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Surface versus localized plasmons in an assembly of metal-dielectric parallel flat slabs
in the presence of an in-plane magnetic field
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Closed-form exact expressions are derived for the macroscopic permittivity tensor of a parallel metal-dielectric
sandwichlike composite microstructure in the presence of an externally applied static in-plane magnetic field.
An exact closed-form expression for a magnetic-field- and structure-dependent resonance frequency of the
multisurface plasmon is obtained. The optical properties of this plasmon are compared with those of the surface
plasmons localized around cylindrical holes made in the metallic layers. All analytical results are verified by
numerical simulations.
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I. INTRODUCTION

The pioneering work of Ebbesen et al. [1] on the extraor-
dinary light transmission (ELT) through a periodic array of
subwavelength holes in a metal film, or as it is also called,
extraordinary optical transmission (a phenomenon that was
not discussed in classical diffraction theory [2–4]), led to
many publications, experimental as well as theoretical. The
ELT effect was explained as being a result of the interaction of
light with surface plasmons (SPs). It was assumed that the SPs
are localized (or running) on both flat surfaces of the metallic
film. However, for simplicity the first publication used the
existing theory of SPs excited on a semi-infinite space, as is
described, e.g., in the book by Raether [5].

By contrast, in our attempts to understand ELT we con-
sidered surface plasmons localized on the surface of circular
holes or inclusions but not on the flat film surface [6,7]. It
is difficult to distinguish between these two types of plas-
mons in an experiment since both have the same resonance
frequency [ωp/

√
2 for running surface plasmons and ωp/

√
n

for localized surface plasmons, where n = 1/2 is the depolar-
ization factor of a cylinder [6–9], and ωp is the bulk plasma
frequency of the metal constituent; see the sentence right after
Eq. (2)]. Only if the holes are not circular but elliptical [8] or
when a magnetic field is applied [6–9] will these resonance
frequencies differ. The effect of an applied static magnetic
field on ELT was discussed in Refs. [6–9]. It was also shown
that such a field strongly affects the optical properties of those
composites, just as it affects the magnetoresistance properties
of such materials (both when the microstructure is periodic
[10–14] and when it is disordered [15,16]). The application
of a magnetic field converts initially isotropic conductivity
and permittivity tensors into anisotropic ones [see Eq. (2)
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below]. As a result, the Laplace equation [see Eq. (6) below]
for the electric potential also becomes anisotropic. For ana-
lytical solving of this problem, it is convenient to perform
a coordinate transformation that returns in the virtual space
the Laplace equation back to the isotropic form. However,
the shape of the inclusions will also be transformed in the
virtual space (from spherical or cylindrical to spheroidal or
elliptical). Therefore, the depolarization factor n(H) of these
figures that are deformed in the virtual space depends on the
magnetic field H and differs from it for the initial spherical
(cylindrical) shape of inclusions. As a result, the magnetic
field shifts the surface plasmon resonance ωres = ωp/

√
n(H)

[where n(H) �= 1/2] and the ELT to higher frequencies. This
enables the optical transmissivity of the film to be changed
from totally opaque to highly transparent by changing
either the magnitude of the magnetic field or its direction
[6–12].

In Ref. [17], it was also mentioned that, in addition to
surface plasmon resonance, there also exists a so-called cy-
clotron resonance, which can play, in principle, some role
in light transmission. These phenomena can be observed
also in Faraday [18], Voigt [18], and Kerr [19,20] rotations
as well as in other magneto-optical effects and even in a
SPASER [21]. The idea to use the magnetoinduced shift of
the surface plasmon frequency in ELT was also discussed later
(see, e.g., Refs. [22–31]). It should be mentioned that surface
plasmons localized on the surface of spheres in the presence
of a magnetic field were already discussed theoretically long
ago [32], but not for application to ELT, and not in the
framework of the modern metamaterials and plasmonics. The
case of running on the surfaces of multislab plasmons also
was not considered in Ref. [32]. In a composite medium with
a periodic nanostructure, an applied magnetic field can induce
a strong anisotropy and make most of the optical properties
depend on the direction of the applied magnetic field [6,7].
This is similar to what we recently predicted for the mag-
netoresistance [10–12,14,15] and thermoelectricity [33,34] in
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such a medium. This was already verified experimentally
[35,36] as well as by other theoretical research [37].

Most studies of ELT [38–41] follow Ref. [1] and consider
the SP running on the flat surface of a semi-infinite space.
From our studies it appears that the situation is more compli-
cated. In particular, if only those resonances are responsible
for ELT, then a periodic array of holes in the film would not be
required. However, according to Ref. [42], a periodic array of
holes or grooves or other (mostly periodic) inhomogeneities
or prisms are required in order to excite a SP by interaction
with photons. Somewhat later it was observed [43–47] that
ELT can appear even when there is only a single aperture in
the film. Therefore, the plasmons localized around the hole,
which are called localized surface plasmons (LSPs) [5,48,49],
should be the cause of ELT. In other experiments it was shown
that ELT depends on the shape of the aperture [50,51]. This
was explained theoretically in Ref. [8] as resulting from LSPs
localized around the apertures. Moreover, in most publications
LSPs are mentioned in the case of metallic nanoparticles
[52,53] embedded on or near the dielectric surfaces, while on
those surfaces there are no (running) SPs. Additional intuitive
evidence that it is the LSPs that are important comes from
the Keller-Dykhne [54–56] theorem and the Babinet [57]
principle.

Following our recent publication devoted to magnetoresis-
tance of flat-slab composites [58], we consider in this paper a
metal-dielectric (MD) assembly of parallel flat layers (a sand-
wichlike geometry that is often used in plasmonic experiments
[59–62]). We now find a general analytical asymptotic expres-
sion for SPs on the surfaces of the metallic layers that depends
on the applied magnetic field, layer permittivities, and their
thicknesses. Measurement of the macroscopic permittivity of
the sandwich can be used to determine the layer thicknesses,
as was pointed out in Ref. [63]. We also find that the discussed
resonance can appear only if some special conditions are
satisfied. Application of an external static in-plane magnetic
field is one way to make such a resonance appear, as we show
theoretically. Another way to make this resonance appear,
as we show numerically, is by making perforating holes or
grooves in the metallic layers. In the latter situation, two types
of resonances make an appearance: SPs in a multilayered
structure, which is a generalization of the SPs discussed in
Refs. [1,5], and the LSP (localized around the holes) as in our
previous papers [6,7,17,64,65]. For our theoretical studies we
use expressions for the macroscopic dc magnetoresistance of
the assembly of parallel layers that were published recently
[58] and which we now derive also for the ac case.

