
PHYSICAL REVIEW B 102, 035422 (2020)

Plasmon-plasmon interactions supported by a one-dimensional plasmonic crystal:
Rabi phase and generalized Rabi frequency

Zhengchen Liang,1,* Longyu Qing,1,* Zhoujun Li,1 Xuan Trung Nguyen,2 Ting Xu,3 Antonietta De Sio,2 Hong Zhang,1,4

Christoph Lienau,2 and Wei Wang 1,†

1College of Physics, Sichuan University, Chengdu 610064, China
2Carl von Ossietzky Universität, Institut für Physik, Oldenburg 26129, Germany

3National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation
Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

4Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China

(Received 16 April 2020; revised 3 June 2020; accepted 30 June 2020; published 15 July 2020)

Plasmon-plasmon interactions are key in controlling light at the nanoscale and in the development of
high-performance plasmonic devices. Sophisticated design and efficient dynamic control of such devices
requires a precise description of both spectral responses and ultrafast temporal dynamics in plasmon-plasmon
coupling systems. Here, a microscopic model based on the Heisenberg-Langevin formalism is developed for
generic plasmon-plasmon interacting systems. The validity of the model was experimentally supported by
precisely reproducing the output spectra of interacting plasmons in a one-dimensional plasmonic crystal. We
discussed the inheritance from an initial phase to the Rabi phase, which is accompanied by the vacuum
fluctuations dephasing the incoherent coupling channel. We further derived the generalized Rabi frequency
between two coupled plasmonic modes. We demonstrate that the interplay between the Rabi phase and the
coupling-induced incoherent damping process modulates the ultrafast dynamics of the polariton modes, resulting
in distinctly different spectral responses including the degeneracy and reversing in the polariton branches.
Our model can be readily extended to any other bosonic coupling systems such as interacting nanoparticles
and photonic/plasmonic cavities, thus holding great promise and potential applications in nanocircuits and
cavity QED.
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I. INTRODUCTION

With their ability to confine light at subwavelength scale by
excitation of surface plasmons (SPs), metallic nanostructures
play a significant role in a broad range of applications in
nanoscience [1]. In metal-based plasmonic nanostructures,
particularly with strongly coupled elementary components,
coupling of SPs may lead to many optical effects that dom-
inate their optical properties such as shifts or splittings of
plasmon frequencies [2,3], occurrence of Fano-type spectral
responses [4–6], and modified radiance property of plasmonic
modes [6–9]. Different methods including classical electro-
magnetic theory, Mie scattering theory, and semiclassical ap-
proach have been developed for modeling plasmon-plasmon
interactions in a variety of plasmonic nanostructures [10–13].
It is worth mentioning that an analytical theory of plasmon
hybridization method has been widely used to provide a
simple and intuitive picture of coupled SPs in complex nanos-
tructures [14]. Using the method of mode regulation, coherent
coupling effects such as Fano-shaped plasmon resonances and
sub/superradiance can be explained by treating interacting
SPs classically in plasmonic systems [15,16].

*These authors contributed equally to this work.
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In applications of active plasmonics, dynamic control and
manipulation of plasmons in high-performance nanodevices
requires a deep understanding of microscopic coupling dy-
namics including ultrafast coherent energy exchange and
coupling-induced incoherent damping mechanisms in the in-
teracting plasmons [17], for which a microscopic descrip-
tion is highly desired. So far, only a few studies focus on
real-time plasmon-plasmon coupling characteristics and the
resulting optical responses with an existing complex coupling
coeffcient [18]. An eligible microscopic model for plasmon-
plasmon coupling to describe both spectral responses and the
ultrafast coupling dynamics under the interplay between an
initial phase difference and the coherent/incoherent channels
still need to be developed.

In this paper, we develop a microscopic model to pro-
vide a clear picture of plasmonic interactions based on
the widely applied Heisenberg-Langevin formalism [19–22].
A gold nanoslit array fabricated on a glass substrate was
employed as a test platform to verify the validity of our
model. In this system, we can not only precisely extract
linear spectral characteristics including dispersion, spectral
widths, and the spectral amplitude of the interacting SPs as
bosonic polariton modes [23], but we also have full access
to the ultrafast response in temporal properties including the
coherent and incoherent coupling dynamics, as well as the
evolutions of polariton populations. We derive the correct
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form of the non-Hermitian total Hamiltonian with an existing
Rabi phase, and analytically perform the exact definition of
the generalized Rabi frequency, which governs the coherent
interactions between two coupled plasmonic modes under
large detunings. We also demonstrate the exact role of the
Rabi phase [24] and coupling-induced incoherent damping
process [25] in modulating the population dynamics of the
polariton modes and the resultant spectral responses. Our
microscopic model can be readily applied to describe other
bosonic coupling systems such as interacting nanoparticles
and photonic/plasmonic cavities, providing a viable route for
studying nanocircuits or cavity-QED systems.

