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Spin-momentum locking, a key property of the surface states of three-dimensional topological insulators
(3DTIs), provides a new avenue for spintronics applications. One consequence of spin-momentum locking is the
induction of surface spin accumulations due to applied electric fields. In this paper, we investigate the extraction
of such electrically induced spins from their host TI material into adjoining conventional, hence topologically
trivial, materials that are commonly used in electronics devices. We focus on effective Hamiltonians for
bismuth-based 3DTI materials in the Bi,Se; family, and numerically explore the geometries for extracting

current-induced spins from a TI surface. In particular, we consider a device geometry in which a side pocket
is attached to various faces of a 3DTI quantum wire and show that it is possible to create current-induced spin
accumulations in these topologically trivial side pockets. We further study how such spin extraction depends on
geometry and material parameters, and find that electron-hole degrees of freedom can be utilized to control the
polarization of the extracted spins by an applied gate voltage.
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I. INTRODUCTION

The push towards the utilization of the electron’s spin
degree of freedom in common electronic devices, which are
conventionally based on the manipulation of the electron
charge, has matured to the field called spintronics [1]. The
various lines of research in this field not only comprise ques-
tions of fundamental interest in spin physics but also focus
on applications. Possible advantages of utilizing spin-based
elements in comparison to charge-based electronic devices
might be low power consumption and less heat dissipation,
as well as more compact and faster reading or writing of data.

The ferromagnets [2—4] are the mainstream materials used
in spintronics where the ferromagnetic exchange interaction
causes the spin dependency of transport, allowing the cre-
ation, manipulation, and detection of spins. However, after the
celebrated Datta-Das spin transistor proposal [5], it became
clear that spin-orbit interaction can also be utilized for spin
manipulation in electronic devices. As the Datta-Das setting
still requires ferromagnetic leads, a parallel approach utilizing
materials without intrinsic magnetism, such as paramagnetic
metals and semiconductors with only spin-orbit coupling
[6-8], has become an attractive alternative.

Various methods of spintronics implementations without
ferromagnets have emerged and developed over recent years
[9-19]. These methods are commonly based on (i) the spin
Hall effect [14], where an applied electric current generates
a transverse spin current, and (ii) Edelstein (or inverse spin
galvanic) effect [9,20], where an applied electrical current
generates a nonzero spin accumulation. Once generated, as
these spins drive spintronics circuits, they need to be further
manipulated and ultimately detected. For detection, inverse
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effects corresponding to those mentioned above, namely, the
inverse spin Hall effect [21-25] and spin galvanic effect
(SGE) [26-30], have been successfully utilized. Main meth-
ods for spin manipulation are based on exchange and Zeeman
fields or spin-orbit coupling to induce spin precession. How-
ever, weak coupling requires long length scales over which
the induced spins need to remain coherent. This is an issue
as spin precession lengths are usually comparable to spin
relaxation or dephasing lengths. Furthermore, the spin-orbit
coupling needs to be controlled over the precession (hence
manipulation) region, while spin generation in part of the
circuit needs to remain unaffected. Hence, in order to close the
creation, manipulation, and detection cycle reliably, additional
electrical methods for spin manipulation are desirable.

In this paper, we consider a mechanism in topological
insulators (TIs) that allows for local and all-electrical control
of electrically generated spins with gates. In most spintronics
(or spin-orbitronics) platforms, charge carriers are of a given
type, either electron or hole, implying that local application
of gates equally couples to both spin species. In others where
electron and hole pockets might coexist, there is no coherence
between the electron or hole degree of freedom and the spin
degree of freedom. As a consequence, electric gates cannot
locally control local spin accumulations in conventional spin-
tronics and spin-orbitronics platforms. On the other hand, the
surface (or edge) of three-dimensional (two-dimensional) TIs
features both electron and hole degrees of freedom as well as
spin-orbit coupling. Applied gates control the local potential,
which couples oppositely to electrons and holes, and spin-
orbit coupling allows for spin dependency of electron-hole
degrees of freedom. We demonstrate below that this joint
property allows for electronic control of spins locally within a
region much smaller than the spin precession length, the length
scale over which spins can be manipulated in conventional
spintronics applications [1].

©2020 American Physical Society
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FIG. 1. Slab of a topological insulator (green), current biased
with y,s. The induced spin accumulation at the boundaries can be
injected into a side contact (blue). A gate potential Vg, can be tuned
to control the spin polarization of the spin injected current.