The remainder of this article is organized as follows. In
Sec. II we develop the theory of magneto-optical properties
of an MD assembly of parallel homogeneous and perfo-
rated layers in the presence of a static magnetic field. The
frequencies of the cyclotron-like and surface-plasmon-like
resonances are derived. In particular in Sec. II A we write
down expressions for the Drude permittivity and inverse per-
mittivity tensors in the quasistatic approximation. In Sec. II B
we derive expressions for the macroscopic effective values
of the permittivity tensor. In Sec. II C we find expressions
for the resonance frequency of the generalized SP in the
presence of a magnetic field. In Sec. II D we derive expres-
sions for the frequencies of the surface plasmon resonances

FIG. 1. Schematic representation of the sandwichlike metal-
dielectric (MD) assembly of parallel (in the xy-plane and perpen-
dicular to the z-axis) flat slabs. An applied static magnetic field is
directed along the y-axis.

in a perforated MD sandwichlike system in the presence of a
magnetic field. Our analytical expressions are verified numer-
ically using a numerical approach developed and described in
Refs. [6,7,10–12,14,15]. The general solution in this approach
is based on a Fourier expansion in the case of composites
with a periodic nanostructure. The results of the analytical and
numerical calculations are discussed in Sec. III. Section IV
provides a summary and discussion of the main results.

II. THEORY

Consider a parallel flat-slabs MD (or semiconductor-
dielectric) sandwichlike nanostructure shown schematically
in Fig. 1with x, y-axes of the Cartesian coordinate system
parallel and the z-axis perpendicular to the slab planes. An
external static magnetic field B is applied along the y-axis
(see Fig. 1 and the top part of Fig. 2). The local permittivity
ε̂ and inverse permittivity η̂ ≡ ε̂−1 tensors of the conducting
and dielectric slabs have the following general forms:

ε̂i =
⎛⎝ ε⊥i 0 εHi

0 ε‖i 0
−εHi 0 ε⊥i

⎞⎠, η̂i =
⎛⎝ η⊥i 0 ηHi

0 η‖i 0
−ηHi 0 η⊥i

⎞⎠,

(1)

where the subscript i equals M when that is the metal con-
stituent and I when that is the dielectric constituent.

A. ac Drude permittivity and inverse permittivity tensors
in the quasistatic regime

We will assume everywhere below that the dielectric slabs
are characterized by a scalar electrical permittivity ε̂I = εI Î
(where Î is the unit tensor), while the conducting slabs are
characterized by an ac permittivity tensor ε̂M . In the presence
of a static magnetic field B ‖ y (see Fig. 1 and the top part
of Fig. 2), ε̂M can be written in the Drude approximation as
[6,7,18,56,64]

ε̂M = ε0Î + i
4π

ω
σ̂ = ε0Î + iω2

p

τ

ω

×

⎛⎜⎝
1−iωτ

(1−iωτ )2+H2 0 −H
(1−iωτ )2+H2

0 1
1−iωτ

0
H

(1−iωτ )2+H2 0 1−iωτ
(1−iωτ )2+H2

⎞⎟⎠. (2)
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FIG. 2. (a)–(c) Real (blue) and imaginary (red) parts of the xx,
yy, and zz diagonal components of the macroscopic permittivity ten-
sor ε̂e, of a MD assembly of parallel homogeneous slabs (see Fig. 1
and the top of this figure) vs ω̃ ≡ ω/ωp. H = 0. Analytical results
[see Eq. (8)] are shown by the solid (for real parts) and dashed (for
imaginary parts) lines, while the numerical results are shown by open
squares (for real parts) and five pointed open stars (for imaginary
parts). In accordance with Eq. (17), the resonance in ε(e)

zz appears at
the frequency ω̃res = √

pI/ε = 0.63 [shown by a vertical dashed line
in (c)], while in ε(e)

xx and ε(e)
yy there is no resonance. The vertical dashed

line in (a) and (b) shows the frequency ω̃ = √
pM/ε̄ = 0.78 at which

ε(e)
xx = ε(e)

yy = 0 [see Eq. (21)]. The green dotted lines in (a), (b), and
(c) show the asymptotic solutions (21) and (22). Top: Unit cell used
for numerical calculations of MD parallel flat-slab nanostructure.
Upper and lower “I” slabs are insulating (dielectric) with εI = 1 and
pI = 0.4, while “M” slab is conducting with ε̂M given by Eq. (2) with
ε0 = 1 and pM = 0.6. τ̃ = 30.

Here ε0 is the scalar dielectric constant of the background
ionic lattice, ωp = (4πe2N0/m)1/2 is the plasma frequency,

N0 is the charge-carrier density, m is the electron mass, H =
|H| = ωcτ = μ|B| is the dimensionless form of the magnetic
field B, while B is the magnetic field measured in conventional
units, ωc is the cyclotron frequency, and τ is the conducting
relaxation time. When ωτ � 1, Eq. (2) takes the form

ε̂M =

⎛⎜⎜⎝
ε0 + 1

H̃2−ω̃2 0 − iH̃
ω̃(H̃2−ω̃2 )

0 ε0 − 1
ω̃2 0

iH̃
ω̃(H̃2−ω̃2 )

0 ε0 + 1
H̃2−ω̃2

⎞⎟⎟⎠, (3)

where we have introduced definitions ω̃ ≡ ω/ωp, τ̃ ≡ τωp,
and H̃ ≡ H/τ̃ . For H = 0, Eq. (3) takes even the simplest
form

ε̂M =
(

ε0 − 1

ω̃2

)
Î, η̂M = ε̂−1

M = 1

ε0 − 1
ω̃2

Î. (4)

For further treatment, we need the explicit form of the
inverse permittivity tensor η̂M ≡ ε−1

M , which follows directly
from Eq. (3):

η̂M =ε−1
M

=

⎛⎜⎜⎜⎝
ε0(H̃2−ω̃2 )+1

ε2
0 (H̃2−ω̃2 )+2ε0− 1

ω̃2
0 iH̃

ω̃

[
ε2

0 (H̃2−ω̃2 )+2ε0− 1
ω̃2

]
0 1

ε0− 1
ω̃2

0

−iH̃

ω̃

[
ε2

0 (H̃2−ω̃2 )+2ε0− 1
ω̃2

] 0 ε0(H̃2−ω̃2 )+1
ε2

0 (H̃2−ω̃2 )+2ε0− 1
ω̃2

⎞⎟⎟⎟⎠.