II. RESULTS

A. Heisenberg-Langevin formalism for bosonic
interacting system

To describe plasmon-plasmon interactions in the micro-
scopic regime, let us consider an interacting system with
quantized plasmonic modes labeled by l = 1, . . . , n at reso-
nance frequencies ωl . The free Hamiltonian HF can be pre-
sented in number state representation by the bosonic creation
(annihilation) operators â†

l (âl ) as HF = ∑
l h̄ωl (â

†
l âl + 1/2).

Their coherent interactions, under the rotating-wave approxi-
mation (RWA), is presented as HI = ∑

k<l h̄(gkl â
†
k âl + H.c.),

with gkl being the coherent coupling strength. Driven by
an incident harmonic field with frequency ω, the driving
Hamiltonian reads [26] HD = ih̄(

∑
l

√
�lAle−iωt â†

l ) + H.c.,
with �l and Al being the total decay rates of polariton
modes and the coupling coefficients to the incidence, re-
spectively. Of importance are the radiation and dissipation
processes of the plasmons to the continuum reservoir, given by
HR = ∫

h̄ω′(b̂†
ω′ b̂ω′ + ĉ†

ω′ ĉω′ )dω′, which leads to the Hamilto-
nian of system-reservoir interaction HS = ih̄

∫
(
∑

l Bl b̂
†
ω′ âl +

Cl ĉ
†
ω′ âl )dω′ + H.c. The bosonic b̂ω′ with coupling coefficient

Bl presents the continuum radiative modes, and ĉω′ presents
the continuum phononic background leading to Ohmic loss.
Hence, the total Hamiltonian reads H = HF + HI + HD +
HR + HS. The time evolution of any operator Ô describing
a physically observable property of the system follows the
Heisenberg equation of motion ˙̂O = (i/h̄)[H, Ô], which gives
rise to

˙̂al = −iωl âl − i
∑
k<l

g∗
kl âk−i

∑
k>l

glk âk+
√

�lAle
−iωt

− Bl

∫
bω′dω′ − Cl

∫
cω′dω′,

˙̂bω′ = −iω′bω′ +
n∑

l=1

Bl âl ,

˙̂cω′ = −iω′cω′ +
n∑

l=1

Cl âl , (1)

in which Bl and Cl are the radiative and the dissipative cou-
pling coefficients between subsystems âl and the continuum
reservoir, respectively. Following the convention, in the time

domain we integrate

b̂ω′ (t ) = bω′ (0)e−iω′t +
∫ t

0

n∑
l=1

Bl âl e
−iω′(t−t ′ )dt ′,

ĉω′ (t ) = cω′ (0)e−iω′t +
∫ t

0

n∑
l=1

Cl âle
−iω′(t−t ′ )dt ′

(2)

to receive

˙̂al = −iωl âl − i
∑
k<l

g∗
kl âk − i

∑
k>l

glk âk +
√

�lAle
−iωt

−π

n∑
k=1

(BkBl + CkCl )âk + F̂l , (3)

where the operator of random fluctuations F̂l satisfies the
Markoff condition 〈F̂ †

l (t )F̂l (t ′)〉 = δ(t − t ′). Microscopically,
the direct impact of vacuum fluctuations on the populations
of plasmonic modes are small enough, but we shall pay
attention to its phase effect in the following sections. Note that
the incoherent coupling coefficient γkl is introduced to char-
acterize the coupling-induced incoherent damping channel
[25] between individual plasmonic modes via the continuum
reservoir [18,27,28]. In terms of

�l = �l,r + �l,nr = 2πB2
l + 2πC2

l ≡ 2γl ,

�kl = 2π (BkBl + CkCl ) ≡ 2γkl

(4)

with the total decay rate �l = 2γl of an individual polariton
mode ωl , we plug Eq. (4) back into Eq. (3) where the detuning
�l = ωl − ω emerges. The Heisenberg-Langevin equations
of the entire system under RWA are derived as

˙̂al = − i
∑
k>l

(glk − iγlk )âk − i
∑
k<l

(g∗
kl − iγkl )âk

−
(

i�l + 1

2
�l

)
âl +

√
�lAl + F̂l . (5)

Based on Eq. (5), the steady-state solutions and the real-
time dynamics of the plasmonic interacting system can be
readily obtained.

B. Plasmon-plasmon interactions supported by 1D narrow
nanoslit array

To demonstrate the validity of our microscopic model,
we have designed and fabricated a one-dimensional (1D)
plasmonic nanoslit array, which is a widely applied platform
[18,27] for plasmon excitations due to its capability of si-
multaneously supporting different plasmon modes with highly
distinguishable dispersions that can be easily evaluated and
tuned by the period of the nanoslit. The simple structural
configuration and the ease of fabrication make it an ideal
candidate for the study of plasmon-plasmon interactions.

