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Using a semiclassical approach, we derive a fully analytical expression for the ionization rate of excitons in
two-dimensional materials due to an external static electric field, which eliminates the need for complicated
numerical calculations. Our formula shows quantitative agreement with more sophisticated numerical methods
based on the exterior complex scaling approach, which solves a non-Hermitian eigenvalue problem yielding
complex energy eigenvalues, where the imaginary part describes the ionization rate. Results for excitons in
hexagonal boron nitride and the A exciton in transition metal dichalcogenides are given as simple examples. The
extension of the theory to include spin-orbit-split excitons in transition metal dichalcogenides is trivial.

DOI: 10.1103/PhysRevB.102.035402

I. INTRODUCTION

The Lo Surdo–Stark effect has a venerable history in both
atomic, molecular, and condensed matter physics [1]. This
effect refers to the modification of the position of the energy
levels of a quantum system due to the application of an exter-
nal electric field and, in addition, to the possible ionization of
atoms, molecules, and excitons due to the very same field. The
latter effect is a nice example of quantum tunneling through
an electrostatic barrier. The difference between values of the
energy levels with and without the field is dubbed the Stark
shift. The ionization process is characterized by an ioniza-
tion rate, which depends on the magnitude of the external
electric field, as well as material parameters. Although the
calculation of the Stark shift can be easily accomplished using
perturbation theory [2], the calculation of the ionization rate
is nonperturbative [3] since it is proportional to exp(−β/F ),
where β is a material-dependent parameter and F is the
magnitude of the external electric field. For the case of the
hydrogen atom in three dimensions the literature on the Lo
Surdo–Stark effect, spanning a period of about 100 years, is
vast. On the contrary, for low-dimensional systems, such as
the two-dimensional hydrogen atom, the calculation of both
the Stark shift and the ionization rate for very strong electric
fields was only recently considered [4,5]; the weak field limit
had been studied by Tanaka et al prior [6]. In the previous
work, the authors used a low order perturbation expansion of
the energy, combined with the hypergeometric resummation
technique [4,5] to extract the full nonperturbative behavior of
the energy and thus address the Lo Surdo–Stark effect in a sys-
tem they dubbed low-dimensional hydrogen. Other numerical
methods for tackling the calculation of Stark shifts and the
ionization rates include the popular complex scaling method
[7], as well as the Riccati-Padé method [8], which is based on

the transformation of the Schrödinger equation to a nonlinear
Riccati equation. Also, using the same mapping, Dolgov and
Turbiner devised a numerical perturbative method [9], starting
from an interpolated solution of the Riccati equation, for
computing the ionization rate at strong fields. The Lo Surdo–
Stark problem has also been addressed using JWKB schemes
[10–13] and variational methods [14]. Fully analytical re-
sults have been found for the three-dimensional hydrogen
atom [15]. Another interesting approach uses Gordon-Volkov
wave functions [16,17], which are semiclassical-type wave
functions for an electron in the electric field of an incoming
electromagnetic wave.

In the field of two-dimensional (2D) excitons [18], there
are already experimental reports of both valley selective Stark
shift [19–21] and exciton dissociation via external electric
fields [22]. In the same context, Stark shifts and ionization
rates of excitons in these condensed matter systems have been
calculated theoretically for arbitrary field intensities [23–25].
In [25] a semianalytical method was used, where the field
dependence of these two quantities (shift and ionization rate)
are determined analytically, and a material-dependent con-
stant is determined numerically. The method only requires the
electrostatic potential to have a Coulomb 1/r tail, but involves
the introduction of an extra basis of functions to deal with the
nonseparability of the electrostatic potential. Their results are
asymptotically exact and capture commendably the low-field
regime. The same authors have recently extended the method
to excitons in van der Waals heterostructures [26] with success
[27]. Recently, Cavalcante et al. have extended the interest in
the Stark effect to trions in 2D semiconductors [28].