(5)

B. Macroscopic effective values of the permittivity tensor

In Ref. [58] we derived exact analytical expressions for
the macroscopic resistivity tensor ρ̂e of a two-constituent flat-
slabs composite conductor subjected to an external magnetic
field B. In that case, the local potential field φ(r) obeys the
following equation:

∇ · σ̂ (r) · ∇φ = 0, (6)

where σ̂ (r) = ρ̂(r)−1 is the local conductivity tensor and ρ̂(r)
is the local resistivity tensor. Equation (6) is the same as the
equation obeyed by φ(r) in the case under discussion here
except that the local resistivity tensor σ̂ (r) is replaced by
the local permittivity tensor ε̂(r). Because of this, the results
for ρ̂e can immediately be translated into an expression for
the macroscopic inverse permittivity tensor η̂e ≡ ε̂−1

e . When
the magnetic field B lies along the y-axis in the slab plane
(see Fig. 1) this leads to [see Eqs. (A6)–(A8) in Ref. [58]
for ρ̂e]

η̂e =

⎛⎜⎜⎜⎝
1

pM
η⊥M

+ pI
η⊥I

0 − pMηH Mη⊥I +pI ηH I η⊥M

pI η⊥M+pMη⊥I

0 1
pM
η‖M

+ pI
η‖I

0

pMηH Mη⊥I +pI ηH I η⊥M

pI η⊥M+pMη⊥I
0 pMη⊥ M + pIη⊥ I + (ηH M−ηH I )2

η⊥ M
pM

+ η⊥ I
pI

⎞⎟⎟⎟⎠. (7)

Here η⊥i, η‖i, and ηHi (i = M, I) are the transverse, longitudinal (both with respect to magnetic field B), and Hall off-diagonal
components of the inverse permittivity tensors of the metal and dielectric constituents, respectively, while pM and pI are their
volume fractions.
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An expression for the macroscopic permittivity tensor ε̂e ≡ η̂−1
e follows directly from Eq. (7):

ε̂e =

⎛⎜⎜⎜⎜⎜⎝

(
pM

η⊥M
+ pI

η⊥I

)(
pMη⊥M+pI η⊥I + η2

HM
η⊥M
pM

+ η⊥I
pI

)
pMη⊥M+pI η⊥I + η2

HM pM
η⊥M

0 pMηHM

η⊥M

(
pMη⊥M+pI η⊥I + pM η2

HM
η⊥M

)
0 pM

η‖M
+ pI

η‖I
0

− pMηHM

η⊥M

(
pMη⊥M+pI η⊥I + pM η2

HM
η⊥M

) 0 1

pMη⊥M+pI η⊥I + pM η2
HM

η⊥M

⎞⎟⎟⎟⎟⎟⎠. (8)

In the preceding equation and everywhere below, we have assumed that the Hall tensor component of the dielectric vanishes:
ηH I = 0. For H = 0 (when η⊥i = 1/ε⊥i and similarly for the longitudinal component of both constituents, i = I, M), Eq. (8)
simplifies to the following diagonal form:

ε̂(e)
xx = pM

η⊥M
+ pI

η⊥I
= pMε⊥M + pIε⊥I , (9)

ε̂(e)
yy = pM

η‖M
+ pI

η‖I
= pMε‖M + pIε‖I , (10)

1

ε̂
(e)
zz

= pMη⊥ M + pIη⊥ I = pM

ε⊥ M
+ pI

ε⊥ I
. (11)

These are the well-known expressions for the macroscopic effective permittivities of a system of parallel slabs when H = 0
(see, e.g., Refs. [66,67]).

C. Resonances

Besides the yy component, all the nonzero tensor components in Eq. (8) have the same denominator. When that denominator
vanishes, that signifies a resonance. However, in the case of the xx-component when H = 0 the numerator vanishes together
with the denominator. Therefore, a resonance appears only when H �= 0. By contrast, the zz-component exhibits a resonance
even when H = 0.

To find an analytical expression for the resonance frequency and its dependence on the magnetic field H , it is enough to
substitute Eq. (5) into Eq. (8). We thus get the following expression for the macroscopic tensor ε̂e:

ε̂e =

⎛⎜⎝
ε̄
ω̃2

P4(ω̃)
P3(ω̃) 0 − iεI

εω̃

pM H̃
ω̃2−( pI

ε
+H̃2 )

0 ε̄ − pM

ω̃2 0
iεI
εω̃

pM H̃
ω̃2−( pI

ε
+H̃2 ) 0 − εI

ε

ε0(H̃2−ω̃2 )+1
ω̃2−( pI

ε
+H̃2 )

⎞⎟⎠, (12)

where we have introduced the weighted arithmetic permittivity ε̄ and a combination ε of permittivities, respectively:

ε̄ ≡ pMε0 + pIεI , (13)

ε ≡ pMεI + pIε0 = εIε0

(
pM

ε0
+ pI

εI

)
. (14)

P3(ω̃) in the denominator of ε̂(e)
xx [see Eq. (12)] is a polynomial of the third degree in ω̃2, which, after regrouping of its terms and

after some algebra, can be expressed as

P3(ω̃) = ω̃6 −
[

2

(
H̃2 + 1

ε0

)
+ pI

ε

]
ω̃4 +

[(
H̃2 + 1

ε0

)2

+ pI

ε

(
H̃2 + 2

ε0

)]
ω̃2 − 1

ε2
0

(
H̃2 + pI

ε

)
=

[
ω̃2 −

(
pI

ε
+ H̃2

)][
ω̃4 −

(
H̃2 + 2

ε0

)
ω̃2 + 1

ε2
0

]
=

[
ω̃2 −

(
pI

ε
+ H̃2

)](
ω̃2 − ω2

1

)(
ω̃2 − ω2

2

)
. (15)