The shallow nanoslit array as a platform for plasmon-
plasmon interactions is fabricated with the focused ion beam
milling technique. As depicted in Fig. 1(a), it is prepared
on a 30-nm-thick gold film deposited on a Ti-coated (3 nm)
SiO2 substrate, with a period of p = 680 nm [see scanning
electron microscope (SEM) image]. SPs are excited at both
the air-metal (AM) and the substrate-metal (SM) interfaces
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FIG. 1. (a) Schematic and SEM image (inset) of the gold nanoslit
array deposited on a SiO2 substrate. (b) A diagram describing
coherent interactions characterized by coupling constant g12 and g13,
respectively, as well as damping pathways of SP modes AM[+1],
AM[−1], and SM[−1] with labels l = 1, 2, 3 representing their
radiative decay �l,r and nonradiative decay �l,nr. (c) Transmis-
sion spectrum (blue), together with the model result (red), and its
Lorentzian-shaped fitting (dashed) at incident angle θ = 20◦.

by grating coupling, which transfers an additional momentum
�k = m(2π/p) (with m being an integer) to the incident pho-
tons. Importantly, the SPs are also featured by their tunable
resonances due to the in-plane momentum kx,SP = k0 sin θ ±
�k, which is dependent on the incident angle θ . Figure 1(c)
depicts the transmission spectrum (blue) measured at an in-
cident angle θ = 20◦ where two strong resonances appear:
one at ∼1.35 eV with Lorentzian line shape and the other at
∼1.6 eV with a sightly Fano-shaped peak, corresponding to
SP modes AM[m = +1] and SM[m = −1], respectively. The
transmission spectrum essentially arises from two interfering
channels, i.e., the reemitted resonant SPs and the nonresonant,
direct transmission through the nanoslit array [18]. The nar-
row and shallow slit array configuration was chosen here to
minimize the phase difference between the two pathways, so
that their interference leads to Lorentzian-shaped transmission
spectra instead of complicated Fano line shapes. Besides, at
large incidence angle the slightly Fano-shaped SM[−1] mode
actually results from its interference with the SM[+2] mode
at higher energy (see Fig. 7 in Appendix A).

We perform angle-resolved linear transmission measure-
ments on the nanoslit array by varying θ with an angu-
lar resolution of 0.1◦ (see Appendix A for the details of
the experimental setup). The measured angle-resolved trans-
mission spectra in Figs. 2(a) and 2(b) clearly map the SP
band structures with three well-distinguished branches. Sym-
metric AM[±1] branches overlap at a resonance energy of
∼1.79 eV at normal incidence, whereas asymmetric AM[+1]
and SM[−1] branches are in resonance at lower energy
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FIG. 2. Measured (a),(b) and calculated (c),(d) angle-resolved

transmission spectra (in color scale) showing the AM-AM (a),(c) and
AM-SM (b),(d) couplings, respectively. The dashed lines give the
modeled polariton dispersion.

(∼1.47 eV) with an apparent splitting [Fig. 2(b)]. These ob-
served spectral features indicate plasmon-plasmon interac-
tions among different modes, which can be quantitatively
described by our microscopic model. In such nanoslit array,
different damping pathways coexist, as depicted in Fig. 1(b).
The decay rates of the individual plasmon modes �l = �l,r +
�l,nr are primarily dominated by radiative damping �l,r.
Here, l = 1, 2, 3 denote AM[+1], AM[−1], and SM[−1],
respectively. We consider the contribution of the nonradiative
damping as h̄�l,nr = 5 meV for all modes [18]. Considering
the influence of frequency-dependent Rayleigh scattering on
the radiative damping and the small angular ranges studied
in our experiment, the radiative damping h̄�1(2),r = 45 meV
for the angular range of −5◦ � θ � 5◦, and h̄�1,r = 13 meV,
h̄�3,r = 54 meV for −20◦ � θ � −10◦ are optimized in our
model as constant values.

With an optimal set of coherent and incoherent coupling
strengths h̄g12 = 10 meV, h̄γ12 = 1.8 meV, h̄g13 = 20 meV,
and h̄γ13 = 1.7 meV, the measured angle-resolved transmis-
sion spectra are very nicely reproduced with the radiative
output power 	rad = ∑3

l=1 �l,r〈â†
l âl〉 retrieved from either the

steady-state solution [29] or equivalently the time-domain
convergent solution of Eq. (5) (see Appendix B). Note that
the observed AM-AM and AM-SM interactions are in the
intermediate coupling regime [30], which are classified under
the criterion |�k − �l |/4 < gkl <

√
(�2

k + �2
l )/8.