At the time of this writing, there is not a fully analytical
description of the Lo Surdo–Stark effect for excitons in 2D
materials. Although the previous methods can be used to
describe this effect, the lack of a fully analytical expression
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prevents their use by a wider community and lacks the insight
provided by an analytical description. This is especially true
for the material-dependent coefficient which is both hard to
obtain numerically and varies by orders of magnitude even
for modest changes of the dielectric function of the materials
encapsulating the 2D material. An additional difficulty is the
nonseparability of the electrostatic, non-Coulombic, potential
between the hole and the electron in 2D excitons. This nonsep-
arability has hindered the use of well known methods based on
parabolic coordinates [9,29–31]. As we will see, however, this
difficulty may be circumvented if one introduces the concept
of an effective potential [32], with the only requirement being
the existence of a Coulomb tail at large distances in the elec-
trostatic potential [33,34]. This concept, in essence, renders
the original potential approximately separable if one focuses
on the relevant coordinate. Indeed, in parabolic coordinates ξ

and η, and for the hydrogen atom in 2D in a static electric
field, the eigenvalue problem is separable. The two resulting
equations describe two different types of quantum problems.
Whereas in the ξ coordinate the eigenvalue problem is that
of a bound state, in the η coordinate the resulting eigenvalue
problem describes a scattering state, where the exciton disso-
ciates via tunneling through the Coulomb barrier, the latter
rendered finite by the presence of the static electric field.
Since tunneling is the relevant mechanism for dissociation
and occurs (for weak fields) at large values of η, the problem,
which is initially nonseparable, effectively becomes a function
of one of the coordinates alone, depending on which of the
two eigenvalue problems we are considering.

In this paper we take advantage of a number of techniques
and obtain a fully analytical formula for the nonperturbative
ionization rate of 2D excitons. Our approach highlights the
role of both the excitons’ effective mass and the dielectric
environment, providing a simple formula for the ionization
rate, in full agreement with more demanding numerical meth-
ods for weak fields. Such a formula is very useful for quick
estimates of the ionization rate of excitons in 2D materials,
and provides physical intuition that is helpful in, e.g., device
design.

This paper is organized as follows: In Sec. II we present
the Wannier equation describing the relative motion of an
electron-hole pair and discuss the approximate separability
of the Rytova-Keldysh potential. In Sec. III we obtain the
expression for the ionization rate and discuss the semiclassical
solution of the tunneling problem. In Sec. IV we apply our
formula to the calculation of the ionization rate of excitons in
2D materials, taking the examples of hexagonal boron nitride
and transition metal dichalcogenides. Finally, in Sec. V we
give some final notes about our work and possible extension
of the results.

II. WANNIER EQUATION

In this section we introduce the Wannier equation, originat-
ing from a Fourier transform of the Bethe-Salpeter equation
[35–37], that defines the exciton problem in real space. We
have found in previous publications [35–38] a good agreement
between the solution of the Bethe-Salpeter equation and the
binding energies arising from the solution of the Wannier

FIG. 1. (Top) Electrostatic potential and wave functions of the
Lo Surdo–Stark effect. In the left panel the system is represented
in the absence of the electric field and a bound state is formed.
In the right panel an external electric field is superimposed on the
attractive electrostatic field distorting the latter. Along one of the
directions the total potential becomes more confining, whereas in
the opposite direction the external field creates a barrier through
which the exciton can tunnel and thereby ionize. (Bottom) Compari-
son between the Coulomb potential and the two expressions defined
in the text for the Rytova-Keldysh potential. While for large values of
r the potentials present an identical behavior, for small r a significant
difference between the Coulomb and Rytova-Keldysh potentials is
visible. Moreover, it is clear that the approximate expression for
the Rytova-Keldysh potential gives an excellent approximation of
Eq. (2). The parameters κ = 1 and r0 = 10 Å were used.

equation. The physics of the Lo Surdo–Stark effect is quali-
tatively represented in Fig. 1.

Following the steps of [29–31] we will pass from polar to
parabolic coordinates with the goal of decoupling the original
two-variable differential equation into two one-dimensional
differential equations. Unlike the pure Coulomb problem, this
problem is not exactly separable. However, as will become
apparent, this problem is separable under justifiable approxi-
mations.