In these equations, we have introduced the following quantities:

ω2
1,2 ≡ 2 + ε0H̃2 ± ε

1/2
0 H̃

√
4 + ε0H̃2

2ε0
. (16)

The first set of parentheses on the right-hand side of Eq. (15) determines a general expression for the resonance frequency ω̃res

of the surface plasmon, which depends on the permittivities εI , ε0 of the slabs, their thicknesses, and the applied magnetic field:

ω̃res ≡ ωres

ωp
=

√
pI

ε
+ H̃2 =

√
pI

pMεI + pIε0
+

(
ωc

ωp

)2

. (17)

When H = 0 and pI = pM = 1/2, this expression reduces to the resonance frequency of Eq. (2.8) in Ref. [5] (the correct
expression for that quantity, which is discussed later in many publications related to ELT [1], would be ωres = ωp/

√
ε0 + εI ).
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When H �= 0 but still pI = pM = 1/2, Eq. (17) is similar (with precision up to a factor before ωc) to Eq. (5) in Ref. [68] (see also
Refs. [69,70]). When pI = 0, i.e., in an infinite homogeneous conductor, ωres reduces to the cyclotron resonance ωc [see Eq. (3)
above and Refs. [17,71]]. The other two sets of parentheses on the right-hand side of Eq. (15) also pass through zero, but they
do not contain any information about the system microstructure. Therefore they cannot be resonances, and the only possibility
is that they should cancel with the numerator. Using this observation, we express the polynomial P4(ω̃) in the numerator of ε̂(e)

xx ,
which is of the fourth degree in ω̃2, as

P4(ω̃) = ω̃8 −
[

2

(
H̃2 + 1

ε0

)
+ pM

ε̄
+ pI

ε

]
ω̃6 +

[(
H̃2+ 1

ε0

)2

+
(

H̃2+ 2

ε0

)(
pM

ε̄
+ pI

ε

)
+ pM

ε̄

pI

ε

]
ω̃4

−
[

1

ε0

(
H̃2 + 1

ε0

)(
pM

ε̄
+ pI

ε

)
pM

ε̄

pI

ε

(
2

ε0
+ ε2

I

ε2
0

H̃2

)]
ω̃2 + 1

ε2
0

pM

ε̄

pI

ε
(18)

=
[
ω̃4 −

(
H̃2 + 2

ε0

)
ω̃2 + 1

ε2
0

][
ω̃4 −

(
pM

ε̄
+ pI

ε
+ H̃2

)
ω̃2 + pI

ε

pM

ε̄

]
. (19)

Here we have taken into account that εε̄ = εIε0 + pI pM (εI − ε0)2, pMε + pI ε̄ = εI + 2pM pI (ε0 − εI ), and p2
I + p2

M + 2pI pM = 1,
as follows from Eqs. (13) and (14). Finally, Eq. (12) simplifies to

ε̂e =

⎛⎜⎜⎝
ε̄
ω̃2

ω̃4−( pM
ε̄

+ pI
ε

+H̃2 )ω̃2+ pI
ε

pM
ε̄

ω̃2−( pI
ε

+H̃2 ) 0 − iεI
εω̃

pM H̃
ω̃2−( pI

ε
+H̃2 )

0 ε̄ − pM

ω̃2 0
iεI
εω̃

pM H̃
ω̃2−( pI

ε
+H̃2 ) 0 − εI

ε

ε0(H̃2−ω̃2 )+1
ω̃2−( pI

ε
+H̃2 )

⎞⎟⎟⎠. (20)

It follows from Eq. (8) that, when H = 0, the bracket with
resonance (17) should disappear in the xx tensor component
but should remain in the zz component (see Figs. 2 and 3). At
H = 0, the numerator of the xx component of the tensor ε̂e in
Eq. (20) can be expressed in the form (ω̃2 − pI

ε
)(ω̃2 − pM

ε̄
).

Therefore, the term (ω̃2 − pI

ε
) cancels out in the denomi-

nator and the numerator. Finally, when H = 0 the nonzero

FIG. 3. The same as Fig. 2 but for εI = 3. The resonance in
ε(e)

zz appears at the frequency ω̃res = √
pI/ε = 0.43 [see Eq. (17)]

shown in (c) by a vertical dashed line, while in ε(e)
xx and ε(e)

yy there
is no resonance. The green dotted curves in (a), (b), and (c) show
the asymptotic solutions (21) and (22). The vertical dashed lines in
(a) and (b) show the frequency ω̃ = √

pM/ε̄ at which ε(e)
xx = ε(e)

yy = 0
[see Eq. (21)].

components of the tensor (20) become

ε(e)
xx = ε(e)

yy = ε̄ − pM

ω̃2
, (21)

ε(e)
zz = −εI

ε

1 − ε0ω̃
2

ω̃2 − pI

ε

= εI (ε0ω̃
2 − 1)

εω̃2 − pI
. (22)

From Eq. (22) and Figs. 2 and 3 it is evident that the resonance
in the ε(e)

zz component exists even when H = 0. Therefore,
ELT should appear in the absence of a magnetic field when
the light beam is incident on the sample parallel to the slabs
and is polarized along the z axis (see Fig. 1). By contrast, the
resonance in the yy tensor component will never be observed,
either with or without an applied magnetic field. This differs
from LSP, which exhibits the resonance in both the transverse
and the longitudinal tensor components—see below.