C. Sub- and superradiant polariton modes

Based on the quantitative description of the static optical
response in Figs. 2(c) and 2(d), the spectral characteristics
can be extracted with high precision by fitting the calculated
spectra to a Lorentzian line shape T (ω) = |t (ω)|2 by [31,32]
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FIG. 3. Spectral widths of upper polariton (UP) and lower po-
lariton (LP) branches retrieved from the model solution and fitted by
a Lorentzian line shape for (a) AM-AM coupling and (b) AM-SM
coupling. UP and LP amplitudes retrieved from the model solution
and fitted by a Lorentzian line shape for (c) AM-AM coupling and
(d) AM-SM coupling.

t (ω) = ∑
j=+,−[b jγ jeiφ j /(ω − ω j + iγ j )] with the spectral

amplitudes bl . Calculated eigenenergies of the hybrid modes,
the dashed lines in Fig. 2, nicely match to the resonances
both in the measured and the calculated angle-resolved trans-
mission maps. The accuracy of our approach in modeling of
the static response of the hybrid system can be confirmed
by the good matching of the modeled spectrum (solid red)
to the measured result (solid blue) in Fig. 1(c).

The spectral widths (h̄�±) and the amplitudes are also
extracted and are shown in Figs. 3(a)–3(d), respectively. For
the symmetric AM-AM coupling, as AM[±1] modes are
brought closer to resonance, the full-width at half-maximum
(FWHM) of UP/LP branch increases/decreases, resulting in
a super-/subradiant UP/LP mode due to the presence of
coupling-induced incoherent interaction [18,27,28]. This is
accompanied by a drastic increase/decrease in the transmis-
sion amplitudes of the UP/LP branch, as shown in Fig. 3(c).
Particularly, the amplitude of LP vanishes at zero detuning
θ = 0◦, and the FWHM of LP becomes undefined [inset of
Fig. 3(a)]. This vanishing polariton resonance is essentially
the direct consequence of the degeneracy of AM[±1] modes
at normal incidence: AM[±1] modes become undistinguish-
able and the coupling process between these two identical
modes gives rise to a pure single “bright” UP mode and a
completely “dark” LP mode. Importantly, the degeneracy of
plasmons at this critical point eliminates the physical meaning
of the cross-damping term γ12, which transferred directly to
the damping of the degenerated mode, leading to a single
broadened Lorentzian-type UP resonance. This is readily con-
firmed by the real-time dynamics at UP resonance. As shown
in Fig. 4(a), the population evolving in time (blue circles)
derived from our model experiences an ultrafast decrease from
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FIG. 4. The calculated (circles) and fitted (solid lines) total pop-
ulation(s) of hybrid mode(s) at zero detuning δkl = ωk − ωl = 0 for
(a) AM-AM coupling and (b) AM-SM coupling with Rabi phase
φ = π/2. (c) The angle-resolved transmission spectra derived from
our model with a Rabi phase φ = π (left) and φ = π/2 (right) for
AM-SM coupling.

its steady state. This can be perfectly fitted to an exponentially
decaying function, indicating a freely damped UP excitation
at zero detuning.

This phenomenon occurs only for symmetric AM-AM
coupling at the degeneracy point. As for AM-SM coupling,
the two asymmetric SP modes, induced at different interfaces,
possess distinct intrinsic damping properties and oscillator
strength, which result in sub- and superradiant hybrid states
with their width difference governed again by the cross-
damping term 4γ13 at zero detuning (θ = −13.7◦). As clearly
shown in Fig. 3(b), this aspect is further supported by the
enhanced/suppressed decay rate of UP/LP total population
in the time domain. From a maximum likelihood estimation
by the criterion Ṅ = −αN − βN2, the curves best fit the
parameter β > 0 at the UP resonance, and β < 0 at the LP
resonance, as plotted in Fig. 4(b). Moreover, a dramatically
reduced amplitude and a narrowing of the linewidth of the LP
mode at larger incidence angles θ < −14◦ were observed due
to the asymmetry coupling of AM[+1] and SM[−1], resulting
in a much darker (not totally dark) LP branch with respect to
a bright UP branch.

D. From an initial phase difference between coupling modes
to the Rabi phase

Apart from the success in microscopically explaining the
coupling-induced damping mechanism for sub-/superradiant
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polaritons, our microscopic model also interprets the micro-
scopic origin of the Rabi phase, which appears as a phase
factor in the complex coupling constant g = |g|eiφ . Essen-
tially, the Rabi phase φ is believed to be relevant to the spatial
distance and the resultant relative phase difference between
the two individual subsystems [24]. In our previous work, the
coupling constants with negative values have been observed
in plasmonic systems coupled to organic/inorganic semicon-
ductors [27,33,34], or to monolayer two-dimensional atomic
crystals [28,35]. In this sense, the negative g corresponds to
Rabi phase φ = π . In the present nanoslit array, the coherent
coupling constants are found to be real positive values for both
AM-AM and AM-SM couplings, corresponding to Rabi phase
φ = 0.

