads. We show that spin-polarized leads could lead to
resonances or antiresonances in the two-terminal conductance of the interferometer. We further show that the
positions of these antiresonances (as a function of energy of the incident electron) get shifted owing to the
presence of spin Berry phase. Finally, we present simulations of a device setup using KWANT package which put
our theoretical predictions on a firm footing.
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I. INTRODUCTION

Birth of topological insulators [1–5] has marked a new
realm in the field of condensed matter research and nucleated
a number of experimental activities [6–8] in a quest for ma-
terials relevant for exploring the topological aspects of such
systems in the past decades. Endowed with an exotic surface
physics, these materials [9] can be described in terms of sim-
ple band Hamiltonians with spin-orbit (SO) couplings which
respect time-reversal symmetry. The surface states owe their
existence to the nontrivial topology of the bulk as an impli-
cation of bulk-boundary correspondence [10]. In two dimen-
sions, a simplistic description of topological insulators can
be captured in the so-called Bernevig-Hughes-Zhang (BHZ)
model of HgTe quantum well [11]. Exceeding a critical value
of the well width, an inversion between the bands near the
Fermi surface drives the system into a topological insulator
state with localized edge modes on the boundary. These edge
modes have conserved spin quantum number Sz locked with
their momentum, viz., if ↑ spins (Sz = +1) flow along +k,
called right movers, ↓ spins (Sz = −1) would flow along −k,
called left movers, ensued from time-reversal symmetry—a
phenomenon known as quantum spin Hall (QSH) effect [1,11–
16].

The edge state in the BHZ model has linear dispersion
around the � point with conserved helicity (∝S · k), hence,
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known as helical edge state (HES) [17]. The spin quantization
axis of the HES is aligned along the SO field operative
perpendicular to the plane (along the spatial z axis) that hosts
the HES (i.e., the spatial x-y plane), and therefore, Sz serves
as a good quantum number to label the HES. The dynamics
of the helical edge can effectively be described in terms of a
Dirac Hamiltonian of the form

HQSH =
∫

dx �†H� ; H = −ih̄(aSO · σ )∂x, (1)

where x denotes the spatial coordinate along an edge, aSO

is the SO field orienting along the spatial z axis: aSO =
vF (0, 0, 1); vF being the Fermi velocity of the electrons on
the edge and � ≡ (ψR ψL )T denotes the annihilation operator
for the right (R) and the left (L) moving electrons (they can
equivalently be labeled by ↑ or ↓).

In general, the SO field along the edge can orient along
any arbitrary direction destroying the conservation of Sz. It
is only the time-reversal symmetry that suffices to preserve
the HES implying that the spin rotation symmetry about
the z axis can be broken without influencing the topology
of the bulk. Such freedom of tuning the SO field direction
allows for the possibility of the generation of spin Berry (SB)
phase [18,19] that can arise because of spin dynamics of the
electron in addition to the dynamical phase produced due to
its propagation along the edge. This phase can be understood
as Aharonov-Bohm (AB) effect on the Bloch sphere [20,21],
and hence, is referred to as spin AB effect. Many authors,
in the last few decades, have explored the presence of such
phase appearing in the context of mesoscopic transport setups
[22–26].

There have been recent theoretical proposals which have
explored the possibility of probing the helical nature of the
edge state in a transport setup [27]. In this paper, we are
particularly interested in interferometric signatures and man-
ifestation of helical nature of the edge state. In this context,
Maciejko et al. [28] studied the possibility of building a
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spin transistor in a AB ring built into a QSH state which is
sandwiched between two ferromagnetic leads. They showed
that it is possible to control spin of the electron on the edge
via the AB flux resulting in spin AB effect. However, they
assumed a uniform SO coupling along the edge maintaining
the conservation of Sz.

In contrast to their work, we study a complementary situ-
ation where the electron spin on the edge is itself undergoing
a nontrivial variation along the edge due to the presence of
a nonuniform SO field on the edge, hence, destroying the Sz

conservation. We discuss the minimal scenario where such a
variation could lead to a fictitious flux induced by the spin
Berry phase.

Earlier theoretical study also predicted evidence of quan-
tized geometric phase [29] of π where transport across a
Fabry-Perot interferometer is studied using a double quantum
point contact (QPC) geometry in a QSH state. Our study gen-
eralizes all such results to the case of nonquantized geometric
phase. Effects due to gate induced doping of the edge state
resulting from the application of an electrical field along a
finite patch of the edge state have also been studied [30].
This study exploited the gate controlled dynamical phase for
tuning the interference signal in QSH interferometer and was
insensitive to the SO interaction induced by the electric field
of the applied gate. Therefore it could not distinguish the Sz

nonconserving case from the conserving one. Addressing the
former is the focus of our study.

Noninterferometric signatures of scattering of electrons
from a SO barrier induced by application of a local gate
voltage have also been studied in the context of interacting
helical edge state [31]. However, in that work also, the primary
focus was on a uniform SO barrier and the possibility of
realizing a nonzero geometric phase arising from the variation
of the SO field along the edge was not considered.

To gain insight into the generation and detection of spin
Berry phase in an interferometer setup, let us consider a stan-
dard two-path interferometer [32,33] as a prototype. Let us
further assume that the interferometer arms are endowed with
the possibility of rotating the electron spin due to the presence
of SO coupling [34] in the arms of the interferometer as it
traverses through the respective arms of the interferometer.
In this paper, we will discuss specific models of SO-coupled
Hamiltonians that serve as the necessary and sufficient re-
quirement for inducing the rotation of the spin that allows it
to acquire a finite SB phase in its closed loop journey around
the interferometer. For further illumination, the following sce-
nario would be useful to consider. Let us assume an electron
with spin |↑〉 entering the interferometer from the left lead
[Fig. 1(a)] and its wave function simultaneously leaking into
the upper and lower arms with respective quantum mechanical
amplitudes. As the amplitudes propagating along the upper
and the lower arms could generically suffer different history
of the SO field, the incident spinor would evolve into |χ1〉
in the upper arm and |χ2〉 in the lower arm that trace out
two independent trajectories (labeled T1 and T2 starting from
the same point corresponding to the incident state |↑〉 on
the Bloch sphere [Fig. 1(b)]. Following Ref. [21], we arrive
at the conclusion that the resulting interference pattern will
depend on an extra phase factor which is given by half
the solid angle subtended at the center by the closed area

FIG. 1. (a) Schematic of the two-path interferometer to realize
the spin AB effect. The two interfering paths mentioned in the main
text are depicted as T1 and T2 and the grey shades represent the SO
field-active regions. (b) The trajectories corresponding to T1 and T2

in (a) are cast on the Bloch sphere. The geodesic G connects the end
points forming a closed loop surrounding the blue shaded region.

surrounded by T1, T2 and the geodesic [35] G connecting
|χ1〉 and |χ2〉 on this Bloch sphere [Fig. 1(b)]. This phase is
the same as the AB phase accumulated by an electron while
traversing once around the periphery of the above defined
area (A{T1,T2,G}) on the surface of a unit sphere while a
monopole of strength half sits at the center of this sphere [36].
The tunability of the orientation of the spin would result in
modulations of the phase which manifest as oscillations in
the current through the interferometer and can be visualized
as stretching and shrinking the above mentioned area on the
Bloch sphere by changing T1 or T2 or both in a controlled
manner. This discussion provides us with a clear picture
regarding the generation and detection of a finite SB phase
in such a two-path interferometer geometry.