When ε0 = 1 and εI = 1, Eq. (20) for arbitrary H simpli-
fies to

ε̂e =

⎛⎜⎜⎝
1
ω̃2

(ω̃2−ω2
3 )(ω̃2−ω2

4 )
ω̃2−(pI +H̃2 )

0 i
ω̃

pM H̃
ω̃2−(pI +H̃2 )

0 1 − pM

ω̃2 0

− i
ω̃

pM H̃
ω̃2−(pI +H̃2 )

0 − 1−ω̃2+H̃2

ω̃2−(pI +H̃2 )

⎞⎟⎟⎠, (23)

where

ω2
3,4 = 1

2 (1 + H̃2 ±
√

(H̃2 + 1)2 − 4pM pI ). (24)

We now discuss the behavior of the xx component of ε̂e.
When this was done by using reductions in the numerator
and denominator, the results were very instructive: When each
layer is homogeneous, the x and y directions are equivalent
and the vanishing of the denominator of ε(e)

xx is canceled by
the coincident vanishing of the numerator. This symmetry of
ε̂e is spoiled when an external magnetic field is present. This
leads to the appearance of a resonance in ε(e)

xx . As we already
pointed out earlier, it follows from Eq. (8) that when H = 0,
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there should not be any resonance in the xx tensor component.
However, in many experiments there are small nonzero values
of H . We also speculate that the exact cancellation of the
vanishing numerator and denominator is not a stable situation
and that any structural perturbation of the uniform flat layers
can spoil this, not only the presence of a small magnetic field.
For example, the rotational symmetry of the microstructure
in the x, y-plane is spoiled when the layer includes holes or
grooves. Below we will show numerically that holes in the
metallic layers, or grooves on the top and bottom of such
a layer, or other deformations of these layers, can change
the expressions of the numerator and denominator in such
a way that the coincident vanishing will not occur anymore
(see Figs. 10–12). This is qualitatively similar to what was
observed and discussed in the case of ELT [1,38,72], where in
order to excite the SP one needed to have a periodic array of
holes or grooves or to attach glass prisms [1].

From Eq. (17) it follows that application of a magnetic
field B ‖ y (see Fig. 1) induces the plasmonlike resonance of
Eq. (17). It is natural to expect that this resonance will lead
to ELT phenomena, i.e., transparency. In fact, if we assume
that light is polarized along the x axis, then the refractive

index should be equal to nx =
√

ε
(e)
xx . Using, for simplicity,

the formula for light reflection, R, and transmission, T , co-
efficients, derived for the case of a semi-infinite space: R =
|(nx − 1)/(nx + 1)|2 (where nx =

√
ε

(e)
xx ) and T = 1 − R, we

obtain ELT transmission, as evident in Figs. 8(a) and 8(b).
However, in the presence of a magnetic field, light is in fact
elliptically polarized [18] with a refractive index n2

⊥ = ε(e)
xx +

|ε(e)
xz |2
ε

(e)
zz

. From Eq. (8) it follows directly that the latter expression

has no resonance:

n2
⊥ = ε(e)

xx +
∣∣ε(e)

xz

∣∣2

ε
(e)
zz

= pM

η⊥M
+ pI

η⊥I
, (25)

which is qualitatively similar to the expression for n2
‖ = ε(e)

yy .
Substituting Eq. (5) into Eq. (25), it follows that n2

⊥ = 1 +
pM (1−1/ω̃2 )
1−(H̃2−ω̃2 )

. Therefore, there is no nanostructure-dependent
resonance in n⊥, and ELT cannot be observed [see Fig. 8(c)].

D. Surface plasmons localized around circular holes:
Numerical scheme for periodic composite, dilute,

and Clausius-Mossotti approximations

The theory described in Secs. II B and II C was developed
for the case of homogeneous slabs. To account for holes,
grooves, and other inhomogeneities, one needs to complement
it by other approaches, such as the effective-medium approxi-
mation (EMA) or numerical calculations.

1. Numerical scheme for a composite with periodic nanostructures

In the case of a periodic array of holes or grooves, we can
use our numerical scheme developed for calculations of mag-
netoresistance, magneto-optical, and thermoelectric effects in
periodic composites and in the presence of the magnetic field.
We treat the holes as dielectric inclusions with permittivity
ε̂I embedded in a conducting host with permittivity tensor ε̂M

given by Eq. (2), while the entire position-dependent permit-
tivity tensor can be written as ε̂(r) = ε̂Iθ1(r) + ε̂Mθ2(r). Here

θ1(r) is the characteristic function describing the location and
the shape of the inclusions (θ1 = 1 inside the inclusions and
θ1 = 0 outside of them), while θ2 is a similar characteristic
function describing the location and the shape of the host
θ2 = 1 − θ1. Then Eq. (6) can be rewritten as

∇ · ε̂(r) · ∇φ(α) = ∇ · θ1δ̂ε · ∇φ(α), (26)

where δε̂ ≡ ε̂2−ε̂1. Following Refs. [6–12,14,15,17,18,33,34],
we chose a scheme where the composite medium occupies
the entire volume between the infinitely conducting plates
of a large parallel plate capacitor. In this approach, the local
electric potential φ(r) is then the solution of a boundary-value
problem based upon the Laplace partial differential
equation (26) and the boundary condition φ(α) = rα . Here rα

is the α-component of the applied voltage r.
When the inclusions are arranged on a three- (3D) or two-

(2D) dimensional periodic lattice, a more suitable approach
is a Fourier expansion technique [7,8,10,11,18]. Since θ1(r)
and ψ (α) = φ(α) − r (α) are now periodic functions, they can
be expanded in a Fourier series. This transforms Eq. (26) into
an infinite set of linear algebraic equations for the Fourier
coefficients,

ψg = 1

V

∫
V

ψ (α)(r)e−ig·rdV, (27)

where g = (2π/d )(mx, my, mz ) is a vector of the appropriate
reciprocal lattice, mi are arbitrary integers, d is a lattice
constant, and V is the volume of a unit cell. After solving
a truncated, finite subset of those linear algebraic equations
[6–12,14,15,17,18,33,34] resulting from Eq. (26), we can use
those Fourier coefficients ψ (α)

g in order to calculate the bulk
effective macroscopic electric permittivity tensor ε̂e, using the
procedure described in Refs. [7,8,10,11,18]. The analytical
expressions for the Fourier coefficient θg of the θ1(r) function
for different shapes of inclusions are given in Refs. [7–11,18].

The accuracy of this numerical approach depends on the
number of components included in the Fourier expansion.
That number used in our 3D calculations was between 20
and 28 components in each direction, which resulted in a
very time-consuming computation even for a supercomputer.
In some cases, the 3D problem could be reduced to a 2D
problem and then we used up to 90 Fourier components in
each direction. The results of such numerical calculations are
shown in Figs. 10–12.