As an explicit example, we consider three-dimensional TI
(3DTI) materials of the BiSes; family the effective model
of which is extensively discussed in the literature [31-34].
Qualitatively, our conclusions should apply also to strained
(3D) HgTe, though an equally successful effective model
for such a system is still missing. We focus on a particular
geometry (sketched in Fig. 1) and demonstrate how the spin
extraction can be controlled in a region smaller than the spin
precession length. In this geometry, the spins are generated
by the spin galvanic effect at the surface of the TI. By
attaching a side pocket and tuning the chemical potential on
the pocket by an applied gate voltage, we demonstrate that the
extracted spins can change their polarization, regardless of the
generated spins on the TI side.

Our paper is organized as follows. In Sec. II A, we out-
line the effective surface Hamiltonian of a 3DTI and the
corresponding spin operators. We then present the inverse
spin galvanic effect (ISGE), also known as the Edelstein
effect, through Kubo formalism in Sec. II B. Different names
addressing the same phenomenon are used in the literature
depending on the context. In Sec. IIC, we state an ISGE
paradox with its solution for the surfaces of a 3DTI. Next,
we discuss the model and the method proposed for extracting
spin from surfaces of a 3DTT in Sec. IIT A. In Sec. III B, we
derive the spin behavior on the 3DTI surfaces, which we show
to be in close agreement with our numerical simulations. In
Sec. III C, we demonstrate how to extract spins from 3DTI
surfaces and how to manipulate their polarization through a
gate potential. We close with concluding remarks in Sec. I'V.

II. A SPIN-GALVANIC PARADOX AND ITS SOLUTION

A. Setting the stage

Consider a finite crystal of an anisotropic 3DTI material,
such as BipSes, which in its TI phase hosts topologically
protected metallic surface states. The existence of these states,
described by a single Dirac cone, was confirmed experimen-
tally by angle-resolved photoemission spectroscopy [35,36]
and scanning tunneling spectroscopy [37-41] measurements.
Further experiments confirmed the helical nature of such sur-
face states [42]. The anisotropy of these materials implies that
the topological metallic states existing on the different crystal
faces will be described by Dirac-like effective Hamiltonians

featuring different spin structures [31-33]. We are interested
in the consequences of the anisotropy of these materials on the
ISGE [9,20,43]; for recent discussions see [44—46].

The states of the two-dimensional (2D) helical surfaces
of BiySe; are admixtures of electron- and holelike states of
different parity (&) and spin (1), coming from Bi and Se
p- orbitals, [P1}, 1)) and |P2_, 1), respectively [34]. As
a consequence, the real spin content of such states does not
necessarily coincide with the pseudospin degrees of freedom
used to label them. Hence, o; (i = x, y, z) denote the Pauli
operators corresponding to the two bands at the surface (the
pseudospin), while s; are the spin operators within this re-
stricted Hilbert space. The effective spin operators for any
surface orientation are obtained by projecting the full spin
operators of the combined electron and hole bands onto the
relevant surface states (see Appendix A). This projection
misses key physics which we later utilize to electrically
control spin accumulations. The most commonly “known”
low-energy effective Hamiltonian for the topological surface
state is that of the “top” and “bottom” surfaces in the growth
direction, which we choose to be in the Z direction:

H** = Ey(2) + vr(2)(k x 2) - 0, (D)

where Ey(Z) is the energy of the Dirac point, vp(Z) is the
corresponding Fermi velocity, and =+ refers to the surface
normals pointing away from the bulk. In this case, the spin
and the pseudospin operators are the same:

s=ao. )

This identification as well as the rotational symmetry, how-
ever, is lost at the side surfaces:

H* = Ey(§) £ vro(9)keo, F vr - (§)k.0x, A3)

where Ey(¥) is the energy of the Dirac point, and vg (¥) and
vr . (§) are the corresponding Fermi velocity in the x and z
directions, respectively. In this case, while the x components
of the spin and the pseudospin operators are the same, they
are merely proportional in the § and 2 surfaces with the
proportionality parameter 7:

§z = Noz. 4

Sx = Ox, 8y =10y,

For completeness, we express the =X surface Hamiltonian as
H* = Ey(X) F vr,,(0)ky0, £ vp,.(R)k, 0, Q)

Sy = N0y, Sy =0y, §;=1Nn0 6)

where Ey(X) = Ey(¥), vr,y(X), and vp . (X) are the Fermi veloc-
ities in the y and z directions, respectively. To summarize, the
real spin coincides with the Pauli matrices oy, i = x, y, z of the
pseudospin only on the £7 surface. In particular, if  — 0, the
surface states on the £¥ side have s, = 0, s, = 0. This point
is crucial, as we discuss below.