The rest of the paper is organized as follows. In Sec. II,
we discuss the minimal scenario leading to a finite SB phase
on the helical edge state resulting either from an intrinsic SO
interaction of the spin Hall state or due to the application of an
external electric field on the edge. In Sec. III, we calculate the
transfer matrix for the situation which corresponds to minimal
scenario for hosting a finite SB phase. Then, in Sec. IV,
we show that a two-terminal transport setup involving spin-
polarized leads provides a clear signature of the SB phase for
different possible orientations of the spin polarization of the
leads. Finally, in Sec. V, we simulate a lattice version of the
interferometer involving a modified BHZ model of QSH state
using KWANT package [37] which demonstrates the essential
physics of the resonances and antiresonances. We summarize
the results and conclude in Sec. VI.

II. SCATTERING THROUGH SPIN-ORBIT BARRIERS AND
SPIN BERRY PHASE

In this section, we will discuss the possibility for an elec-
tron to accumulate a finite SB phase as it traverses through a
nonuniform SO region which is embedded in otherwise uni-
form helical edge state. This SO region can be spontaneously
generated in the system without breaking the time-reversal
symmetry either in a uniform fashion or fragmented into
multiple small patches each hosting the SO field oriented
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FIG. 2. (a) SO field configuration leading to a topological (0 or π ) SB phase. (b) A minimal condition on the SO field configuration
leading to the accumulation of a finite SB phase. (c) An interface between two distinct SO barriers considered to construct the transfer matrix
as discussed in the main text.

in an arbitrary direction owing to the Sz-symmetry breaking
in the bulk as will be demonstrated in Sec. V. However,
to perform analytic calculations, we, from now on, would
consider specific profiles of the SO fields along the edges.

We take the following Hamiltonian for the edge state (ex-
tended from x = −∞ to x = +∞, x representing an intrinsic
one-dimensional coordinate along the edge)

HSO = − i

2
h̄{a(x), ∂x} · σ, (2)

where the spatial profile of the SO field a(x) is

a(x) = [1 − 	(x) + 	(x − L)]a1 + [	(x) − 	(x − L)]a2.

(3)
Here, 	(x) denotes the Heaviside step function. To be spe-
cific, we consider a situation where the vector a1 = |a1|ẑ
corresponds to a uniform SO field which is pointing along
z axis while a2, which is extended from x = 0 to x = L
[Fig. 2(a)], can point in a direction different from a1 and
can also have spatial variation. This finite patch of a2 can be
thought of as a barrier.

We consider a simplest possible situation where a2 rep-
resents a vector which is constant in space but is pointing
in a direction different from a1 and further assume WLOG
a2 = |a2|x̂. Note that, though the SO field is constant along
the barrier, the electron spin undergoes a drastic change as it
enters and exits the barrier when incident either from the left
or from the right side of the barrier. Hence, a priori it is not
clear if such situation would lead to a finite SB phase or not.

When an electron is incident on the SO barrier from the
left (x < 0) [Fig. 2(a)], its spin will initially point along the
z axis (north pole on the Bloch sphere) but once it enters the
barrier it will reorient itself along the x axis and again when
it exits, the spin will rotate back to the z axis (north pole).
This implies that the trajectory of electron spin on the Bloch
sphere traces a single curve (geodesic path) running from the
north pole to the equator when it enters the barrier and then
runs back exactly along the same path during its return journey
when it exits. Hence, the trajectory of the spin state on the
Bloch sphere encloses zero area during its close loop journey
starting from and ending at the north pole and so, a zero SB
phase accumulation is expected for a constant SO barrier.

For accumulation of a finite SB phase, we surely need a SO
barrier which has a variation of the orientation of the SO field
along the length of the barrier. The cases of nonzero SB phase
can be categorized as follows: (a) quantized SB phase of π

and (b) nonquantized SB phase varying between 0 and 2π .
A quantized value of SB phase can be generated by means

of engineering the following SO barrier. The SO field â(x)
on the edge is chosen to be such that it, inside the barrier
[Fig. 2(a)], rotates along the edge where the rotation is param-

eterized by a space dependent monotonically increasing angle
θx such that â(x) = (sin θx, 0, cos θx ) while outside the barrier
it is â(x) = (0, 0, 1) implying θx=0− = θx=L+ = 0. Then it can
be shown that

φSB =
{

0, if θx=L− < π

π if θx=L− > π
, (4)

where θx=L− specifies the orientation of the SO field right
before exiting the barrier at x = L. In the case when φSB = 0,
the trajectory of the incident electron spin on the Bloch sphere
traces a closed loop path along the great circle defined by
the intersection of the x-z plane and the Bloch sphere which
goes back and forth on the Bloch sphere without encircling
the center. This trajectory on the Bloch sphere is similar
to the one for the case of constant SO barrier discussed
previously. For the case of φSB = π , the electron spin on
the Bloch sphere winds the great circle once as the electron
traverses through the barrier and exits. This demonstrates the
topological nature of this phase. Here we would like to point
to an important aspect of our work in distinction to the one
reported in Ref. [29]. In Ref. [29], the authors considered
the very special case of Sz nonconservation via Rashba-type
SO interactions switched on only at the bottlenecks of the
interferometer geometry such that the variation of the spin
is restricted to lie on the y-z plane leading to a quantized
SB phase. We have shown that even if the variation of spin
is planar, e.g., as considered by them, the corresponding SB
phase may or may not be π depending on the details of the
planar variation. This possibility is summarized in Eq. (4). In
short, we note that inverting the SO field at the two bottlenecks
of the interferometer proposed by Ref. [29] is not the only way
to generate a topological SB phase.

Now we will discuss the minimal variation of the SO field
within the barrier required to give rise to a finite nonquantized
SB phase. We need to find a configuration of the SO field
which will lead to closed loop trajectory of the electron spinor
on the Bloch sphere enclosing a finite area as the electron
enters and exits the SO barrier. This can be achieved if the
barrier can be subdivided into two regions with their respec-
tive SO vectors pointing along â2 first and then â3 (starting
from the left) which should be distinct from each other and
also mutually distinct from â1 [Fig. 2(b)]. The journey of
the electron across such barrier, when incident from the left,
can be mapped to the journey of the electron spinor on the
Bloch sphere which is as follows. The incident spinor which
is pointing to the north pole (â1 being along z axis) first moves
to a point (call it N1) on the surface of the Bloch sphere
corresponding to the direction of â2 along a geodesic path
connecting the north pole and N1. Then, as the electron further
moves from region 1 to region 2 inside the barrier, its spinor
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FIG. 3. The SB phase is proportional to the area of the triangle
formed on the Bloch sphere by the spinors |a1〉, |a2〉, and |a3〉
corresponding to the SO field configuration shown in Fig. 2(b).

moves from point N1 to point N2 along the geodesic path
connecting N1 and N2 on the Bloch sphere, where N2 is the
point on the surface of the Bloch sphere corresponding to the
direction of â3. Finally, when the electron leaves the barrier,
the electron spinor moves back to the point corresponding
to â1 along a geodesic starting from N2, hence, forming a
spherical triangle on the Bloch sphere. The SB phase accu-
mulated by the electron in this journey will be given by half
the solid angle (φSB = A/2) subtended by the area A of the
spherical triangle whose vertices are formed by the spinors
|a1〉, |a2〉, and |a3〉 (Fig. 3) which are the “up” eigenstates
with eigenvalue +1 of the corresponding â · σ Hamiltonian.
The expression of A is given by [38]

A = 2 tan−1 |â1 · (â2 × â3)|
1 + â1 · â2 + â2 · â3 + â3 · â1

. (5)

In what follows, we will provide a derivation of this result
using the transfer matrix method for reasons to be clear
afterwards.