Based on the microscopic model, we then further reveal
that the Rabi phase originates from the initial phase difference
between two individual modes which cannot be eliminated
by a U(1) gauge transform. In the dynamics (5), this phase
difference is absorbed in the coherent coupling term via
HI, resulting in the complex g. Moreover, in the system-
reservoir interaction, the residual factor of phase difference
is eliminated by continuum integrals in frequency domain
[Eq. (1)]. Hence the Rabi phase which modulates the coherent
coupling rate g, has completely no impact on the incoherent
coupling regime.

Importantly, for seeking the correct form of incoher-
ent behavior in the total steady-state Hamiltonian (B5), we
have to consider the presence of an initial phase difference
that generates the Rabi phase. In the two-mode coupling
case, which may be experimentally realized by driving the
two plasmonic modes by external fields A1 and A2 with a
phase difference eiφ , we can add the phase factor to a2 
→
a2eiφ appearing in the two-mode version of (5). Suppos-
ing that the time-domain integration (2) still classically pre-
serves the initial phase, the dynamics may appear differently
for k, l = 1, 2:

˙̂al = − i
∑
k>l

(glk − iγlk )âk − i
∑
k<l

(g∗
kl − iγ ∗

kl )âk

−
(

i�l + 1

2
�l

)
âl +

√
�lAl , (6)

in which we have absorbed the phase factor into γ12 in the
same way for g12 as

˙̂a1 = −
(

i�1 + �1

2

)
â1 +

√
�1A1 − (i g12eiφ︸ ︷︷ ︸

g12

− γ12eiφ︸ ︷︷ ︸
γ12

)â2,

˙̂a2 = −
(

i�2 + �2

2

)
â2 +

√
�2A2 − (i g12e−iφ︸ ︷︷ ︸

g∗
12

− γ12e−iφ︸ ︷︷ ︸
γ ∗

12

)â1

(7)

assuming (2) has preserved the phase factor. Note that in
the classical framework, equivalent dynamics of (6) can be
derived, as discussed in the literature [36,37]. However, this
is not the case in the presence of vacuum fluctuation [24,34].
In the Heisenberg-Langevin Eq. (3), the fluctuation operators
F̂l under the Markoff condition are originated from the same
time-domain integration as (2) in the incoherent coupling
channel, which result in purely dephasing real coupling coef-

ficients γkl . An existing initial phase difference between cou-
pling plasmonic modes is erased by the dephasing in the inco-
herent channel through the integral (2). Therefore, the correct
form of the total Hamiltonian (B5) adopted in our previous
work [27,34] and the dynamics (5) in our current microscopic
model is different from (6) because of the vacuum fluctuations
in the incoherent channel of system-reservoir interaction. This
fact indicates that the Rabi phase is the only inheritance from a
coherent phase difference between the coupling modes, while
the dephasing effect of vacuum fluctuation presents in the
incoherent coupling channel, despite its small direct impact
on the populations of plasmonic modes in the microscopic
regime.

The Rabi phase, originating from the initial U(1) phase
difference between the two individual modes, can modulate
the output spectra and the ultrafast dynamics. Figures 4(a) and
4(b) demonstrate the effect of the Rabi phase on both AM-AM
and AM-SM coupling at zero detuning. At φ = π/2, the
calculated UP/LP populations experience exactly the same
decay curve (green circles) under equal initial eigenvalue.
The output spectral response in Fig. 4(c) (right) then shows
a symmetric branch of equal amplitude in the transmission
spectra at zero detuning, which differs from the measured
spectra (φ = 0) with much brighter/darker UP/LP branches
[Fig. 2(b)]. As φ increases from π/2 to π , the reversed
UP/LP population dynamics further modulated the reversed
configuration of spectral amplitudes in Fig. 4(c) (left). The
Rabi phase is thus responsible for the observed phenomena
[16] of the reversed optical responses of the hybrid modes.