B. Spin galvanic basics

We consider the spin accumulation, s,(w), generated in
response to an applied electric field E, in a spin-orbit coupled
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2D system lying in the X-Z plane—corresponding to the side
surfaces +§. The ISGE can be written in Kubo form [10] as

sz(w) = orsce(w)E(w) @)

= ({s:3J0))Ax(@), ®)

where ((s,;Jy)) = _7’ (; ([s;(t), Jo(0)])e' dt is the Kubo lin-
ear response kernel, A is the vector potential, and oysgg is the
frequency-dependent ISGE conductivity. Thus

({s25Jx))

o1sGe(®) = e 9

Its Onsager reciprocal effect, the SGE, reads [30]

Je(w) = os6E(@)B.(0) (10)
= ((Jx;sz»Bz(w)v an
yielding
Jyis;
osge(w) = M (12)
w

In Eq. (11) B is the time derivative of the magnetic field which
generates the nonequilibrium s, leading to the SGE.

C. Spin galvanic effect on the surface of a 3DTI

As we stressed above, the relation between the pseudospin
o and the real spin s on the 3DTI surface can be anisotropic.
The two quantities are identical on the +2 surfaces, and hence
there is no ambiguity in calculating the ISGE and the SGE on
the surfaces. However, on the § surfaces

s, = no;. (13)

On the surface of the TI, spin and charge or momentum are
locked. To be explicit we assume

J = UF,x(y)Uz (14’)

with vp,(§) the Fermi velocity in the x direction [see Eqs. (1)—
(3)]. From Egs. (13) and (14) one gets

UF,X (y)
n
Equation (15) seems to imply a divergent (“colossal”’) SGE

for n — 0, while the ISGE should vanish.
This apparent paradox is resolved by judiciously inspecting

the SGE and ISGE linear response kernels. First, for the SGE
one has

Je =

8. (15)

({Jx382))
iw

— upa(@) ST %N
lw

———
Loo

-lx = Bz(w) (16)

B:(w), a7

which tends to zero for n — 0 as it should: The pseudospin-
pseudospin response function L, defined above has no diver-
gencies. Similarly for the ISGE holds

_ {523 da)

;=

Ei(w) (18)

lw

({075 07))
iw
LUU

= Nup () Ei(w) 19)

which is given by the same response function L., and again
vanishes in the n — 0 limit.

III. SPIN EXTRACTION FROM 3DTI SURFACES

Even though it turns out that there is no paradox in
the form of a divergent SGE response, there are interesting
consequences when considering n — 0. In particular, as we
show below, it is possible to extract current-induced spins
from the side surfaces even if these are not spin polarized.
The main idea is the following: at the side surfaces of a TI,
an analytical examination of the nonequilibrium population
of the k, states (induced by, say, an applied bias) reveals
their composition to be a mixture of spin-up electronlike and
spin-down holelike quasiparticles the spins of which partially
cancel each other. This is the origin of the parameter n # 1 in
general. In the limit D, — 0 (hence n — 0) the cancellation
is perfect. Therefore, it suffices to contact the surface with a
“pocket” containing electrons or holes—in practice, a gated
semiconductor—so that only the spin-polarized electron- or
holelike part of the surface state will leak out of the TI. A
side pocket or lead thus acts as a gate-tunable spin extractor:
The sign of the extracted spins can be reversed by simply
switching the pocket polarity from n to p type or vice versa,
allowing for local electrical control of spin polarization. Note
the crucial observation that the size of the region where the
spin is reversed can be shorter than the spin precession length
(see Fig. 7 below).