III. SB PHASE AND TRANSFER MATRIX

In scattering problems, the computation of φSB can be
formulated in terms of transfer matrices that directly connect
to the transport properties of the system concerned. For a
generic profile of the SO field a(x), the Schrödinger equation
HSO� = E� has solutions of the form �(x2) = Tx2,x1�(x1)
where the transfer matrix [39] is given by

Tx2,x1 = Pxexp

[ ∫ x2

x1

dx
a · σ

h̄|a|2
(

E + ih̄

2
∂xa · σ

)]
, (6)

where Px represents path-ordering (to derive Eq. (6), one
needs to recast the Schrödinger equation HSO� = E� as
∂x� = H0(x)� and use Tx2,x1 = Pxexp[

∫ x2

x1
dx H0(x)]).

Now, let us consider a situation corresponding to an abrupt
change of the SO field at x = 0 [Fig. 2(c)] which can be
modeled as

a(x) = [1 − 	(x)]a1 + 	(x)a2, (7)

where a1 and a2 are two constant SO fields with distinct
directions in region 1 (x < 0) and 2 (x > 0), respectively.
Substituting this expression of a(x) into Eq. (6), we obtain
a matching condition between the spinors on the two sides
of the interface which reads ψ (0+) = T21ψ (0−) where T21

denotes a transfer matrix from the region of a1 to the region
of a2 [Fig. 2(c)] and is of the form

T21 =
√

|a1|
|a2|exp[i θ21 D̂21 · σ ], (8)

where

D21 = a2 × a1 and tan(2θ21) = |D21|/(a2 · a1). (9)

Note the operator T21 is, in general, a nonunitary operator
unless |a1| = |a2|. A minimal setup required for obtaining a
nonzero SB phase corresponds to an array of such interfaces
between distinct SO fields and needs to be constructed such
that the electron spin, in successive steps, encounters the
SO fields as â1 → â2 → â3 → â1 as noted previously and
shown in Fig. 2(b). The net transfer matrix in this process is
remarkably an unitary operator of the form

T =
∏

i j

Ti j = T13T32T21

= exp[iθ13D̂13 · σ ]exp[iθ32D̂32 · σ ]exp[iθ21D̂21 · σ ], (10)

irrespective of the magnitudes of a1, a2, and a3. The SB phase
acquired by the electron as it goes once around the circle
defined by â1 → â2 → â3 → â1 [Fig. 2(b)] is given by φSB =
arg[〈n↑1|T |n↑1〉] where the subscript 1 denotes that the spinor
whose evolution is concerned is an eigenstate of HSO in Eq. (2)
with a = a1 and ↑ represents the spin state of the electron
aligned with the local SO field while it is moving along
â1 → â2 → â3 → â1 (↓ would correspondingly represent the
spin of the electron antialigned with the local SO field while
moving in the opposite direction).

To obtain an explicit expression of the SB phase, Eq. (10)
can be re-expressed in a compact form as

T ≡ exp[i α K̂ · σ ], (11)

where

cos α = cos θ13 cos θ32 cos θ21

− (D̂13 · D̂32) sin θ13 sin θ32 cos θ21

− (D̂32 · D̂21) cos θ13 sin θ32 sin θ21

− (D̂21 · D̂13) sin θ13 cos θ32 sin θ21

+ [D̂13, D̂32, D̂21] sin θ13 sin θ32 sin θ21 (12)

and

K̂ sin α = D̂13 sin θ13(cos θ32 cos θ21

− D̂32 · D̂21 sin θ32 sin θ21)

+ D̂32 sin θ32(cos θ13 cos θ21

+ D̂13 · D̂21 sin θ13 sin θ21)

+ D̂21 sin θ21(cos θ32 cos θ13

− D̂32 · D̂13 sin θ32 sin θ13)

+ (D̂21 × D̂13) sin θ13 cos θ32 sin θ21

− (D̂13 × D̂32) sin θ13 sin θ32 cos θ21

− (D̂32 × D̂21) cos θ13 sin θ32 sin θ21. (13)
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FIG. 4. Sketch of the a1 − a2 − a3 model with two leads con-
nected at P1 and P2 is shown. The SO fields in the blue, yellow, and
red region are respectively given by a1, a2, and a3. The respective
amplitudes of propagation are denoted at the tunnel junctions P1 (in-
jecting) and P2 (receiving). The phases φ′ and φ′′ are the dynamical
phases from P1 to P2 along the upper and lower arm respectively and
the total length of the arms is L. The spinors of the leads (L1,2) are
denoted by ⇑ while that of the HES are denote by ↑, ↓.

A straightforward but lengthy algebra leads to the following
expression of α given by

tan α = |â1 · (â2 × â3)|
1 + â1 · â2 + â2 · â3 + â3 · â1

. (14)

Here, α has a natural interpretation as the SB phase owing to
the fact that K̂ is collinear with â1 and α appears as an overall
phase in Eq. (11). The unit vector K̂ will be parallel to â1

(K̂ = â1) when the sense of circulation of the electron spinor
represented on the Bloch sphere is clockwise. On the other
hand, if the sense of the circulation is anticlockwise, then K̂
will be antiparallel to â1 (K̂ = −â1).The explicit derivation of
Eq. (14) is given in Appendix. Note the expression in Eq. (5) is
exactly the same as Eq. (14) with ẑ → â1, â1 → â2 and â2 →
â3 and α being identified as half the solid angle subtended by
the area of a spherical triangle (shown in Fig. 3) on the Bloch
sphere.

It is to be noted that the derivation of Eq. (14) is crucial
for it provides us a firm ground to establish a connection
between the intuitive picture of drawing trajectories on the
Bloch sphere and the electron transport quantified via the
path-ordered product of transfer matrices, or in other words,
the connection between the evolution of the electron in phys-
ical space and the trajectory of the corresponding spin on the
Bloch sphere.

IV. SB PHASE AND ITS INTERFEROMETRIC
MANIFESTATION

Here we study a minimal two-terminal transport setup (for
a sketch see Fig. 4) which could lead to the detection of a finite
SB phase. Our proposed setup is a ring (of circumference
L) representing an isolated closed edge (see Fig. 4) which is
tunnel-coupled to two polarized leads L1 and L2 at the point
P1 and P2 as shown in Fig. 4. As discussed earlier in the
previous section, a finite SB phase requires the presence of a
spatially varying SO field and a minimal scenario demands for
the presence of at least three distinct directions of the SO field
along the edge [as in Fig. 2(b)]. Hence we consider a model
where the SO field configuration along the edge is taken to

be such that the entire ring is covered by three successive
patches of SO field pointing along a1, a2, and a3. We have
chosen â1 = (0, 0, 1) for calculational convenience. Note that
though our calculations are done for a model with sudden
jump between different SO field directions, our qualitative
results remain even if we replace our situation with another
situation where these three regions are connected such that
the vectors a1, a2, and a3 go smoothly on to one another. It is
important to take note of this point as the primary aim of this
paper is to address an edge state where Sz is not conserved, i.e.,
the orientation of the spin along the edge is smoothly varying
over space.