Knowing that an initial phase difference absorbed in the
Hamiltonian HI originates a nonzero Rabi phase, we further
investigate the exact role of the Rabi phase interplaying
with the incoherent coupling channel γkl , which results in
the non-Hermitian total Hamiltonian [see Eq. (B5) in Ap-
pendix B], in modulating the ultrafast dynamics of plasmon-
plasmon coupling. For interacting plasmonic modes ak (t ) and
al (t ), we address ak = pkl al with pkl the complex ratio of
modal coefficients satisfying Nk/Nl = |pkl |2. Back to Eq. (5),
it appears

ṗkl = i(g∗
kl − iγkl )p2

kl+
[
iδlk+ 1

2 (�l−�k )
]
pkl−i(gkl − iγkl )

(8)

with the detuning δkl = ωk − ωl . Its discriminant
�kl = [iδlk + (�l − �k )/2]2 − 4
kl with 
kl = |gkl |2 −
γ 2

kl − 2iγklRe[gkl ], determines

pkl − pkl,+
pkl − pkl,−

= Ckl exp (
√

�kl t ), (9)

the analytic curve system of the solution pkl (t ) with a complex
constant Ckl , where pkl,± are the roots of Eq. (C3) under
ṗkl = 0. We can then recognize the generalized Rabi fre-
quency fkl as the imaginary part of the exponent, i.e., fkl =
Im[

√
�kl ], which characterizes the periodicity in the evolving

fraction of populations in plasmon-plasmon coupling. More
details on the analytical derivation of the generalized Rabi
frequency is given in Appendix C.

Figures 5(a)–5(d) plot the fractions of populations N1/N2

(in logarithm scale) in UP and LP hybrid modes of coupling
between AM[+1] and AM[−1] SP modes for varying Rabi
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FIG. 5. The fractions of populations N1/N2 (in logarithmic scale) in UP and LP hybrid modes of coupling between AM[+1] and AM[−1]
SP modes at zero detuning δ12 = 0 and h̄γ12 = 1.8 meV. The ultrafast dynamics is modulated by the Rabi phase (a) φ = 30◦, (b) φ = 45◦,
(c) φ = 60◦, and (b) φ = 90◦. (e)–(h) The corresponding trajectory to (a)–(d) of p12(t ) on its complex plane within 1000 fs. The dashed
lines link the two convergence points on the complex plane at time t → ±∞ of the solved analytic curve system, which vary under different
Rabi phases.

phase at zero detuning (δ12 = 0) for h̄γ12 = 1.8 meV. Ap-
parently, the fractions of AM[±1] populations in the hybrid
modes experience ultrafast oscillations with a fixed period of
207 fs, i.e., the Rabi period, corresponding to the coherent
coupling energy 2h̄|g12| = 20 meV. In this sense, the gen-
eralized Rabi frequency fkl returns to the Rabi frequency
at zero detuning. The coherent population transfer between
the plasmon modes can also be intuitively visualized by
plotting modal coefficients pkl in a complex plane, as shown
in Figs. 5(e)–5(h). Here, a population transfer period is clearly
identified as a complete circle in the complex plane.

The interplay between a nonzero Rabi phase and the in-
coherent channel γkl leads to distinct behavior of population
dynamics of the interacting plasmons, which can be readily
analyzed based on the plots in the complex plane. Note that
with this γkl , the total Hamiltonian [method Eq. (B5)] is equiv-
alent to the construction from the density-matrix formalism
with a Lindblad form introduced in [34]. For the cases with
the Rabi phase of φ = 30◦, 45◦, and 60◦, the fractions of pop-
ulation N1/N2 finally converge to finite values after an infinite
long relaxation time, as shown in Figs. 5(e)–5(g). Whereas,
for φ = 90◦, the fraction does not converge, exhibiting two
infinite circles for both UP and LP modes with the persistence
of time-translation symmetry.

To look into this fact, we focus on the universal con-
straints Eq. (4) on the cross-damping γkl by the total damp-
ings γk and γl of the individual modes, which have also
been established in light-matter interacting systems [35]. In
our case, the constraints can already be interpreted as [25]
γ12 = √

γ1γ2(μ1 · μ2) where μ1,2 denotes the dipole moment
of AM[±1]. According to our derivation, the Rabi phase
φ = π/2 indicates the phase difference between individual

AM[±1] oscillations of π/2 under the U(1) phase symmetry.
Therefore, in all periods of the individual dipole oscillation
T1, the orthogonality of

∫ T1

0 sin (2πt/T1) cos (2πt/T1)dt = 0
cancels the time-averaged population exchange via the in-
coherent channel, which holds only for φ = π/2. Indeed,
when the Rabi phase is nonzero, the incoherent damping
term γ12 = 1.8 meV breaks the time-translation symmetry of
AM[±1] population fractions [Figs. 5(a)–5(c)]. If the two
plasmon modes only coherently interact in absence of the
incoherent damping pathway (γ12 = 0), the time-translation
symmetry of AM[±1] population fractions in UP and LP
branches will always hold regardless of the Rabi phase, as
shown in Fig. 6. It is worth mentioning that the incoher-
ent channel does affect the total decay of AM[±1] popu-
lations, as comparing Figs. 5(d) and 5(h) with Figs. 6(d)
and 6(h) where the fraction of population N1/N2 appears
slightly different. Moreover, a complex g12 (nonzero Rabi
phase) indicates distinguishable AM[±1] even at zero detun-
ing, unlike the situation in Fig. 3(a), which leads to nonde-
generate UP and LP hybrid modes that are again modulated
by γ12.