2. Dilute and Clausius-Mossotti approximations

The resonance frequency that is due to the presence of a
cylindrical hole in the middle of each unit cell (see the top part
of Fig. 10) can be calculated, e.g., by assuming a dilute col-
lection of parallel right-circular cylindrical inclusions inside
a metal host. Then the method of dilute approximation (DA)
can be applied. This approximation does not take into account
the periodicity of the microstructure. The ii component of
the permittivity tensor in this approximation has the form
[7,8,64,65,73]

ε
(e)
ii = εM ii

[
1 − pcyl

δεii

εM ii − ni(H )δεii

]
, (28)

where pcyl is the volume fraction of the cylindrical
inclusions, δεii = εM ii − εI ii, and ni(H ) is the
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FIG. 4. Reflectance R = |(nz − 1)/(nz + 1)|2 (a) and transmit-
tance T = 1 − R (b) vs ω̃, where the refractive index nz =

√
ε

(e)
zz is

taken from Fig. 2. Analytical results are shown by the solid lines,
while the numerical results are shown by open squares.

magnetic-field-dependent depolarization factor [7] along
the i-axis. When i = x, the depolarization factor is
[7] nx(H ) = 1/[1 + √

εM yy(H )/εM xx(H )]. The spectral
dependence of ε(e)

xx on ω̃ obtained by DA for the different
values of H is shown in Fig. 14. Using Eqs. (3) and (28), the
resonance frequency ω̃res in the xx tensor component is found
to be

ω̃res =
√

1 − nx(H )

ε0 − nx(H )(ε0 − εI )
+ H̃2, where H̃ ≡ H

τ̃
. (29)

When H is small, nx � 1/2, and εI = ε0 = 1, then ω̃res �√
1/2 + H̃2 [see Eq. (14)]. For larger values of H̃ the reso-

nance frequency ω̃res can be found numerically from Eq. (15)
in Ref. [7]. However, when εI = ε0 = 1, Eq. (3) leads to the
following simple expression:

ω̃res =
√

(1 + H̃2)/2. (30)

FIG. 5. Similar to Fig. 3 but for H = 3 (H ‖ y); see the top part
of this figure. In (d) is shown the off-diagonal Hall component ε

(e)
H .

The resonance appears in ε(e)
xx , ε(e)

zz , ε
(e)
H at ω̃res = 0.44 [see Eq. (17)]

shown by a vertical dashed line. The green dotted curves in (a), (b),
(c), and (d) show the asymptotic solutions (20).

The value of the resonance ω̃res given by Eq. (28) is correct
in the limit where the volume fraction of the cylindrical inclu-
sions is small, i.e., when pcyl 	 1. In the Clausius-Mossotti
(CM) approximation [64,65], Eq. (29) can be corrected by
replacing the depolarization factor ni by the product

ni → (1 − pcyl )ni. (31)

In that case, and when εI = ε0 = 1, Eq. (30) transforms to

ω̃res =
√

1 + H̃2

2 − pcyl
. (32)

E. Reduction of the 3D problem to a 2D problem

As the microstructure under consideration becomes more
complicated, more Fourier components are required in order
to get good results. A 3D numerical calculation of a system
with conducting layers of finite thickness and with fully
penetrating holes or non-fully-penetrating grooves on both
surfaces is therefore a very time-consuming procedure (see
Figs. 10–13 where up to 28 Fourier components were used
in all directions). However, we found that it is possible to
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FIG. 6. (a)–(c) Similar to Fig. 5 but with parameters as in Fig. 2
(pM = 0.6, pI = 0.4, τ̃ = 30, ε0 = 1, εI = 1) and H = 3. (d) The
off-diagonal permittivity tensor component ε

(e)
H ≡ ε(e)

xz vs ω̃. The
green dotted lines show analytical asymptotic results (23). The com-
ponents ε(e)

xx , ε(e)
zz , and ε

(e)
H have resonances at ω̃res =

√
pI/ε + H̃ 2 =

0.64, while ε(e)
yy has no resonance.

reduce the 3D calculation to a 2D calculation. To achieve
this, we need to use Eq. (7) or Eq. (8) in which the inverse
permittivity tensors of the metal constituent (η⊥ M , η‖ M , and
ηH M) are replaced by 2D volume-averaged values (η(2De)

⊥ M ,
η

(2De)
‖ M , and η

(2De)
H M ). That is, we first solve the system of a metal

host with a 2D periodic array of infinitely long cylindrical
holes, which is in fact a 2D microstructure and therefore needs
much fewer Fourier components in the calculation. Then we
substitute the values η

(2De)
M and η

(2De)
H into Eq. (7) or Eq. (8). In

this way, the 3D problem with a complicated microstructure
has been transformed into a 2D problem in a microstructure
of parallel homogeneous layers. The results of this approach
are shown in Figs. 11 and 13 in comparison with direct 3D
calculations. This approach is correct only when the condition
for homogenization of the metallic slabs is valid, i.e., in the
quasistatic approximation when the light wavelength λ is
much larger than the radius r of the cylindrical hole and the
lattice constant.

III. RESULTS

We have studied the properties of the macroscopic electric
permittivity tensor ε̂e of a metal (or semiconductor) -dielectric
sandwichlike system of parallel slabs (see Fig. 1). For this we
use the exact analytical expressions for the dc macroscopic
resistivity tensor ρ̂e recently derived by us in Ref. [58], which
we have now rewritten for the ac case. Exact asymptotic
expressions for the macroscopic permittivity tensor ε̂e were
found in the case ωτ � 1 [see Eqs. (20) and (23)]. A new

FIG. 7. The same parameters as in Fig. 6 except for H = 10. The
resonance frequency (shown by the vertical dashed line) shifts to the
value ω̃res =

√
pI/ε + H̃ 2 = 0.72 [see Eq. (17)]. The green dotted

lines show asymptotic results (23).

surface-plasma-like resonance is found for layered structures,
with a frequency that depends on the layer thicknesses and
the applied dimensionless magnetic field H [see Eq. (17)]. We
verified all the analytical results using our numerical scheme
for calculating the properties of composites with a periodic
microstructure [6,7,10–12,14,15]. Different unit cells of the
periodic composite are shown in the top part of Figs. 2, 5, 10,
and 12. The number of Fourier components in 3D calculations
was between 20 and 28 in each direction and up to 90 in 2D
calculations.