A. Interferometry with polarized leads

The schematic of the proposed setup is given in Fig. 4
where the closed edge state is subdivided into three parts
such that the SO fields in the blue, yellow, and red region are
specified by three distinct vectors a1, a2, and a3, respectively.
The Hamiltonian for the closed edge is provided in Eq. (2)
with a given spatial profile of a(x) subjected to periodic
boundary condition. We have considered two tunnel-coupled
spin-polarized leads (L1 and L2) attached to the closed edge
where L1 is coupled to a point P1 in the blue region and
L2 is coupled to a point P2 in the yellow region (the lead
positions are arbitrary and can be in any one/two of the three
regions; we, for instance, consider the case when the two leads
are placed in two different regions). We model the leads by
spin-polarized chiral edge states with linear dispersion. This
way, owing to the linear dispersion, the transport is influenced
only by the direction of spin polarization of the lead electrons
and not by the density of states of the leads. The form of the
lead Hamiltonian (for lead LI , I = 1, 2) can be taken to be
a chiral mode (right moving with Fermi velocity vF ) and is
given by

HLI = −ı h̄vF

∫
dx ψ

†
⇑I∂xψ⇑I , (15)

where ψ
†
⇑I creates an electron in lead LI with spinor |n⇑I〉.

The Hamiltonian which defines a tunnel junction at x = xPI

corresponding to the tunnel-coupling between lead LI and the
corresponding edge takes a form given by

H(I )
T =�I

∫
dx δ(x − xPI )

∑
α=↑,↓

{ϒα j,⇑Iψ
†
α jψ⇑I + H.c.}, (16)

where ψ
†
α j represents the creation operator for electrons in

the HES with spinor |nα j〉 specified by the Hamiltonian in
Eq. (2) with a = a j and ϒα j,⇑I = 〈nα j |n⇑I〉; �I represents the
tunneling strength at the tunnel junction between lead LI and
the (local) edge.

Now we set up the calculation of the transmission am-
plitude through the ring (Fig. 4). We consider a scattering
problem where an electron is incident from lead L1 and
transmitted into lead L2. This problem can be split into three
different scattering problems which are finally connected to
one another via boundary conditions as follows.

(a) Scattering at P1. The scattering at point P1 can be
reduced to a scattering between three incoming and three
outgoing chiral edges at point P1. The incoming and the
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outgoing amplitudes at P1 are connected via scattering matrix
[40] S1 as

(A C r)T = S1(D B i1)T , (17)

where i1(=1) and r are the plane wave amplitudes of the
incident and the reflected wave in lead L1 at P1. The incoming
and outgoing amplitudes in the helical edge at P1 are given by
A, B, C, and D.

(b) Scattering at P2. Similarly, at point P2, the incoming
and outgoing amplitudes are connected via scattering matrix
S2 as

(N F t )T = S2(E M i2)T . (18)

where E , F , M, and N are the incoming and outgoing ampli-
tudes in the ring and t (transmission amplitude) is the outgoing
amplitude in lead L2. The incoming amplitude i2 is zero as no
incidence is considered in lead L2.

(c) Connecting the amplitudes inside the ring via transfer
matrices given in Eq. (10). Now to implement the matching
conditions for the various amplitudes inside the closed ring,
let us divide the ring into two parts as in Fig. 4: (i) the
upper arm, where the journey of the electron (↑) starting from
point P1 → P2 in clockwise sense accumulates a dynamical
phase of φ′ while the geometric phase (if any) is naturally
embedded inside the transfer matrix, (ii) the lower arm, where
the journey of the electron (↑) starting from point P2 → P1
in the clockwise sense accumulates a dynamical phase of φ′′
while again the geometric phase (if any) is naturally embed-
ded inside the transfer matrix. These phases are incorporated
into the problem via the following boundary conditions for the
upper arm:

E = 〈n↑2|T21|n↑1〉eiφ′
A,

B = 〈n↓1|T12|n↓2〉eiφ′
F,

(19)

while for the lower arm, they are given by

M = 〈n↓2|T23T31|n↓1〉eiφ′′
C,

D = 〈n↑1|T13T32|n↑2〉eiφ′′
N,

(20)

where |nαi〉 (α =↑ / ↓) represents the eigenstate with ±1
eigenvalue of âi · σ (↑↔ +1, ↓↔ −1). Finally, these three
steps (a), (b), and (c) together provide the transmission ampli-
tudes (t) of the system whose explicit forms are given below.
Now, three distinct physical scenarios can be realized depend-
ing upon the relative orientations of the spin polarization of
the leads with respect to the orientations of the local SO fields
of the edge to which the leads are being tunnel-coupled.

(1) Both leads local parallel. The spin polarization axes
of both lead L1 and L2 are parallel to the vectors a1 and a2

respectively.
(2) One of the leads local parallel. The spin polarization

axis of lead L1 is no more parallel to the vector a1, while that
of lead L2 is still taken to be parallel to the vector a2.

(3) Complete deviation from local parallel condition. Both
the spin polarization axes of leads L1 and L2 are no more
parallel to the vectors a1 and a2, respectively.

From now on, we will assume the Fermi velocity in the
leads (vF ) and that in the ring to be the same implying
|a1| = |a2| = |a3| = vF . It is to be noted that such assumption
does not influence the geometric phase aspect of the prob-

lem whatsoever as long as â1, â2, and â3 are distinct. An
explicit calculation of scattering matrices for mutual tunneling
between different chiral edges is presented in Ref. [26] by
exploiting the equation of motion technique following which,
here, we have calculated S1,2 at tunnel junctions P1 and P2
(Fig. 4) and also the transmission amplitudes for the three
cases depicted above.

1. First scenario: both leads local parallel

This case corresponds to the simplest possible situation
the (spin-polarized) leads L1 injects only clockwise moving
(↑) electrons into the ring as the spin polarization axis of the
lead is taken to be parallel to the direction of the SO field at
P1. Hence, the injected current flows only in the clockwise
direction. In this case, the transmission amplitude from lead
L1 to lead L2 can be straightforwardly obtained as

t = 16eiφ′
�̃1�̃2

−a + beiφD
, (21)

where a = (4 + �̃2
1 )(4 + �̃2

2 ), b = (4 − �̃2
1 )(4 − �̃2

2 ); �̃1,2 =
�1,2/(h̄vF ) are dimensionless parameters, �1(�2) being the
tunneling strength at the tunnel junction P1 (P2) and φD (=
φ′ + φ′′) is the total dynamical phase acquired by an electron
in a full cycle of its journey along the edge (i.e., P1→P2→P1
traversing a length of L).

In presence of a finite SB phase, the transmission prob-
ability changes to T (φD) → T (φD + φSB) (T = |t |2) where
the contribution due to the SB phase enters via matching
conditions which depend on the transfer matrix as given in
Eqs. (19) and (20). The interference pattern observed as a
function of the incident energy E = h̄vF φD/L features res-
onance peaks at values of E = φD = 2nπ for integer n (we
have taken h̄ = vF = L = 1) when φSB = 0 and the peaks
are shifted such that at the resonance peaks, φD + φSB = 2nπ

when φSB = 0. In particular, the case of quantized SB phase
of π results in a complete swapping of the maxima and
minima of the transmission probability T (E ). Such special
case of quantized SB phase will be very similar to the situation
discussed in Ref. [29]. Hence, the shift of the maxima in
transmission probability in the interference pattern would
indicate the presence of a finite SB phase in our setup.