A. Model and method

In the rest of this section, we further study the spin ex-
traction effect through analytical and numerical means for
3DTI nanowires. The wires are described by a 3D effective
Hamiltonian which captures the basic low-energy properties
of the Bi;Se; family, including, e.g., Bi,Se;, BiyTes, and
Sb, Tes materials [34,47]:

HP = E(k)(0070) + M(K)(00T.) + A, sink.(0.T,)
+ As[sin k (0, Ty) + sinky (o, 7,)], (20)
where
M(K) = My — 2B»(2 — cosk, — cosk,) — 2B1(1 — cosk;),
E(k) =C +2Dy(2 — cosk, — cosky) + 2D (1 — cosk;).

Here, o, and 7, . are the Pauli matrices, and o and
79 are the 2 x 2 identity matrices in spin and orbital space,
respectively. If (My/B; > 0) then the system is in the topo-
logically nontrivial phase and Dirac-like surface states form
within the bulk band gap. For a wire, due to the size quantiza-
tion around the wire, the surface states form one-dimensional
(1D) channels and the lowest 1D subband is gapped due to its
nontrivial Berry phase [48,49].

In order to find the current-induced spin polarization on the
3DTI nanowire surfaces, we need the spin operators expressed
in the basis used to represent Eq. (20). The basis states are
hybridized states of the Se and Bi p orbitals with even (+)
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and odd (—) parities and spins up (1) and down ({,), namely,
|P1F, 1), —ilP27, 1), |P1f,]), and i|P2_, |), in that order.
Then the spin operators in the basis of bulk states are given by
[33]

Sy =01, Sy =01, §;=0.7. 21

Using the explicit forms of the spin operators, Egs. (21),
we generalize the Kubo response kernel of the effective 2D
surface model of the previous section to the more realistic 3D
model (20):

S;(@) = o1scE(W)E) () (22)

= (S ,))Ay (@) (23)

with S, = o, 79.

The effective surface description is obtained by projecting
into the space spanned by the surface modes. One thus obtains
the effective surface spin and Hamiltonian operators (see
Appendix A). These surface Hamiltonians and modes for
electrons on 3DTI faces defined by their normals %X, +§, £2,
were computed by Brey and Fertig [33]. In our geometry, the
relevant surfaces are £2 and £§ where the projections of the
spin operators follow Egs. (2) and (4), yielding the effective
Hamiltonians Eqgs. (1) and (3), respectively. The parameters of
surface Hamiltonians are then obtained from Eq. (20) [33] by
projection. In particular, the band crossing energies of the 2
and ¥ surfaces (which are the relevant surfaces for our choice
of axes) are given by

Ey(z) = C + §M, (24)

Ey(§) = C+ nMo, (25)

and the corresponding Fermi velocities are given by

vp(2) = Axy/1 — &2, (26)
vrx(§) = Axy/1 — 12, (27)
vp (§) = A1/ 1 —n?, (28)

where

& =Di/B;, n=Dy/B,. (29)

In our numerical study, we use the tight-binding repre-
sentation of the Hamiltonian in Eq. (20) and focus on a
3DTI wire attached to two semi-infinite leads [see Fig. 2(a)].
We evaluate nonequilibrium local spin densities (S;)(m) =
(Yo (m)|S;| ¥y (m)) for each site m, where v, (m) is the wave
function of the (occupied) state « at site m and S; are the spin
operators defined in Eq. (21). We then sum over all occupied
states «. For an infinitesimal bias, these are all scattering wave
functions at a certain energy, Er originating from one of the
leads, depending on the sign of the bias. Local charge density
is similarly obtained when S; — o(79. We utilize the KWANT
toolbox [50] for our numerical simulations. The parameters
of our band Hamiltonian are chosen from the ab initio band-
structure calculations of Bi;Ses [47] in our numerical simu-
lations. The particular values used are A; = 2.2 eVA, A, =
4.1eVA, By = 10eVA?, B, = 56.6eVAZ?, C = —0.0068 eV,
D; = 1.3eVA%, D) = 19.6eVA?, and M = 0.28 eV. We have

Ibiﬂs
Lead
(Sz) (eV'a?)
0.04
5 H 0.02 5 0.02
=10 <10
N 00 N 10.0
> Ho.oz > -0.02
5 15 25 0.04 5 15 25 -0.04
Yy @ Y@
(b) (©)

FIG. 2. Surface spin polarization of a 3DTI nanowire. (a) Sketch
of a 3DTI nanowire attached to two semi-infinite leads. (b) (S,) and
(c) (S;) denote the spatial profile of the averaged spin polarization
(averaged over 1000 disorder configurations) along cross sections,
oriented in the X direction and marked as the blue rectangle in panel
(a). Parameters used are L = 30a, W = 30a, H = 20a, Hsp = 10a,
Up =0.5¢eV, and Er = 0.15eV, which is in the bulk gap.

also set the lattice constant to be @ = 5 A in our numerical
calculations.