In Fig. 2 we show the diagonal components of the macro-
scopic electric permittivity tensor ε̂e versus dimensionless
frequency ω̃ for a structure with pM = 0.6 and pI = 1 −
pM = 0.4 in the case when H = 0. Analytical results from
Eq. (8) (shown by lines) and numerical results (shown by
open symbols) are in good agreement. The zz component
of the permittivity tensors demonstrates a strong resonance,
at a frequency that depends on the slab thickness, while in
the xx and yy component of ε̂e there is no resonance [all in
accordance with Eqs. (8), (20), and (23)]. A vertical dashed
line in Fig. 2(c) shows the resonance frequency value ωres =
0.63ωp for pI = 0.4, ε0 = εI = 0 [see Eq. (17)]. In Figs. 2(a)
and 2(b), a vertical dashed line shows the frequency ω̃ =√

pM/ε̄ = 0.78 [in accordance with Eq. (21)] when ε(e)
xx =

ε(e)
yy = 0. The asymptotic solutions from Eqs. (21) and (22) are

shown by a green dotted line and are again in good agreement
with numerical results.

Similar drawings are shown in Fig. 3 for other values
of εI and pI . The resonance frequency in the ε(e)

zz -tensor
component shifts from ω̃res = √

pI/ε = 0.63 (for εi = 1 and
pI = 0.4 in Fig. 2) to ω̃res = √

pI/ε = 0.43 (for εI = 3 and
pI = 0.4 in Fig. 3), in full agreement with Eq. (17). The
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FIG. 8. (a), (b) Calculated reflectance R = |(nx − 1)/(nx + 1)|2
(a) and transmittance T = 1 − R (b) coefficients spectra. Here it was
assumed that the light is linearly polarized along the x-axis, with

nx =
√

ε
(e)
xx taken from Fig. 6, while τ̃ = 30, pM = 0.6, pI = 0.4, and

H = 3. (c) Real transmittance T = 1 − R for elliptically polarized
light beam with n⊥ given by Eq. (25). The well-pronounced reso-
nance shown in (a), (b) does not lead to ELT. This is reminiscent of
the behavior of ε(e)

yy , which does not exhibit a resonance, and therefore
there is also no ELT when the light is polarized along y. The green
dashed curve shows the transmittance for light polarized along the

y ‖ B axis with ny =
√

ε
(e)
yy . Analytical results are shown by the solid

lines, while the numerical results are shown by open squares.

reflectance R = |(n − 1)/(n + 1)|2 (where n =
√

ε
(e)
zz ) and the

transmittance T = 1 − R are shown in Fig. 4 versus ω̃ for the
case of light propagating along the z-axis. The transparency
window near the resonance frequency ωres = 0.63ωp is
well-pronounced.

Figures 5–7 show that the application of an external static
magnetic field changes the resonances drastically: The reso-
nance in the ε(e)

xx component is now permitted in full agreement

FIG. 9. Resonance frequency ω̃res given by Eq. (17) vs applied
magnetic field H for different volume fractions of dielectric slabs pI :
0.2 and 0.7 (with εI = 1), 0.4 (with εI = 2), and 0.8 (with εI = 3),
respectively. τ̃ = 30, ε0 = 1.

with Eqs. (20) and (23), and its value is given by ωres =
ωp

√
pI/ε + H̃2 [see Eq. (17)]. Figures 5, 6, and Eq. (23) show

that the Hall component ε
(e)
H also has a resonance. By contrast,

the ε(e)
yy component has no resonance. The hypothetical re-

flectance and transmittance spectra (when nx =
√

ε
(e)
xx ) for this

are shown in Figs. 8(a) and 8(b). The ELT would be observed
in this case, but in the presence of a magnetic field the light
will be elliptically polarized, and n⊥ [given by Eq. (25)]
instead of nx should be used in the analytical expressions for
R and T . As a result, there is no ELT in this case [see Fig. 8(c),
Eq. (25), and the text right after it]. The transmittance coeffi-
cient T is also shown for the case of parallel slabs with holes
and grooves with and without a magnetic field in Figs. 10(c),
11(c), and 12(c). The values of the LSP resonance frequencies
are shown versus H in Fig. 9 and they are in agreement with
Eq. (17).

As mentioned above, the resonance in the xx-component
can be allowed also by spoiling the symmetry of the mi-
crostructure. Thus, the presence of cylindrical holes in a
metal layer makes the SP resonance (see resonance no. 2 in
Fig. 10) appear near the frequency ω̃res = √

pI/ε = 0.45, as
predicted by Eq. (17) for H = 0. A second resonance [see
resonance no. 1 in Fig. 10] then appears at a frequency near
ω̃res = √

1/2 = 0.71 [see Eq. (29)] and is associated with the
LSP localized around the circular hole. A similar drawing is
shown in Fig. 11 for other parameters. A similar effect can
be achieved if instead of cylindrical holes parallel grooves are
made on the top and bottom of the metallic slabs as shown in
Fig. 12.