To summarize, for the simplest possible scenario of local
parallel leads, the interference pattern obtained as a function
of incident energy of the electron is shown to be independent
of the positions of P1 and P2. The SB phase, in this case,
can be read off by measuring the shift of the resonance peaks
in T (E ) (see Fig. 5). In particular, the resonance, which is
expected at the Dirac point (E = 0), would shift due to the
presence of a finite SB phase. Hence, as long as the identifi-
cation of the Dirac point could be made by some independent
experimental technique, the manifestation and quantification
of the SB phase can be directly related to the shift of the
resonance peak from the Dirac point.

2. Second scenario: partial (one lead) deviation from local
parallel condition: antiresonance

In this case, lead L1 is no more “local parallel” to the direc-
tion of the SO coupling at the tunnel junction P1 and hence,
it injects into both the clockwise and anticlockwise moving
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FIG. 5. First scenario. Coherent oscillations observed in the
transmission probability T as a function of the incident energy
E (= h̄vF φD/L) featuring resonance peaks at E = 2nπ (as we take
h̄ = vF = L = 1 for our calculations) which get shifted in pres-
ence of SB phase [φSB = π/4 in the plot with â1 = (0, 0, 1), â2 =
(1, 0, 0), and â3 = (0, 1, 0)]. The tunneling strengths are taken as
�̃1 = �̃2 = 1.

edge channels while the other lead L2 can only absorb one
particular chirality (right movers). As the electron traverses
from L1 to L2, the two leading contributions to the transport
can be attributed to the two distinct types of path and their
interference [shown in Fig. 6(a)].

(i) The first type of path [shown in Fig. 6(a) left] is
related to the injection of a clockwise moving ↑ electron (↑
with respect to the local SO field) at L1 which has a finite

FIG. 6. Second scenario. (a) The two distinct types of paths
(described in the text) that lead to a destructive interference yielding
antiresonances at E = 2nπ when one of the polarized leads is
deviated away from its local parallel configuration. (b) The resultant
interference pattern in absence (solid) and presence (dashed) of
the SB phase φSB [φSB = π/4 in the plot with â1 = (0, 0, 1), â2 =
(1, 0, 0), and â3 = (0, 1, 0)]. Lead L2 is kept local parallel while lead
L1 is tilted by an angle of π/3 from â1 keeping the azimuthal angle
same. The tunneling strengths are taken as �̃1 = �̃2 = 1.

probability amplitude to exit at L2 after a direct traversal
along the upper arm without going around the ring. Rest of
the subsequent paths corresponds to the electron undergoing
multiple rounds of circulation along the ring before exiting.
The important point to note here is the fact that, to exit, the
electron must be in an “up” state (with respect to the local
SO field region that holds L2) as L2 is a local parallel lead
receiving only the “up” states. To ensure this, the electron
circulating along the ring has two possibilities: either it goes
around the ring integer number of times as a clockwise mover
(↑ electron) without suffering spin-flip backscattering at L1

via a second-order tunneling process (between the lead and the
edge), or, if the electron suffers spin-flip backscattering at L1,
it must undergo such scattering even number of times so that
it could return back to the up state before it could exit via lead
L2. (ii) The second type of path [shown in Fig. 6(a) right] is
related to the injection of an anticlockwise mover (↓ electron)
at lead L1. Such an electron can not exit via lead L2 unless it
undergoes a spin-flip scattering. The leading process which
has a finite probability amplitude to exit at L2 corresponds
to a situation where the injected ↓ electron first traverses a
full circle starting it journey at L1 via the lower arm of the
ring and then crossing passed L2 and reaching L1 again. And
then it undergoes a spin-flip scattering to bounce back as a
clockwise mover and travel through the upper arm back to L2

and exits the ring. Rest of the subsequent paths corresponds to
the electron undergoing multiple rounds of circulation along
the ring before exiting such that the total number of spin flip
scattering at L1 is odd and hence it is to be in “up” state while
exiting the ring via lead L2. The total transmission amplitude,
which can be thought of as the sum of amplitudes of type (i)
and (ii) discussed above is given by

t = ζ
[
16eiφ′

�̃1�̃2ϒ↑1,⇑1
(
4 + �̃2

1

)
(eiφD − 1)

]
, (22)

where

ζ−1 = (
4 + �̃2

1

)[
16(eiφD − 1)2 + 4(1 − e2iφD )

(
�̃2

1 + �̃2
2

)
+ �̃2

1�̃
2
2 (e2iφD − 2ϒ1eiφD + 1)

]
, (23)

and ϒ1 = 2|ϒ⇑1,↑1|2 − 1 (the overlap ϒ⇑1,↑1 corresponds to
lead L1 being attached to the region with SO field a1.

Zero-pole analysis: appearance of antiresonances. As can
be seen from the expression for the transmission probability
amplitude in Eq. (22), the case for one local parallel lead
is distinct from the case of both leads being local parallel
in its analytic form. Eq. (22) is carrying a term (eiφD − 1)
which represents first-order zeros at E = φD = 2nπ resulting
in Fano-type antiresonances at those points [see Fig. 6(b)]
[41]. These antiresonances are attributed to the interference
between the two types of paths shown in Fig. 6(a) and hence,
are directly connected to deviation of L1 from its local parallel
condition. Also it is interesting to note that the transmission
zeros are always placed symmetrically between two maxima
(around E = 2nπ ). The pattern is related to the relative posi-
tions of the zeros and the poles of t in Eq. (22).

It is straightforward to verify that the poles of t obtained
from Eq. (23) are given by

φD = 2nπ − ilnR where R = 16 + ϒ1�̃
2
1�̃

2
2 ± √

�(
4 − �̃2

1

)(
4 − �̃2

2

) , (24)

035423-7



ADAK, ROYCHOWDHURY, AND DAS PHYSICAL REVIEW B 102, 035423 (2020)

where n is an integer and � = 32ϒ1�̃
2
1�̃

2
2 + 16(�̃4

1 + �̃4
2 ) +

(ϒ2
1 − 1)�̃4

1�̃
4
2 . The quantity R in Eq. (24) turns out to be

real and positive in the weak tunneling limit: �̃1,2 < 2. We
note that the real part of the positions of zeros and poles in
the complex φD plane are same. Hence, in the absence of
the zeros, |t |2 would have maxima at E = φD = 2nπ but due
to the presence of the zeros exactly at the same positions,
the original maxima split into two new symmetrically placed
maxima about the transmission zeros as shown in Fig. 6(b).

From Eq. (24), it is evident that the locations of the poles in
the complex φD plane have nontrivial dependence on the pa-
rameter ϒ1 which quantifies the deviation of the polarized lead
L1 from its local parallel condition (i.e., when ϒ1 = 1). This
parameter can thought of as a control parameter which decides
the width of the antiresonance. As we bring back L1 to local
parallel, one of the values of R in Eq. (24) approaches 1, and
the imaginary component of the corresponding pole vanishes,
thus, exactly canceling the zero of t in Eq. (22). Furthermore,
the complex pole, left after cancellation, coincides with the
pole in t for the local parallel case as expected.