B. Spin dynamics and accumulation at the surface

As a consequence of (pseudo)spin-momentum locking of
the 3DTI surface states, the dynamics of spin and charge are
coupled [51,52]. Thus, even nonmagnetic impurities can flip
an electron’s spin during scattering, leading to the dominant
spin-relaxation mechanism. The situation here is similar to the
so-called clean limit of the well-known spin-diffusion equa-
tions of a 2D electron gas with Rashba spin-orbit coupling
[53], where the Dyakonov-Perel spin-relaxation time [54] is
of the order of the momentum relaxation time. Hence, typical
features of spin diffusion in standard semiconductors (which
are in the “dirty” limit) such as the motional narrowing do not
take place here. The steady-state spin-diffusion equation for
the top (i.e., Z) surface of a 3DTI is given by [51]

% _ Doy + |D8 = (30)
_ = = i Gi' _— — €
Tt 2 T ox;

where ¥;, i = x, y are the in-plane components of the pseu-
dospin density X, & = 0%, /dy + 9X,/0x, and n is the charge
density. Furthermore, ¢;; is the 2D antisymmetric tensor and
D= v%r /2 is the diffusion constant, with T the momentum
scattering time and v the Fermi velocity [vp(Z)]. We stress
that these equations are valid only if the spin and charge accu-
mulations vary appreciably at length scales much larger than
the mean free path [52]. In the present paper, we only consider
geometries where this condition is satisfied. In order to obtain
the equations applicable to the side surfaces, [vF = vp(¥),
see Appendix B], we generalize the diffusion equations to

035401-4



GATE-CONTROLLED SPIN EXTRACTION FROM ...

PHYSICAL REVIEW B 102, 035401 (2020)

100 400
¢ — Analytical result : w
Ui

39.28

—— Analytical result : =
Us

e Numerical Results

e Numerical Results

80

) )

60

(Sz)
d(n)/dx

~— 40

20
03 04 05 06 0.7 03 04 05 06 0.7
Up (ev) Ug (ev)

(a) (b)

FIG. 3. Average ratios (a) ((S.)/d(n)/dx)_ and
(b) ((S,)/d(n)/dx);; as a function of disorder strength Uj.
The blue curves show the analytical and the red symbols the
numerical results. Parameters in our simulations are L = 30a,
W =30a,H =20a, and Er = 0.15eV, which is in the bulk gap.

anisotropic surfaces and obtain the dependence of the real spin
density on the charge gradients due to the applied voltage bias:

(s vF,x@)r)
— == _— 3 31
(d(’l)/d)f)iy :F<77 2 £ Gh
)\ L (v
<d<n>/dx)ﬁ = i( 2 >i 32

Hence, if EF sits in the bulk gap, then applying a bias voltage
yields surface currents flowing in the x direction, which in turn
induces spin accumulations on the +§ and the +2Z surfaces.
This is the ISGE. In order to test these predictions, we
numerically obtain spin densities via the method described
in Sec. IIT A. Our results are shown in Figs. 2(b) and 2(c),
where we plot the x-averaged cross-sectional profile for (S,)
and (S;). Note that both components of the spin accumulation
are localized to the respective surfaces and have opposite
sign on opposite surfaces. Notice also that (S;) = 0 in our
configuration since it is along the current direction. Further-
more, (S;) is smaller than (S,) for n < 1. The case D, = 0, as
mentioned earlier, corresponds to a vanishing ISGE (S;) and
the “paradoxical” regime n = 0 of Sec. II.

In order to test Egs. (31) and (32) numerically, we consider
the quotient on the left-hand side of these equations as a
function of disorder strength Up. Since in Fermi’s “golden
rule” regime 1/t ~ Uoz, we expect a UO_2 behavior. In order
to get the exact relation, we analytically calculate the mean
free time using a k - p approximation for surface eigenmodes
in Appendix B. Next, we perform numerical simulations and
obtain the local spin or charge accumulations and average
these over a square region in the middle of the +Z and —¥
surfaces as well as over different disorder configurations with
strength Uj. Finally, we compare our analytical prediction (the
blue line) for the left-hand sides of Egs. (31) and (32) against
the numerical simulations (red dots) in Figs. 3(a) and 3(b),
respectively. We find that our numerical results for ISGE are
well described by the analytical formulas in Eqgs. (31) and
(32).