Therefore, the population dynamics in the hybrid polariton
modes and the output spectral response can be efficiently
modulated by cooperatively controlling the Rabi phase and the
incoherent damping term. One possible way of achieving the
desired Rabi phase is to carefully adjust the spatial distance
(probably in subwavelength scale) between the interfaces at
which plasmons with different modes are excited. While for
the incoherent coupling term, it can be tuned by tailoring
the dipolar orientations of the individual plasmons. This is
of particular use for the design of sophisticated metallic
nanostructures for active plasmonic devices.

035422-6



PLASMON-PLASMON INTERACTIONS SUPPORTED BY A … PHYSICAL REVIEW B 102, 035422 (2020)

Re[ ]

Time (fs)

Im
[

]
lg

UP
LP

0.0

(a) (b)

(e) (f)

(c) (d)

(g) (h)

UP LP

Re[ ]
0.8 1.6

0.0

-0.8

-1.6

-2

0

2

0 500 1000
Time (fs)

0 500 1000

Re[ ]
0.0 1.5 3.0

0.0

-1.5

-3.0
0 3 6

0

-3

-6

Re[ ]

0 500 1000
Time (fs)

-8

0

8

-8 0 8

0 500 1000
Time (fs)

-2

0

2

-2

0

2

-2

0

2

FIG. 6. The fractions of populations N1/N2 (in logarithmic scale) in UP and LP hybrid modes of coupling between AM[+1] and AM[−1]
SP modes at zero detuning δ12 = 0 and h̄γ12 = 0. The ultrafast dynamics is modulated by the Rabi phase (a) φ = 30◦, (b) φ = 45◦, (c) φ = 60◦,
and (b) φ = 90◦. (e)–(h) The corresponding trajectory to (a)–(d) of p12(t ) on its complex plane within 1000 fs.

III. CONCLUSION

We have developed a microscopic model for bosonic in-
teracting systems, providing microscopic pictures and details
of spectral responses and the ultrafast dynamics of interacting
plasmons. The model is experimentally set up and tested by
reproducing the measured angle-resolved transmission spec-
tra of a narrow nanoslit array which supports SPs on AM
and SM interfaces. Within this approach, we are able to
precisely extract both the linear spectral characteristics and
the temporal coupling dynamics of the interacting systems.
Moreover, we discussed the microscopic origin of the Rabi
phase and the total Hamiltonian, from which we analytically
derived the exact definition of the generalized Rabi frequency.
We also performed the essential role of the Rabi phase and
the coupling-induced incoherent damping in modulating the
population dynamics of the polariton modes and the resul-
tant spectral responses. This method for analyzing the pure
bosonic systems with its flexibility and generality, may have
promising applications in the interacting systems including
photonic/plasmonic cavities.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China (Grants No. 11974254, No. 61675139,
and No. 11974253), the National Key R&D Program of China
(2017YFA0303600), and the Innovation Program of Sichuan
University (Grant No. 2018SCUH0074).

APPENDIX A: ANGLE-RESOLVED TRANSMISSION
SPECTROSCOPY

In our spectroscopic measurement, the sample was fixed
vertically on a sample holder which is mounted on an

electrically driven high-precision rotation stage. A home-built
microscope is equipped in set up to monitor the location of
the beam spot on the sample. Under the illumination of a
broadband (1.1 eV–2 eV) white light laser source (Fianium
SC-450-4) with a repetition rate of 80 MHz, transmission
spectra were recorded by varying the angle of incidence θ

ranging from −30◦ to −10◦ with a small step size of 0.1◦.
In the present nanoslit array prepared on glass substrate,

there are two interfaces that can support SP excitations: AM
and SM interfaces, as shown in Fig. 7 (left). Consider the AM
interface as an example; SP can be excited by compensating
the momentum mismatch between the in-plane wave vector
of SP kx,SP and the incoming far-field radiation kx,0 in the +x
direction. The periodic grating provides an additional recip-
rocal vector �k, in such a way that the momentum mismatch
between the far-field radiation and the SPP dispersion relation
is compensated: kx,SP = kx,0 ± m�k = k0 sin θ ± m(2π/p).
Here, k0 is the wave vector of the incoming far-field radiation
in free space. Solutions of kx,SP are possible for different
integer m at each angle of incidence θ .