In presence of a finite SB phase picked up by the electrons,
the transmission probability T between the leads L1 and L2

gets modified by φD → φD + φSB and so, a shift of the inter-
ference pattern [see Fig. 6(b)] would render a direct evidence
of the presence of SB phase as noted previously.

3. Third scenario. Complete deviation (two leads) from local
parallel condition: distorted interference pattern

In a realistic situation, one would expect the polarization
direction of both the leads to deviate from the local parallel
condition when the spatial profile of the direction of the
SO field on the edge is completely unknown. Following the
same procedure as for the previous cases, the transmission
amplitude t is evaluated to be

t = ζ [16�̃1�̃1(eiφD − 1)(eiφ′
ϒ⇑1,↑1ϒ⇑2,↑2

+ eiφ′′
ϒ⇑1,↓1ϒ⇑2,↓2)], (25)

where

ζ−1 = (
4 + �̃2

1

)(
4 + �̃2

2

) − 4�̃2
1�̃

2
2 (ϒ ′e2iφ′ + ϒ ′′e2iφ′′

)

− 2
(
16 + ϒ1ϒ2�̃

2
1�̃

2
2

)
eiφD + (

4 − �̃2
1

)(
4 − �̃2

2

)
e2iφD ,

(26)

ϒ1 = 2|ϒ⇑1,↑1|2 − 1 and ϒ2 = 2|ϒ⇑2,↑2|2 − 1. ϒ ′ =
ϒ⇑1,↓1ϒ↓1,↓2ϒ↓2,⇑2ϒ⇑2,↑2ϒ↑2,↑1ϒ↑1,⇑1 and ϒ ′′ =
ϒ⇑1,↑1ϒ↑1,↑3ϒ↑3,↑2ϒ↑2,⇑2ϒ⇑2,↓2ϒ↓2,↓3ϒ↓3,↓2ϒ↓2,⇑1 with
ϒαi,β j = 〈nαi|nβ j〉 being the spinor overlap between different
spinors on the HES where α, β =↑,↓ and i, j = 1, 2, and 3;
the overlap ϒα j,⇑I (and its conjugate ϒ⇑I,α j), where I = 1, 2
is defined below Eq. (16) (definitions of φ′ and φ′′ are given
before). The quantity ϒ ′ and ϒ ′′ geometrically represent
cyclic projections which, on the Block sphere, can be
identified as hexagonal and octagonal Pancharatnam loops,
respectively.

Position dependency of the leads: distorted transmission
pattern. Evidently, the phases φ′ and φ′′ are dependent on
the lead positions on the ring unlike their sum φD. If the arm
lengths of the interferometer are equal, a distorted transmis-

FIG. 7. Third scenario. (a) The elementary closed-loop processes
that, along with their multiple occurrences, contribute to the total
transmission probability T in a setup with the polarization direction
of both the leads deviating from the local parallel configuration.
(b) The resultant interference pattern in absence (solid) and presence
(dashed) of the SB phase φSB [φSB = π/4 in the plot with â1 =
(0, 0, 1), â2 = (1, 0, 0), and â3 = (0, 1, 0)] with φ′/φD = 1/3. Lead
L1 is tilted by an angle of π/3 from â1 keeping the azimuthal angle
same while lead L2 is tilted by an angle of π/4 from â2 keeping
the azimuthal angle same. The antiresonance points are spaced with
a periodicity of 2π while the envelope of the interference pattern
repeats with a periodicity of 6π as explained in the main text. The
tunneling strengths are taken as �̃1 = �̃2 = 1.

sion pattern can result only due to an SB phase which is
evident from Eqs. (25) and (26). For an arbitrary value of
φ′/φD, the poles of t can have real components other than
2nπ , but the zeros being pinned at 2nπ (since it depends on
φD only) results in asymmetric maxima around the antires-
onance points as shown in Fig. 7(b). This is in distinction
to the second scenario where the two maxima around each
antiresonance point were symmetric [Fig. 6(b)] because of the
coincidence of the zeros and the real components of the poles
at 2nπ [see Eq. (24)].

Different periodicities found in the process: calculation of
a net periodicity of the envelope of the distorted transmission
pattern. The phases appearing in the individual terms in
Eq. (26) are representatives of different closed loops formed
during the spin transport from L1 to L2 on the interferometer
[depicted in Fig. 7(a)] whose multiple occurrences contribute
to the total transmission probability T (=|t |2). These phases
have their own periodicity that could be different from each
other depending on the lead positions, which determines the
overall periodicity of the envelope of T when plotted as a
function of E . For instance, if we place our leads L1 and L2

such that φ′ is a rational fraction of φD, i.e., φ′/φD = p/q
where p, q are coprime with p < q, the antiresonances appear
in a period of 2π on the E axis [see Fig. 7(b)] because of the
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zeros of t in Eq. (25) which bears a factor (eiφD − 1), however,
the overall interference pattern is periodic with a period of
2qπ if q is odd and qπ if q is even. In Fig. 7(b), we have
shown the case of p/q = 1/3 rendering a periodicity of 6π to
the interference pattern when plotted against E .

In presence of the SB phase, all the phase factors in the
expression of t [Eqs. (25) and (26)] are modified in a nontrivial
way, but the total dynamical phase goes like φD → φD + φSB

as before. This is crucial for identifying the antiresonance
points which are shifted from 2nπ to 2nπ − φSB. However,
note that the entire interference pattern does not experience
the same overall shift unlike previously. In fact, the pattern is
further distorted due to the phase factors coming from ϒ ′ and
ϒ ′′ in Eq. (26) that depend on the spin polarizations of the
leads L1 and L2, however, the shift of the antiresonance points
would still be a concrete evidence of the presence of SB phase
in the system.

V. NUMERICAL ANALYSIS USING KWANT

To demonstrate the phenomenon of Sz nonconservation in
a realistic interferometer setup following our prescription, we
simulate a lattice model and study its transport properties
using the KWANT package [37]. This is a minimal setup
to capture the essential physics where we have engaged a
modified version of the BHZ model that will be discussed
shortly. It is to be noted that in our case, the bulk quantum
spin Hall state is spread over the interferometer region whose
bulk Sz symmetry is broken (but time-reversal symmetry is
kept) endowing the interferometer region with a possibility
of fragmenting into multiple patches each having a distinct
spin quantization axis and thus, resulting in the edge states
formed on the interferometer arms to acquire a nontrivial SB
phase. As all distinct Sz symmetry breaking bulk states are
degenerate, such regions of Sz symmetry broken bulk states
could appear spontaneously in the system. We further note
no additional edge states are formed at the interfaces between
these distinct patches and only a dominant single edge appears
at the global boundary of the full region which is evident from
the charge and spin density plots presented in Fig. 8.

In what follows, we will first discuss the geometry of
the lattice and then provide details of the model considered.
The geometry is similar to that of Ref. [29] and shown in
Fig. 8(a) with the parameters mentioned therein. The bound-
ary of the lattice is specified with coordinates (x, y) where
y ∈ [−Y (x),Y (x)] and

Y (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

W/2, if x < −(LM/2 + LPC),

WPC/2, if − (LM/2 + LPC) � x � −LM/2,

W/2 if − LM/2 < x < LM/2,

WPC/2 if LM/2 � x � (LM/2 + LPC),

W/2 if x > (LM/2 + LPC).
(27)

An appropriate setting of the dimensions of the bottlenecks
facilitates the desired backscattering enabling these regions
to serve as QPCs (P1 and P2 as shown in Fig. 4) to which
extended leads are connected for current measurements.