In this work we are interested in studying the ionization
rate of excitons in 2D materials due to an external static
electric field. The Wannier equation in atomic units (a.u.) and
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in terms of the relative coordinate reads

∇2ψ (r) − 2μ[−E + F · r + V (r)]ψ (r) = 0, (1)

where μ is the reduced mass of the electron-hole system, E
is the energy, and F = Fx̂, with F > 0, the external electric
field, that we consider aligned along the x direction. The
electron-hole interaction V (r) is given by the Rytova-Keldysh
potential [39,40]

V (r) = − π

2r0

[
H0

(
κr

r0

)
− Y0

(
κr

r0

)]
, (2)

where the so-called screening length r0 is proportional to the
polarizability of the 2D sheet [41]. Macroscopically, it may
be related to the thickness d and dielectric function ε of the
sheet as r0 ∼ dε/2. Furthermore, κ is the mean dielectric
constant of the media above and below the 2D material, H0

is the Struve function, and Y0 is the Bessel function of the
second kind. The fact that the electrostatic interaction between
electron-hole pairs in 2D materials is given by the Rytova-
Keldysh potential is what gives rise to the nonhydrogenic
Rydberg series [42]. Inspired by the work of [41], where an
approximate expression for the Rytova-Keldysh potential is
presented, we use the following expression as an approxima-
tion to Eq. (2):

V (r) ≈ 1

r0
log

κr

κr + r0
. (3)

In Fig. 1 we plot Eq. (2) and the previous expression in the
same graph and observe that the latter formula is an excellent
approximation of the former.

Next we note that several authors [29–31] used parabolic
coordinates in order to separate the Schrödinger equation
into two differential equations of a single variable. In those
works, however, the Coulomb potential was considered in the
three-dimensional (3D) case. In our case, the Rytova-Keldysh
potential does not allow a simple solution by separation of
variables. To be able to do so, an effective potential has to
be introduced. Let us consider the following set of parabolic
coordinates [43,44] in 2D:

x = ξ − η

2
, (4)

y = ±
√

ξη, (5)

r = ξ + η

2
, (6)

with both ξ and η belonging to the interval [0,∞[. In these
new coordinates the Laplacian reads

∇2 = 4

η + ξ

[√
η

∂

∂η

(√
η

∂

∂η

)
+

√
ξ

∂

∂ξ

(√
ξ

∂

∂ξ

)]
. (7)

Applying this variable change to Eq. (1), and considering
that ψ (η, ξ ) = v(η)u(ξ ), we obtain an equation that can be
separated, except for the potential term where ξ and η are still
coupled by

(η + ξ )

2
V

(
η + ξ

2

)
. (8)

To fully separate the ξ and η dependencies we propose the
following effective potential:

(η + ξ )

2
V

(
η + ξ

2

)
≈ η

2
V

(
η

2

)
+ ξ

2
V

(
ξ

2

)
. (9)

The reasoning behind this choice is as follows: We know that
in the usual polar coordinates the Rytova-Keldysh potential
obeys the following two limits:

lim
r→0

rV (r) = 0, (10)

lim
r→∞ rV (r) = − 1

κ
. (11)

It is therefore clear that the decoupling we have introduced
respects the two previous limits. We have chosen the above
separation for having asymptotically the Coulomb potential
in both η and ξ coordinates. Moreover, as we will see in
the next section, we will be concerned with the limit η � ξ ;
in this case one can easily show that the difference between
the effective potential and the initially inseparable one ap-
proximately scales as ξ/η. The only criterion the potential
V (x) must verify in order to make this a suitable separation
is the existence of a Coulomb 1/x tail. The quality of the
approximation has to be judged by the accuracy of the formula
for the ionization rate (anticipating the results, we find an
excellent qualitative and quantitative agreement between the
analytical results and the numerical ones). In view of the
approximation made, the decoupled equations read[√

η
∂

∂η

(√
η

∂

∂η

)
+ μE

2
η − μ

2
ηV

(
η

2

)

+μ
F

4
η2 − Z

]
u(η) = 0, (12)[√

ξ
∂

∂ξ

(√
ξ

∂

∂ξ

)
+ μE

2
ξ − μ

2
ξV

(
ξ

2

)

−μ
F

4
ξ 2 + Z

]
v(ξ ) = 0, (13)

where Z was introduced as a separation constant. Its value
is determined below, demanding the correct large distance
asymptotic behavior of the wave function. Using the pro-
posed effective potential, the equations become mathemati-
cally identical, as they should, except for the external field
term. Moreover, both equations reproduce the Coulomb prob-
lem in the asymptotic limit. We note that the two quan-
tum problems defined in terms of the ξ and η coordinates
have a completely different nature. While the ξ equation
defines a bound state problem, and is therefore tractable by
simple methods, the η equation defines a tunneling prob-
lem and obtaining its exact solution is challenging. These
differential equations can be further simplified with the
introduction of

u(η) = u1(η)