Angle
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FIG. 7. (a) Schematic of SP excitations in nanoslit array on glass
substrate (i.e., the grating configuration [38]), and (b) angle-resolved
transmission spectrum (in color scale) measured on the gold nanoslit
array with period of p = 680 nm.
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As shown in Fig. 7 (right), we can clearly see three
SP branches, which are identified as AM[+1], SM[−1] and
SM[+2], respectively. Note that at larger angle of incidence
part of the SM[−1] branch approaches the SM[+2] branch,
and their interference leads to Fano-shaped transmission spec-
tra, as shown in Fig. 1(c) in the main text. Therefore, we
only discussed the AM-SM coupling in the range of −20◦ �
θ � −10◦ where the influence of the SM[+2] branch can
be neglected.

APPENDIX B: EIGENFUNCTION AND STEADY-STATE
SOLUTION

Considering the coupling between two plasmonic modes,
the Heisenberg-Langevin equation reads explicitly

˙̂a1 = −i(g12 − iγ12)â2 − (
i�1 + 1

2�1
)
â1 +

√
�1A1 + F̂1,

(B1)

˙̂a2 = −i(g∗
12 − iγ12)â1 − (

i�2 + 1
2�2

)
â2 +

√
�2A2 + F̂2.

(B2)

By setting ˙̂al = 0 a steady-state solution appears as

â1 = [
√

�1A1(i�2 + �2/2) − i(g12 − iγ12)
√

�2A2]/β,

(B3)

â2 = [
√

�2A2(i�1 + �1/2) − i(g∗
12 − iγ12)

√
�1A1]/β,

(B4)

where β = (i�1 + �1/2)(i�2 + �2/2) + (g12 − iγ12)(g∗
12 −

iγ12) is the determinant of coupling between two bosonic
modes. This steady-state solution corresponds to the Hamil-
tonian in the quantum jump approach

H = (â†
1 â†

2)

(
ω1 − i �1

2 g12 − iγ12

g∗
12 − iγ12 ω2 − i �2

2

)(
â1

â2

)
(B5)

for the plasmon-plasmon interaction. By diagonalizing
Eq. (B5), the steady-state solutions are reproduced from the
eigenfunction in the quantum jump approach.

APPENDIX C: DETAILS IN THE CALCULATION FOR
PLASMON-PLASMON COUPLING

In the general case of plasmon-plasmon coupling, i.e.,
with a nonzero Rabi phase [39], we continue with the ratio
of modal coefficients pkl (t ) = ak (t )/al (t ), where ak (t ) and
al (t ) are the evolving modal coefficients as observables in

an interaction picture under the number state representation.
From the equation of motion for plasmon-plasmon interac-
tion, we obtain

al ṗkl + pkl ȧl = −i(gkl − iγkl )al − (
i�k + 1

2�k
)
pkl al ,

(C1)

ȧl = −i(g∗
kl − iγkl )pklal − (

i�l + 1
2�l

)
al (C2)

when removing the driving field and omitting the noises.
Plugging Eq. (C2) into Eq. (C1) we have the modal coefficient
al canceled which leads to the ordinary differential equation
(ODE)

ṗkl = i(g∗
kl − iγkl )p2

kl + [
iδlk+ 1

2 (�l−�k )
]
pkl−i(gkl − iγkl )

(C3)

governing the complex ratio p12(t ), where δkl = ωk − ωl is
the detuning between two individual modes and δlk = −δkl .
Denoting

A = i(g∗
kl − iγkl ),

B = iδlk + 1
2 (�l − �k ), (C4)

C = −i(gkl − iγkl )

to express the discriminant

�kl = B2 − 4AC = [
iδlk + 1

2 (�l − �k )
]2 − 4
kl (C5)

which controls the ODE, Eq. (C3), in complex domain we
have

1

pkl,+ − pkl,−

∫ (
1

pkl − pkl,+
− 1

pkl − pkl,−

)
d pkl = At,

(C6)
where pkl,± are the roots of Eq. (C3) under the condition of
ṗkl = 0. Integrate

ln
pkl − pkl,+
pkl − pkl,−

= (pkl,+ − pkl,−) At · K (C7)

and take the exponent; absorbing a complex constant into K =
ln Ckl we receive

pkl − pkl,+
pkl − pkl,−

= Ckl exp [i(g∗
kl − iγkl )(pkl,+ − pkl,−)t]

= Ckl exp (
√

�kl t ) (C8)

as the analytic solution pkl (t ) of the governing equa-
tion, Eq. (C3). Since the periodicity in pkl (t ) is deter-
mined by the imaginary part of the exponent, the general-
ized Rabi frequency appears fkl = Im[i(g∗

kl − iγkl )(pkl,+ −
pkl,−)] = Im[

√
�kl ].
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