Let us now turn to the description of our model that is
simulated using KWANT. The original BHZ model is specified

FIG. 8. (a) Schematic of the lattice used in KWANT. The blue
region represents the system while the red the leads. The parameters
used are LM = 160a, W = 100a, LPC = 70a, WPC = 12a, W′ = 20a
with a = 3 nm being the lattice constant. The yellow and the brown
region denote the SO region with the SO field â = (1, 0, 0) and
(0,1,0), respectively. The gate voltage Vg is applied (green region)
across a length LM along the bottom edge. Spin filters (details
mentioned in the text) are applied on the bottlenecks/QPCs. (b) Plot
of spin densities signifying a spin-polarized injection at the left QPC
(details in the text) at incident energy E = 0. (c) Plot of the charge
density showing the flow of electrons along the global edge only. No
additional edges are observed to form at the boundaries of the SO
regions. (d) Low-lying energy bands of the lattice model (detailed
in the text) for a semiperiodic boundary condition with the red lines
representing edge states with a Dirac spectrum.

by the Hamiltonian

HBHZ = −Dk2 + Akxσzσ̃x − Akyσ̃y + (M − Bk2)σ̃z, (28)

where σ and σ̃ denote the Pauli matrices to describe the
spins (up or down along Sz) and the orbitals (electron type
or hole type) respectively and A, B, D, and M are material
dependent parameters. As noted previously, distinct regions of
Sz symmetry broken bulk states could appear spontaneously in
the system. This is evident from the structure of the model
Hamiltonian for the bulk of the quantum spin Hall system
given in Eq. (28) and the fact that a replacement of σz in the
second term of Eq. (28) by n̂ · σ , where n̂ is a unit vector
pointing in an arbitrary direction in the spin space, does not
alter the spectrum of the BHZ Hamiltonian or the presence
of the helical edge states. This leads us to consider the bulk
Hamiltonian of the form

H̃BHZ = −Dk2 + Akx(n̂ · σ )σ̃x − Akyσ̃y + (M − Bk2)σ̃z,

(29)

and n̂ = âi in a region specified by the SO vector âi.
In order to obtain a neat interference pattern as a function

of the gate voltage Vg, applied to the bottom edge of the
lattice in a region of width W/8 extending from x = −LM/2 to
x = LM/2 [see Fig. 8(a)], the incident energy of the electrons
is adjusted to E = 0, neither close to the Dirac point nor
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the band edges. Edge states are observed in the low-lying
spectrum of the model calculated with semiperiodic boundary
condition and displayed in Fig. 8(d).

The tight-binding version of the BHZ Hamiltonian
[Eq. (29)] that applies to a region with an SO field given
by n̂ = âi on a square lattice is constructed with a ba-
sis of two sites (representing the orbitals) using k2 =
2a−2[2 − cos(kxa) − cos(kya)], kx = a−1 sin(kxa), and ky =
a−1 sin(kya) which reads

Htb =
∑

i

(
c†

i Hi,i+ax ci+ax + c†
i Hi,i+ay ci+ay + H.c.

) + c†
i Hiici,

(30)

where c†
i ≡ (c†

i,s,↑, c†
i,p,↑, c†

i,s,↓, c†
i,p,↓) denotes the set of cre-

ation operators for the electrons in s and p orbital with ↑ and
↓ spins at site i with coordinates i = (ix, iy); ax = a(1, 0) and
ay = a(0, 1) are the lattice vectors with a being the lattice
constant. Each of the terms, Hii and Hi,i+ax (ay ), is a 4 × 4 block
matrices defined by

Hii = −4D

a2
− 4B

a2
σ̃z + Mσ̃z,

Hi,i+ax = D + Bσ̃z

a2
+ A(âi · σ )σ̃x

2ia
,

Hi,i+ay = D + Bσ̃z

a2
+ iAσ̃y

2a
.

(31)

We have used the standard parameters for the HgTe/CdTe
quantum wells which are A = vF = 364.5 nm meV, B =
−686 nm2 meV, D = −512 nm2 meV, and M = −10 meV
[15]. The lattice constant is set to a = 3 nm to obtain a rea-
sonable band structure [29]. As argued before, a finite value
of the SB phase requires three distinct configurations of the
SO field, one of which is already accommodated in the BHZ
model with orientation â1 = (0, 0, 1). The two additional
SO regions have the SO field oriented along â2 = (1, 0, 0)
and â3(φ) = (cos φ, sin φ, 0) and placed in a sequence [each
region having a length of 7LM/16 and a width of 2W/3 as
shown in Fig. 8(a)].

The leads are constructed with the same Hamiltonian as
in Eq. (28). However, to observe the desired antiresonances
in the interference pattern, spin-polarized electrons are to be
injected into the system (resonances can also be achieved with
spin-polarized leads provided they are kept in local parallel
condition as explained previously). This is implemented by
deploying spin filters on the bottlenecks modeled by the lattice
Hamiltonian

Hii = −4D

a2
− 4B

a2
σ̃z + Mσ̃z,

Hi,i+ax = D + Bσ̃z

a2
+ Aτa(β )σ̃x

2ia
,

Hi,i+ay = D + Bσ̃z

a2
+ iAσ̃y

2a
,

(32)

where τa(β ) = (1 + βσa)/2 [a ∈ {x, y, z}] decides the spin
polarization of the injected electrons. The filter selectively
injects/receives spins aligned in the ±Sa direction depending
on the value of the parameter β ∈ [−1, 1]. We set β = 0.5 for
the filter placed on the left bottleneck and since to capture

the essential features of our interferometer (which are the
resonances and antiresonances), it is sufficient to place the
filter at the left bottleneck only, we accordingly set β = 0
for the right bottleneck. Plots of the charge and spin densities
over the entire system as shown in Fig. 8(b)–8(c) reveal the
behavior of the bottleneck regions as QPC. As β > 0 in the
left QPC, strong backscattering in spin ↓ channel results as
evident in Fig. 8(b) which also shows a dominant ↑ transmis-
sion via the other QPC (note that the density of ↑ electrons
is slightly suppressed in the lower edge of the interferometer
because of the backscattering in the right QPC). Figure 8(c)
shows the flow of the spin-polarized electrons along the edges.
Resonances are observed when the leads are local parallel
which amounts to setting τa = τz in Eq. (32). Antiresonances
result from deviations from the local parallel configuration
which is achieved by setting τa = τx.

Equipped with this interferometer setup, we now demon-
strate the phenomenon of Sz nonconservation on the QSH
edges by measuring the conductance in presence of an appro-
priate environment of the SO fields as mentioned previously.
The corresponding results are summarized in Fig. 9. A plot
of the SB phase as a function of φ is presented in Fig. 9(e)
which reflects the desired relation φSB = φ/2. The plots in
Figs. 9(b) and 9(d) correspond to the SB phase of φSB = π/4
i.e. when â3 = (0, 1, 0). Similarly, a topological SB phase
of can be achieved by having all the SO field directions
restricted to lie on the y-z plane in the Bloch sphere, however,
as stressed before, the details of the variation matter. To
illustrate this, we consider, besides â1 = (0, 0, 1), four other
distinct SO barriers on the lattice given by â2,3,4,5, where â j =
(0, sin ξ j, cos ξ j ) with ξ2 = π/3, ξ3 = 3π/4, ξ4 = 5π/4,
and ξ5 = 5π/3. This configuration amounts to φSB = π as
observed in Figs. 9(a) and 9(c).