η1/4
, (14)

v(ξ ) = v1(ξ )

ξ 1/4
, (15)
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which leads to[
d2

dη2
+ 3

16η2
+ μE

2
− μ

2
V

(
η

2

)
+ μF

4
η − Z

η

]
u1(η) = 0

(16)[
d2

dξ 2
+ 3

16ξ 2
+ μE

2
− μ

2
V

(
ξ

2

)
− μF

4
ξ + Z

ξ

]
v1(ξ ) = 0.

(17)

As noted, solutions of these two equations at large distances
from the origin have two different behaviors: The first one
has an oscillatory behavior, whereas the second one decays
exponentially. Furthermore, while the second equation has a
discrete spectrum, the first has a continuous one. This is due
to the different sign of the field term in the two equations.

Finally, to end this section, we introduce another change
of variable that has already proven to be of great value in
this type of problems, known as the Langer transformation
[45–48], which is defined by

η = et ⇒ dη = et dt, (18)

u1(η) = et/2T (t ). (19)

Making use of this transformation, Eq. (16) acquires the form

T ′′(t ) + P2(t )T (t ) = 0, (20)

with

P2(t ) = μE

2
e2t + μF

4
e3t − Zet − μ

2
V

(
et

2

)
e2t − 1

16
. (21)

A similar transformation could be applied to Eq. (17). This,
however, is not necessary. We note that the advantages of
the above transformation are twofold: On one side, the initial
problem, valid only for η ∈ [0,∞[, is transformed into a
one-dimensional problem in the interval t ∈] − ∞,∞[, and
on the other it removed the singular behavior at the origin
due to the terms associated with 3/16ξ 2. As shown by Berry
and Ozorio de Almeida [47], the Langer transformation is a
key step in solving the 2D hydrogen problem for zero angular
momentum, which is similar to the problem at hand.

III. IONIZATION RATE

In this section we will present a derivation for the ioniza-
tion rate of excitons in 2D materials due to the external electric
field. We will start by associating the ionization rate with an
integral of the probability current density. This integral will
contain the function T (t ), presented in the end of the previous
section. Then, this function will be explicitly computed. Af-
terwards, combining the previous two steps, a fully analytical
expression for the ionization rate will be presented.

A. The ionization rate formula

In the beginning of the text we considered the electric field
to be applied along the x direction, implying that the electrons
will escape via the negative x direction, which in the parabolic
coordinates introduced in Eqs. (4)–(6) corresponds to large
values of η. Since the electrons will escape along the negative

x direction, we can define the ionization rate W as [33]

W = −
∫ ∞

−∞
jxdy. (22)

That is, the number of particles per unit time transversing a
line perpendicular to the probability current density jx, which
reads

jx = i

2μ

(
ψ

∂ψ∗

∂x
− ψ∗ ∂ψ

∂x

)
, (23)

where, once again, μ is the reduced mass. In terms of
parabolic coordinates, the position vector is

r = ξ − η

2
x̂ +

√
ξηŷ. (24)

The differentials in Cartesian coordinates are related to the
parabolic ones through the following relations:

dx = 1

2
dξ − 1

2
dη, (25)

dy = 1

2

√
η

ξ
dξ + 1

2

√
ξ

η
dη. (26)

From here we find

∂

∂x
= ∂ξ

∂x

∂

∂ξ
+ ∂η

∂x

∂

∂η
≈ −2

∂

∂η
, (27)

where the final approximation comes from considering the
limit x → −∞. Recalling what was done in the previous
section we write

ψ (η, ξ ) = u(η)v(ξ ) (28)

= u1(η)

η1/4

v1(ξ )

ξ 1/4
. (29)

Employing Eq. (19) this may also be written as

ψ (η, ξ ) = η1/4T [t (η)]
v1(ξ )

ξ 1/4
. (30)