C. Spin extraction

Having discussed how spins can be induced at a topo-
logical insulator surface, we now study how these spins can

Side-pocket

(Sy) (eVia?)
251 0.04

-0.02
0.0

5| 0.02
0.04

Z (a)

5 15 25 5 15
y@ y @
(b) (©

25

FIG. 4. Current-induced spin polarization into a side pocket at
the top surface. (a—c) Spatial profile of the averaged spin polarization
(Sy(y, 2)) (averaged over 1000 disorder configurations) along cross
sections in the X direction shown as a dashed blue rectangle in panel
(a). In panels (b) and (c) the side pockets are doped to hole bands
(Veae = —0.8€V) and electron bands (Ve = 0.9 €V), respectively.
Common parameters are L =30a, W =30a, H =20a, Hsp =
10a, Uy = 0.5eV, and Er = 0.15eV, which is in the bulk gap.

be extracted to be used in (presumably topologically trivial)
spintronics circuitry. To this end, we focus on a geometry
where a topologically trivial side pocket is attached to the
TI nanowire [see Figs. 4(a) and 5(a)]. The current-induced
spins at the TI surface can then leak into the side pocket,
generating nonzero spin accumulation inside the side pocket.
The nanowire size is chosen such that its length and width L =
W = 15 nm exceed the mean free path /, ensuring diffusive
carrier dynamics. The mean free path is estimated in terms of
the disorder potential strength Uy using Fermi’s “golden rule”
(see Appendix B for details).

Spin extraction can take place at pockets that are at-
tached to either surface of the 3DTI nanowire [see Figs. 4(a)
and 5(a) for the geometry where the pocket is attached to
the 2 surface or the § surface, respectively]. The pockets
are gated in order to tune them to a metallic state, while charge
carriers can be either electron- or holelike states; thus, there is
a coupling only to the electron- or holelike spin-momentum
locked components of the 3DTI surface states. The gating is
modeled by adding a corresponding on-site energy term in the
tight-binding grid while keeping the other parameters of the
effective Hamiltonian unchanged.

We perform tight-binding simulations and numerically cal-
culate the current-induced spin polarization (S;), (i =y, z),
averaging over 1000 disorder configurations for a nanowire
with side pockets. Figures 4(b) and 4(c) and Figs. 5(b) and
5(c) show the spatial profile of the spin polarization along
a perpendicular cross section for fixed doping values in
the hole and electron bands, respectively. Focusing on the
top (2) surface, our simulations show all expected features:
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FIG. 5. Current-induced spin polarization into a side pocket at
the side surface. (a) Sketch of a side pocket attached to the side
surface of the system shown in Fig. 2(a). (b, ¢) Spatial profile of the
averaged spin polarization (S.(y, z)) (averaged over 1000 disorder
configurations) along cross sections in the X direction shown as a
dashed blue rectangle in panel (a). In panels (b) and (c) the side
pockets are doped to hole bands (Vgue = —0.8 €V) and electron bands
(Veae = 0.9€V), respectively. Common parameters are L = 30a,
W =30a, H=20a, Wsp = 10a, Uy = 0.5eV, and Er = 0.15¢eV,
which is in the bulk gap.

A substantial nonequilibrium spin accumulation can be ex-
tracted into the doped side pockets (Fig. 4). The extraction to
the side (¥) surface (Fig. 5), on the other hand, has nontrivial
features. We first note the somewhat surprising fact that even
if the 3DTI surface has negligibly small spin accumulation,
n ~ 0, the spin accumulation extracted into the side pocket
is non-negligible (see corresponding figures in Appendix C).
Furthermore, the extracted spin polarization changes sign
when the gate voltage is tuned so that the charge carriers
change from electrons to holes as can be seen from Figs. 5(b)
and 5(c). We find that the geometry of the contact does not
play a crucial role as it does for a 2D electron gas with
Rashba spin-orbit coupling: In that case, wide contacts lead
to reduced extraction [28] while for TIs wider contacts lead
to enhanced extraction. In order to further study the spin-gate
effect mentioned above, we plot the spin accumulation (S;)
averaged over the side pocket, as a function of the gate voltage
applied to the side pocket, in Fig. 6. We find that the spin
accumulation depends linearly on the gate voltage and the sign
of polarization changes by switching the side pocket polarity
from hole to electron type.