VI. DISCUSSION AND CONCLUSION

Studies on edge transport in quantum spin Hall systems
have primarily considered situations where the Sz component
of the spin is conserved. However, it is only the time reversal
symmetry which is required to protect the edge state. The
present paper explores the consequences of relaxing the Sz

conservation by considering a generic profile of the spin-orbit
(SO) field along a pristine edge. As a result, we observe spin
Berry (SB) phase accumulated by the electrons flowing along
the edge, a finite value of which warrants Sz nonconservation
and has notable effects on edge transport.

To measure such a phase, it is essential to employ an
interferometric setup for which we consider a ring geometry
of the edge state tunnel-coupled to two spin-polarized leads
that serves as a two-path interferometer. In a realistic exper-
imental setup, realizing a ring geometry of the edge state
will involve a double-QPC geometry as shown in (Fig. 4).
In a recent experiment, a single QPC in a quantum spin Hall
edge has been devised [42] and hence, our proposed setup is
also realizable in similar types of experiments. Motivated by
Pancharatnam’s construct of geometric phase, we present the
minimal criteria for the SO profile to lead to a finite accu-
mulation of SB phase. Furthermore, we provide an explicit
derivation of the expression for the SB phase in terms of
the SO field configurations using a transfer matrix approach
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FIG. 9. Shift of the resonance pattern for φSB = π (�Vg = 1.6). in (a) φSB = π/4 (�Vg = 0.4) in (b). Shift of the antiresonance pattern
for φSB = π (�Vg = 1.6) in (c) and φSB = π/4 (�Vg = 0.4) in (d). (e) Variation of the SB phase as a function of the relative orientation of the
SO field (parameterized by the relative angle φ mentioned in the text) in the consecutive barriers [shown in Fig. 8(a)] showing the expected
linear behavior φSB = φ/2. The plots for resonances are achieved by setting β = 0.5 on the left bottleneck while those for the antiresonances
are obtained by setting β = 0.8 on the left bottleneck. Both cases have β = 0 on the right bottleneck and share the same properties as noted
in Fig. 8.

that constitutes one of the main results of the paper. The
compact form of the transfer matrix presented in this paper
is instructive in developing an understanding of the geometric
aspect of the spin dynamics of itinerant electrons.

In our setup, introduction of the spin-polarized leads results
in sharp antiresonance in the transmission probability which,
in presence of a finite SB phase, get shifted by an amount
equal to the SB phase. We analyze three distinct situations
depending on various possible orientations of the polarization
directions of the leads that leave pronounced effects on the
overall pattern of the transmission probability including its
periodicity, however, the features of antiresonance remain in
all such cases.

As a final remark, we note that to measure the shift due
to the SB phase, a reference point needs to be identified
for which the dynamical phase φD = Lk can be used as a
marker (L is the total length of the interferometer (sum of
the upper and lower arms) and k is the wave vector of the
incident electron) as follows. When a small bias voltage Vg

is applied, it corresponds to an wave vector k = eVg/(h̄vF ),
where eVg is the energy of the incident electron with respect to
the Fermi energy of the edge state. In presence of an SB phase,
the total interferometric phase is given by φ = φD + φSB. If
we measure the differential conductance (or equivalently, the
total transmission probability T ) as a function of the bias
voltage Vg such that the interference pattern repeats itself
over a voltage difference of δVg = (V1 − V2), it amounts to
setting the corresponding phase difference δφ = 2π , where
δφ = L(k1 − k2) = Le(V1 − V2)/(h̄vF ) ≡ LeδVg/(h̄vF ). This
provides an estimate of vF that can be further used to compute
the value of the wave vector k. A direct measurement of φSB

then immediately follows since the rest of the parameters
are known (L can be estimated from the scanning electron
microscope image of the device). In absence of the SB phase,
Lk = LeVg/(h̄vF ) = 2π provides the expected position of the
first resonance in terms of the bias voltage Vg, and any excess
shift from this position captured in a scan over Vg would be
solely attributed to the SB phase.
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APPENDIX: DERIVATION OF SB PHASE FROM THE
PRODUCT OF TRANSFER MATRICES

Here we will present the derivation of Eq. (14) given in the
main text. In particular, we analyze the terms in Eq. (12) that
lead to the simplified expression of Eq. (14).

We start with the scalar triple product in the last term of
Eq. (12) and write it as

[D̂13, D̂32, D̂21] = B
sin 2θ21 sin 2θ13 sin 2θ32

, (A1)

where

B = |â1 · (â2 × â3)|2

= [1 − (â1 · â2)2 − (â2 · â3)2 − (â3 · â1)2

+ 2(â1 · â2)(â2 · â3)(â3 · â1)]. (A2)

This expression is obtained using D̂i j = (ai × a j )/|ai × a j |.
The last term of Eq. (12) then becomes

[D̂13, D̂32, D̂21] sin θ13 sin θ32 sin θ21

= B
(8 cos θ13 cos θ32 cos θ21)

≡ 1 − x2 − y2 − z2 + 2xyz

8 cos θ13 cos θ32 cos θ21
, (A3)

where

x ≡ â2 · â1 = cos 2θ21, y ≡ â3 · â2 = cos 2θ32,

z ≡ â1 · â3 = cos 2θ13. (A4)

Similarly, the first term of Eq. (12) can be written as

cos θ13 cos θ32 cos θ21

= (1 + cos 2θ13)(1 + cos 2θ32)(1 + cos 2θ21)

8 cos θ13 cos θ32 cos θ21

≡ 1 + x + y + z + xy + yz + zx + xyz

8 cos θ13 cos θ32 cos θ21
, (A5)
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and similarly, the second, third, and fourth terms of Eq. (12)
become

(D̂13 · D̂32) sin θ13 sin θ32 cos θ21

= xyz − x2 + yz − x

8 cos θ13 cos θ32 cos θ21
, (A6)

(D̂32 · D̂21) cos θ13 sin θ32 sin θ21

= xyz − z2 + xy − z

8 cos θ13 cos θ32 cos θ21
, (A7)

and

(D̂21 · D̂13) sin θ13 cos θ32 sin θ21

= xyz − y2 + zx − y

8 cos θ13 cos θ32 cos θ21
, (A8)

respectively. Finally, combining all these terms, Eq. (12)
simplifies to

cos α = 1 + x + y + z

4 cos θ13 cos θ32 cos θ21

≡ 1 + x + y + z

�
,

⇒ tan α =
√

�2 − (1 + x + y + z)2

1 + x + y + z
. (A9)

Noting

�2 = 16 cos2 θ13 cos2 θ32 cos2 θ21

= 2(1 + x)(1 + y)(1 + z)

= 2(1 + x + y + z + xy + yz + zx + xyz)

= (x + y + z)2 + 2(x + y + z) + 1

+ 1 + 2xy + 2yz + 2zx − (x + y + z)2 + 2xyz

= (1 + x + y + z)2 + (1 − x2 − y2 − z2 + 2xyz),
(A10)

we arrive at

tan α =
√

1 − x2 − y2 − z2 + 2xyz

1 + x + y + z
, (A11)

which, in terms of â1,2,3, is given in Eq. (14) of the main text.
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