The probability current density introduced in Eq. (23) can now
be computed in parabolic coordinates as

jx ≈ i

μ

√
η
|v1(ξ )|2

ξ 1/2

(
T ∗ dT

dη
− T

dT ∗

dη

)
, (31)

where, following the same reasoning as before, the derivatives
in ξ were ignored. Inserting this expression into Eq. (22) and
approximating the differential in the y coordinate by dy ≈√

η/ξdξ/2 a generic expression for the ionization rate W in
2D is obtained:

W = − i

μ
η

(
T ∗ dT

dη
− T

dT ∗

dη

)∫ ∞

0

|v1(ξ )|2
ξ 1/2

dξ . (32)

Note the extra factor of 2 picked up by the symmetric integral
in Eq. (22). Having obtained this expression, we turn our
attention to the computation of T .

B. Solution of the tunneling problem
using a semiclassical method

To determine T (t ) we need to solve Eq. (20), which is so
far fully equivalent to Eq. (16). In order to do so, we will
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use a uniform JWKB-type solution (where JWKB stands for
Jeffrey-Wentzel-Kramers-Brillouin), known as the Miller and
Good approach [47,49]. This method consists of introducing
an auxiliary problem, whose solution is already established,
to solve the main equation. The desired wave function will
be given by the product of the solution to the auxiliary prob-
lem and a coordinate dependent amplitude. This amplitude
consists of the quotient of two functions: In the denominator
we have all the elements of the main equation associated
with the nondifferentiated term; in the numerator we have
the analogous elements but for the auxiliary equation. This
last term is the key difference between the Miller and Good
approach and the usual JWKB method. While the latter leads
to wave functions with divergences at the classical turning
points, the former produces smooth wave functions across the
whole domain. As the auxiliary problem that will help us solve
Eq. (20), we introduce the Airy equation

d2

dζ 2
φ(ζ ) + ζφ(ζ ) = 0, (33)

whose solution reads

φ(ζ ) = b2Ai(−ζ ) + b1Bi(−ζ ), (34)

with Ai(x) and Bi(x) the Airy functions. This equation has
a single turning point at ζ = 0; the allowed and forbidden
regions are located at ζ > 0 and ζ < 0, respectively. In order
to have an outgoing wave in the propagating region we need
to choose the coefficients b1 and b2 in a way that allows us to
recover the correct asymptotic behavior. The asymptotic form
of Eq. (34) reads

φ(ζ ) −−−→
ζ→∞

b2
sin

[
π
4 + 2

3ζ 3/2
]

√
πζ 1/4

+ b1
cos

[
π
4 + 2

3ζ 3/2
]

√
πζ 1/4

. (35)

In order to obtain a traveling wave we choose b2 = ib1; with
this choice we obtain

φout(ζ ) ∼ b1
ei π

4 +i 2
3 ζ 3/2

√
πζ 1/4

, (36)

as we desired. When ζ → −∞ the solution Bi(−ζ ) grows
while Ai(−ζ ) vanishes; thus, deep inside the forbidden region
we choose to approximate Eq. (34) by

φforbidden(ζ ) ∼ b1
e

2
3 (−ζ )3/2

√
π (−ζ )1/4

. (37)

Using these results we write the solution of (20) in the allowed
region as

T [t (η)] = b1

(
ζ

P2(t )

)1/4 ei π
4 +i 2

3 ζ 3/2

√
πζ 1/4

, (38)

with P2(t ) given by Eq. (21) and ζ (t ) is defined via the
relation ∫ ζ

0

√
ζ ′dζ ′ = 2

3
ζ 3/2 =

∫ t

t0

√
P2(t ′)dt ′, (39)

where t0 corresponds to the classical turning point of P2(t ),
that is P2(t0) = 0. Combining Eq. (39) with Eq. (38) it is

easily shown that

T ∗ dT

dη
− T

dT ∗

dη
= 2i

π

|b1|2
η

, (40)

which produces an ionization rate given by

W = |b1|2
πμ

∫ ∞

0

|v1(ξ )|2
ξ 1/2

dξ . (41)

Thus, to obtain W two tasks remain: Find b1 and compute the
integral in ξ . Let us now focus on the first one and only turn
our attention to the second one later in the text.

C. Matching the wave function to an asymptotic
one due to a Coulomb tail

In order to obtain b1 we follow a conceptually simple
procedure: We will determine the wave function T [t (η)] deep
inside the forbidden region −∞  t  t0, in the limit of a
small field F , and using the Miller and Good approach we
will extract b1 from the comparison of this equation with the
asymptotic solution of the radial Wannier equation.