Finally, we show that one can locally control the polar-
ization direction of different parts of side pockets by local
gating. In Fig. 7, we apply the local gate profile where the
electron puddles change into hole puddles within a region
much smaller than the spin precession length ¢sp. We find
that the spatial profile of the polarization of the extracted spin
accumulation closely follows the local gate potential. Thus,

1x10~2
°
1.0{"
>~
~ 0.5 NN‘\
b 5 - S
3, o "tN.\
/mE 0.0 ) W
° ~*~ °
~ 051 .‘~\:\
T
_10.

.09 -06 -03 00 03 06 009
Vgate (eV)

FIG. 6. Gate dependence of side pocket spin polarization. (S,)
averaged over 1000 disordered configurations and doped side pocket
sites is plotted vs gate potential. We consider the following pa-
rameters: L = 30a, W =30a, H =20a Wsp = 10a, Uy = 0.5¢eV,
and Ep = 0.15eV, which is in the bulk gap. The blue line is the
best-fitted line.

we show that it is possible to electrically control local spin
polarization within length scales much smaller than the spin
precession length.

IV. CONCLUSIONS

In conclusion, we focus on the current-induced spins at the
surfaces of 3DTIs and show how to extract these spins into
topologically trivial materials commonly used in electronic
devices. We find that unlike the corresponding effect in 2D
electron gases with Rashba spin-orbit interaction the mixing
of the electron and hole degrees of freedom at the TI sur-
face allows for additional methods for spin manipulation. In
particular, we exposed a way to use electrical gate potentials
to locally manipulate spins in regions smaller than the spin
precession length. The extracted spins can then be detected via
usual spintronics methods such as attaching a ferromagnetic
lead or using magneto-optical Kerr microscopy. This opens up
new possibilities for spin manipulation in spintronics devices.

(Sz) (ev'a?) ' 8
0.02 L,
- 15
0.01 g )
10 N
0.0 » )
-0.01 >
-0.02 >
10 20 30 150 15
Y@ Vgate V)

FIG. 7. Spatial profile of the averaged spin polarization (S, (y, z))
(averaged over 1000 disorder configurations) along cross sections in
the X direction for the system shown in Fig. 5(a). The side pocket is
alternatively doped to electron bands (Vg = 1.3€V) and hole bands
(Veae = —1.1eV). The side pocket is divided into four parts in the
Z direction and the spatial profile is averaged over X planes. Spin
precession length in the Z direction, {sp ~ 32 a (considering B =
B5). Other parameters used are Wsp = 10a, L =30a, W =30a,
H =20a,Uy =0.7¢eV, and Er = 0.15eV, which is in the bulk gap.
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APPENDIX A: EFFECTIVE SURFACE HAMILTONIANS
AND SPIN OPERATORS

Surface states in 3DTIs decay exponentially into the bulk
and have energies in the bulk band gap. We first consider
a semi-infinite 3DTI system situated in z > 0 (z < 0) with
a surface normal —Z (Z) pointing away from the bulk. By
considering a vanishing boundary condition at the surface,
eigenfunctions corresponding to these states can be written as

b ~ ulky, ky, hyp)e TV (FhE — gty (AD)

where the + sign in the z direction corresponds to a system
with a surface normal in the FZ direction at z = 0. Here
Re(X12) > Oand u(ky, ky, A1 2)is a spinor that is an eigenstate
of the 3DTI Hamiltonian described in Eq. (20), corresponding
tok, = —iA 2t

JIFE 0
S _ | FivVT-¢ v:l:iZL 0
V2 0 ’ V2 JI1+§
0 +iJT—F
(A2)

with energy dispersion to the lowest order of k given by

Ef¥=CH+EMy+ A1 —E2k,,

where k3 = k2 + k2. Hence, the effective surface Hamiltonian
as given in the text is obtained through projecting the 3DTI
Hamiltonian in basis states given in Eq. (A1) and using the
spinor eigenstates stated in Eq. (A2). To lowest order in k,
and k,, this results in

(A3)

P 0 iky + k
+z _ 2 X y
H* = C +EMy + Ay\/1 g(_ikx+ky 0 )

(A4)
which is introduced as Eq. (1) in the paper. The real spin
operators for the Z surface are formed by projecting the spin
operators in the basis of bulk states, Eq. (21), onto the two
surface states

Sy =0y, 8, =0y, ;=0 (AS)

which is stated as Eq. (2). The effective surface Hamiltonians
and real spin operators corresponding to other surfaces can be
calculated similarly.