Once more, using the Miller and Good approach, but this
time for the forbidden region, we write T [t (η)] as

T (t ) ∼ b1√
π

[
1

−P2(t )

]1/4

e
2
3 (−ζ )3/2

. (42)

Note the sign differences between this equation and Eq. (38);
these appear due to the different validity regions of the re-
spective functions. In the limit of a weak field F → 0, we
can approximate the P2(t ) present in the denominator of the
prefactor with

−P2(t ) ≈ −μE

2
e2t . (43)

The function ζ is defined by the relation

2

3
(−ζ )3/2 =

∫ t0

t

√
−P2(t )dt, (44)

where once again t0 denotes the zero of P2(t ), and is approxi-
mately

t0 ∼ log

(
−2E

F

)
. (45)

To compute the integral in Eq. (44) we recall the form of
P2(t ) presented in Eq. (21) and discard the term 1/16, since its
contribution to the overall integral is insignificant. Then, we
expand the integrand for small λ, a bookkeeping multiplica-
tive parameter associated with the potential and the separation
constant. Afterwards, we compute the integral, return to the
original η coordinate using the Langer transformation, and
expand the result for small F and large η, in this order. We
note that the approximation presented in Eq. (43), although
suitable for the prefactor, is too crude to produce a reasonable
result inside the integral. Now, the key step in this procedure
is the judicious choice of the separation constant Z; this is a
degree of freedom we can take advantage of by choosing it as
we desire. Accordingly, we choose Z as

Z =
√−Eμ

2
√

2
. (46)
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This choice is made in order to allow us to recover a func-
tion with an η dependence that matches the solution of the
asymptotic differential equation for the Coulomb tail of the
interaction potential. The wave function u(η) is obtained from

u(η) = η1/4T (t ), (47)

which can be written as

u(η) = b1
21+ 3

√−Eμ√
2Eκ e− 2

√
2E

√−Eμ

3F√
πμ1/4

(−E )
√−Eμ√

2Eκ F− 1
4 −

√−Eμ√
2Eκ

× e− η
√−Eμ√

2 η
− 1

2 −
√−Eμ√

2Eκ . (48)

As briefly explained above, we now compare this wave func-
tion with the asymptotic solution for a particle (the exciton)
of energy E bound by a potential with a Coulomb tail. The
asymptotic wave function in radial coordinates reads

ψasympt (r) ∼ Ae−r
√−2Eμr

√
2
√

μ−√−Eκ

2
√−Eκ , (49)

where A is a constant determined from the normalization of
the full wave function due to a Coulomb potential. Note that
the wave function in parabolic coordinates reads ψ (η, ξ ) =
u(η)v(ξ ). In the ground state, and due to the symmetry of the
equations defining both u(η) and v(ξ ) in the absence of the
field, we must have u(η) = v(η). In the large η limit η � ξ ,
we find from Eq. (49) that u(η) must be of the form

u(η) ∼
√

Ae− η

2

√−2Eμ(η/2)
√

2
√

μ−√−Eκ

2
√−Eκ . (50)

Comparing Eqs. (48) and (50) it follows that b1 reads

b1 = √
A
√

πμ1/4 e
2
√

2E
√−Eμ

3F

F
− 1

4 −
√−Eμ√

2Eκ

2− 1
2 −2

√−2Eμ

2Eκ (−E )−
√−2Eμ

2Eκ . (51)

Once b1 has been determined, the remaining task is the
calculation of the integral in the rate equation. Again, we take
advantage of the Coulomb tail present in the potential binding
the exciton. In this case, the radial wave function in a Coulomb
potential, for a particle with energy E , reads

R(r) = Ae−√−2EμrU

(
−

√
2μ − √−Eκ

2
√−Eκ

, 1, 2
√

−2Eμr

)
,

(52)

where U (a, b, z) is the hypergeometric U function. We now
take v(ξ ) = A−1/2R(ξ/2) and perform the integral. The result
can be written as ∫ ∞

0
|R(ξ/2)|2 dξ√

ξ
≡ AAξ . (53)

In general, it follows that the ionization rate W reads

W = 2

μ
Aξ A2√μ

e
4
√

2E
√−Eμ

3F

F− 1
2 − 2

√−Eμ√
2Eκ

2−1−4
√−2Eμ

2Eκ (−E )−
√−2Eμ

Eκ , (54)

and for the particular case of a 2D exciton bound by the
Coulomb interaction we obtain

W = 32

√
2

π

μ2e− 16μ2

3Fκ3

√
Fκ7/2

, (55)

a result identical to that found by Tanaka et al. [6]. In general,
for any potential with a Coulomb tail we find

W = g2
0W0(F ), (56)

where

W0(F ) = e
4
√

2E
√−Eμ

3F

F− 1
2 − 2

√−Eμ√
2Eκ

(57)

and

g2
0 ≈

κ2
2
√

2μ

κ
√−Eμ

+ 5
4 (−E )

√
2μ

κ
√−Eμ

+ 5
4 

( √
2μ

κ
√−Eμ

− 1
2

)
π 4

√
μ

( √
2μ

κ
√−Eμ

) , (58)

where (z) is the gamma function. Equation (56) together
with Eq. (58) are the central results of this paper. Special limits
of this last result can be obtained for carefully chosen values
of E , κ , and μ. In particular, for E given by E = −2μ/κ2,
corresponding to the ground state energy of a 2D exciton
bound by the Coulomb potential, we recover the result given
by Eq. (55) for the rate W . In the next section we explore the
consequences of Eqs. (56) and (54).

IV. RESULTS

Having determined the form of the ionization rate, we can
compare our results with numerical ones obtained via the
solution of an eigenvalue problem for the exciton’s motion
using the complex scaling method, which allow us to access
complex eigenvalues, with the imaginary part interpreted as
the rate W computed above. Below we give a brief account of
how the numerical calculations are performed.

A. Complex scaling method

When a system that may be ionized is subjected to an
external electric field, the energy eigenvalue turns complex.
The ionization rate of the system is then described by the
imaginary part of the energy as  = −2Im E . A formally
exact method of computing the complex energy is to trans-
form the original eigenvalue problem into a non-Hermitian
eigenvalue problem via the complex scaling technique [7,50–
52]. Here one rotates the radial coordinate into the complex
plane by an angle φ to circumvent the diverging behavior of
the resonance states [53]. The method is incredibly flexible,
and one may choose to either rotate the entire radial domain
as r → reiφ or choose to only rotate the coordinate outside a
desired radius R as

r →
{

r for r < R,

R + (r − R)eiφ for r > R.
(59)

Early motivations for introducing the latter, so-called exterior
complex scaling (ECS) [54,55], technique were to extend the
applicability of the complex scaling method. For instance, the
uniform complex scaling (UCS) technique was not applicable
within the Born-Oppenheimer approximation [56]. We point
out that when both methods may be applied to the same poten-
tial, which is the case for all potentials considered here, they
yield identical eigenvalues. Nevertheless, there are numerical
advantages to consider for each technique. UCS is easier to
implement, and has previously been used to obtain ionization
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rates of excitons in monolayer MoS2 [57] and WSe2 [22] for
relatively large fields. However, the ECS technique [56,58]
is much more efficient for the weak fields that are relevant
for excitons in 2D semiconductors [25]. Using the contour
defined by Eq. (59) in the eigenvalue problem, we obtain
states that behave differently in the interior r < R and exterior
r > R domains. Furthermore, there are discontinuities at R
that we have to deal with [58,59]. An efficient method of
solving these types of problems is to use a finite element basis
to resolve the radial behavior of the states. To this end, we
divide the radial domain into N segments [rn−1, rn]. A set of
p functions satisfying

f (n)
i (rn−1) = f (n)

i (rn) = 0,

except f (n)
1 (rn−1) = f (n)

p (rn) = 1
(60)

is then introduced on each segment n in order to make
enforcing continuity across the segment boundaries simple.
In practice, we transform the Legendre polynomials such that
they satisfy Eq. (60) [59]. The wave function may then be
written as

ψ (r) =
M∑

m=0

N∑
n=1

p∑
i=1

c(m,n)
i f (n)

i (r) cos(mθ ), (61)

where continuity across the segment boundaries is ensured by
enforcing

c(m,n−1)
p = c(m,n)