APPENDIX B: MEAN FREE TIME ESTIMATION

We proceed with a Fermi’s “golden rule” estimation of the
mean free path. The surface modes are four-spinors with k-
dependent components [55] due to (pseudo)spin-momentum
coupling. Such k dependence can lead to substantial differ-
ences between lifetime and transport time [56]. In the case
of uncorrelated disorder, however, the difference is only an
O(1) factor [52] and thus irrelevant for our estimations. We

(SZ) (eVia?)

15 p 0.04
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gy " 00
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FIG. 8. Current-induced spin polarization into a side pocket at
the side surface when n = (. Spatial profile of the averaged spin
polarization (S,(y, z)) (averaged over 1000 disorder configurations)
along cross sections in the X direction. (a) (S,(y, z)) corresponds to
the system shown in Fig. 2(a). (b, c¢) (S.(y, z)) corresponds to the
system shown in Fig. 5(a). In panels (b) and (c) the side pockets,
Wsp = 10 a, are doped to hole bands (Ve = —0.7¢€V) and electron
bands (Vg = 0.7€V), respectively. Common parameters are L =
30a, W =30a, H =20a, Uy =0.5¢V, and Er = 0.15¢eV, which
is in the bulk gap. We set D, = 0 in all parts of the system.

thus work exclusively with band-bottom k = O spinors. We
consider a TI slab extended in x and y directions, having a
length L and a width W along the x direction and y direction,
respectively, and a thickness H along the z direction. We fur-
ther assume white-noise disorder of the form (V(r)V (#')) =
y 8(r —r'). Therefore, using spinors stated in Eq. (A2) leads
to

Yy o

= Wﬁ’ B

(Vi 1)

where o = ff dzf*(z), B = fOH dzf(z) with f(z) = (e 4% —
e M%) (e7H1% — ¢7%27) We use Fermi’s “golden rule” to derive
the inverse mean free time and find

Loy L S e sE— B B2
r_k/ ttk— k) h - K k k

for surface states of a disordered 3DTI with semi-infinite
boundary condition in the Z direction, i.e., H —> oo. Based
on Eq. (A3), we have

EtT —C—&M
S(EF —E}) = ' —éo>

1
J—) k _
T (l ayi—g
(B3)

Hence, the resulting total ensemble-averaged mean free time
of surface states on the Z surface reads
1 2yET—C—&M,
Y 2—50 ay (B4)
T b A(1-81) p?

Here, since A’s are complex conjugate partners in our sys-

ok — T _ 35 _
ter~n, A=Ay =a+ib, we find o« = ST I0R and 8 =
b2
a+ab**

Similarly, for an energy dispersion, to the lowest order of
k, for y-plane surface states,

E* =C+nMy£/1—n? JAK2 + A2, (B3)
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we obtain the total ensemble-averaged inverse mean free time
1 2yE"—C—nMy o
T h A(l—-n?) B*

where we approximate the Fermi velocity, vp = v, (¥), at
this surface based on Eq. (B5) since A, > A;. Note that a(f8)
and o' (B’) are different values since the depths of the surface
states into the bulk in different surfaces are not the same
according to the parameters of the Hamiltonian.

According to our mean free time and Fermi velocities
derivations, Eqs. (31) and (32) yield

< (S:) ) _(77(142\/1—772)3 ﬂ/2> @

d(n)/dx C\E+—C—nMy4a'y

(B6)

—£2\3 @2
<d<<sy> ) =<<A2\/1 £)° B ) Bs)
+2 +2

n)/dx Et —C — &My day

where y = Uga® in the discretized system.

APPENDIX C: 5 = 0 CASE

Here we provide figures for the case D, = 0 leading to
n = 0. It is clearly seen that while there is negligible spin
accumulation on the side of a 3DTI [Fig. 8(a)] spin extraction
is non-negligible in the side pocket and spin polarization can
be switched via a gate potential [see Figs. 8(b) and 8(c)].
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