1 , n = 2, . . ., N, (62)

in the expansion coefficients. As the unperturbed problems
considered here are radially symmetric, an efficient angular
basis of cosine functions may be used to resolve the angu-
lar behavior of the states. Using this expansion, the Wan-
nier equation may be transformed into a matrix eigenvalue
problem and solved efficiently using techniques for sparse
matrices. Note that we keep the radial coordinate in the
basis functions real and leave it to the expansion coefficients
to describe the behavior along the complex contour. This
technique has previously been used to compute ionization
rates of excitons in monolayer semiconductors [25] as well
as bilayer heterostructures [27], and we shall use it here to
validate the analytical results.

B. An application

To illustrate the validity of our analytical formula over a
significant range of values of the external field F , we compute
the ionization rate for excitons in the 2D hydrogen atom,
hBN, WSe2, and MoS2. In previous publications we have
shown that excitons in hBN and TMDs are well described
by the Wannier equation with the Rytova-Keldysh potential
[35,60]. In Fig. 2 we present a comparison of our analyti-
cal results with the finite element method (FEM) approach
described above. There is a remarkable agreement between
both approaches across the four cases of study. The analytical
results excel at moderate and small field values, but start to
deviate from the exact numerical methods at extremely large
fields. This is to be expected, since our analytical result was
obtained in the limit of small fields. At very small fields the
FEM struggles to give accurate results, a region where the
analytical approach is highly accurate. Moreover, the FEM

FIG. 2. Comparison of the numerical and analytical calculation
of the rate for hBN excitons. The reduced mass of the exciton in H,
hBN, MoS2, and WSe2 is μ = 1, 0.5, 0.28, 0.23, respectively, the
parameters describing the polarizability of hBN, MoS2, and WSe2

is r0 = 10, 43.4, 46.2 Å, respectively, and the dielectric constants is
κ = 5 for all but hydrogen, for which κ = 3. All quantities depicted
are given in atomic units (a.u.) and the parameters were taken from
Ref. [25].

requires time-expensive calculations and convergence needs
to be confirmed for every case. Needless to say, the analytical
approach suffers not from these two shortcomings. Also, the
analytical approach makes studying the dependence on the
dielectric environment surrounding the 2D material [61] easy.

V. FINAL REMARKS

In this paper we have derived an expression for the ioniza-
tion rate of excitons in a 2D material due to the application
of an external static electric field. Our result is quantitatively
accurate, as was shown in the bulk of the text. Our approach
took a semiclassical path, based on an approximate separation
of the Rytova-Keldysh potential in parabolic coordinates. This
step is key in the derivation, and is justifiable on the basis
of the behavior of the potential near the origin and at large
distances. The next key step is the solution of a tunneling
problem, described by one of the equations arising from the
separability procedure, the η equation. The solution of the
tunneling problem was achieved via a uniform semiclassical
method, developed by Miller and Good and used by Berry
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and Ozorio de Almeida for the 2D Coulomb problem, for
the zero angular momentum channel. Once the semiclassical
solution is found, we match it with the asymptotic solution
of a particle of reduced mass μ (the exciton reduced mass)
and energy E , in a dielectric environment characterized by a
dielectric function κ , in a Coulomb potential. This matching
requires that the original potential binding the electron and
hole has a Coulomb tail, which is fortunately true in our
case. Therefore, for every potential with a Coulomb tail our
method is applicable. An interesting system that satisfies these
conditions is interlayer excitons in bilayer structures [62–64].
They may be described by the RK potential with the radial
coordinate substituted by the 3D distance between the electron
and hole, and adding the screening lengths of both layers
[27]. For large distances, the vertical separation is negligible,
and the interaction potential thus assumes its Coulomb tail
in this region. It is therefore simple to extend the method
to this case. An additional advantage of the method, besides
giving an analytical solution for the ionization rate, is that it is
easily extendable to other classes of potentials such as those
discussed by Pfeiffer [32]. Finally, we note that our result
can be extended to the calculation of the photoionization rate
of the exciton due to an external electric field of frequency

ω. To achieve this, we replace the electric field strength by
F (t ) = F0 cos(ωt ) in the rate equation and average over one
cycle. Although this procedure is not exact, it should give
good results in the low frequency regime.
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