Figure 13 is similar to Fig. 10 but for the radius r of the
cylindrical hole in the center of the unit cell (see the top part
of Fig. 10) equal to 0.2a (where a is the size of the unit cell).
Two resonances appear due to this perturbation: Resonance
no. 1 due to LSP [i.e., the surface plasmon localized around
the cylindrical hole with a resonance frequency determined by
Eq. (28)] and resonance no. 2 near the frequency determined
by Eq. (17). This resonance is forbidden at H = 0 but is
allowed in the presence of cylindrical holes. Green dashed
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FIG. 10. (a), (b) Imaginary (a) and real (b) parts of the xx-
component of the macroscopic permittivity tensor ε̂e of an assembly
of parallel flat slabs with a cylindrical hole of radius r = 0.15a
(where a is the size of the unit cell) at the center of the unit cell
(see the top part). There is no applied magnetic field (H = 0). Two
resonances appear due to the cylindrical hole: Resonance no. 1 due
to LPR (i.e., plasmon localized around a circular cylindrical hole) in
the middle of the unit cell at ω̃res = √

1/2 = 0.71 [see Eq. (29) at
nx = 1/2], and resonance no. 2 near the value ω̃res = √

pI/ε = 0.45,
which is determined by Eq. (17). The latter resonance should be
forbidden in the absence of a magnetic field but is stimulated by the
presence of a cylindrical hole. The green dashed line is obtained by
the dilute approximation (DA) using Eq. (28). The resonance fre-
quency obtained by the latter approximation agrees with numerical
results, but the amplitude does not. (c) Transmittance T = 1 − R for

an elliptically polarized light beam with nx =
√

ε
(e)
xx and ε(e)

xx taken
from (a) and (b). Green dashed curve represents, for comparison, the
analytical result obtained for a system of parallel slabs without holes.
τ̃ = 30, pM = 0.8, pI = 0.2, H = 0, ε0 = εI = 1. Top: Unit cell used
for numerical calculations of MD parallel flat-slab nanostructure,
similar to Fig. 2 but with a cylindrical hole at the center of the
metallic slab.

lines show the result obtained by reduction of 3D calculations
into 2D ones, described in Sec. II E. A red dashed line shows
results of a calculation using the dilute approximation [see
Eqs. (28) and (29)], while a blue dashed line shows results
from using the CM approximation [see Eqs. (30) and (31)].
The resonance frequencies obtained by DA and CM approx-
imations are in agreement with numerical results, while their
amplitudes are not.

In Figs. 14(a) and 14(b), we show the xx-component of the
macroscopic permittivity tensor ε̂e of an assembly of parallel
flat slabs with cylindrical holes versus ω̃ for different values

FIG. 11. (a), (b) Similar to Fig. 10 but for a nonzero magnetic
field H = 3 applied along the y-axis (see the top of Fig. 10). Two
resonances appear: Resonance no. 1 due to LSP (localized around the
cylinder) at ω̃res(H ) =

√
(1 + H̃ 2)/2 = 0.71 [see Eq. (30)] and reso-

nance no. 2 at ω̃res(H ) =
√

pI/ε + H̃ 2 = 0.46 [see Eq. (17)]. Green
dashed lines show the results obtained when the 3D calculations
are reduced to 2D calculations, as described in Sec. II E. τ̃ = 30,
pM = 0.8, pI = 0.2, ε0M = 1, εI = 1. (c) Transmittance T = 1 − R
for an elliptically polarized light beam with n⊥ given by Eq. (25).
The well-pronounced resonance no. 2 shown in (a) and (b) does not
lead to ELT phenomena.

of the applied magnetic field H . Results were calculated using
the dilute approximation [see Eq. (28)]. In Fig. 14(c) we show
the resonance frequency ω̃res versus the applied magnetic field
H . Open squares are the maxima values of Im ε(e)

xx taken from
Fig. 14(a), while the dashed red line shows the result of
Eq. (29) and the dashed green line shows the result of Eq. (30).

IV. DISCUSSION AND SUMMARY

In summary, a general expression for the resonance fre-
quency of SPs in a metal-dielectric assembly of parallel flat
layers or slabs in the presence of an in-plane static mag-
netic field B is found. This resonance depends on B and
on the slabs’ relative thicknesses and permittivities. It has
completely different properties and behaviors in comparison
with the LSP resonance. To observe it in the xx component
of the permittivity tensor, one needs to apply a magnetic
field or make microstructural heterogeneities such as holes
or grooves. However, in many cases this does not lead to
ELT phenomena, in contrast with the LSP resonance, which
was shown analytically to appear when a magnetic field is
applied. This resonance is absent in the yy tensor component
of the permittivity tensor ε̂e, again in contrast with the LSP

035302-10



SURFACE VERSUS LOCALIZED PLASMONS IN AN … PHYSICAL REVIEW B 102, 035302 (2020)

FIG. 12. (a), (b) The same as Fig. 10 but with grooves as shown
in the top part of this figure. Resonance no. 1 at ω̃ � 0.73 is due to a
surface plasmon localized near the groove (when that groove is bar-
shaped with a square cross-section, the exact resonance frequency is
unknown). Resonance no. 2 appears near ω̃res � 0.4, which is close
to ω̃res = √

pI/ε = 0.45, the value at which there should not be a
resonance in the absence of a magnetic field. Here that resonance is
stimulated by the presence of grooves. (c) Transmittance T = 1 − R

for an elliptically polarized light beam with nx =
√

ε
(e)
xx and ε(e)

xx taken
from (a) and (b). Top: Unit cell used for numerical calculations of
MD parallel slab nanostructure with grooves of sizes dy = a, dx =
0.2a, dz = 0.1a. Upper and lower “I”-slabs are dielectric with εI = 1
and pI = 0.2, while “M”-slab is a conductor with ε̂M given by Eq. (2)
with ε0 = 1 and pM = 0.8. τ̃ = 30.

resonance, which is present in both the xx and yy tensor
components.

Asymptotically exact (in limit ωτ � 1) analytical expres-
sions were derived for the macroscopic permittivity tensor
ε̂e and for the frequency of a new surface plasmonic-like
resonance. In the absence of the magnetic field, this resonance
appears only in the zz component of the macroscopic permit-
tivity tensor ε̂e, i.e., only when light is propagating parallel
to the slab surfaces and its electric field is perpendicular
to these surfaces. However, the application of an in-plane
magnetic field induces this resonance even in the xx tensor
component (i.e., when light is propagating perpendicular to
the slab surfaces with a polarization perpendicular to the
applied magnetic field). The resonance is induced also in the
off-diagonal Hall tensor component. Even in the presence of
a magnetic field, the resonance is absent in the yy tensor
component. We showed numerically that the spoiling of the

FIG. 13. Similar to Fig. 10 except for the radius r = 0.2a (where
a is the size of the unit cell) of the cylindrical hole in the center of the
unit cell (see the top part of Fig. 10). There is no applied magnetic
field (H = 0). Two resonances appear due to the cylindrical hole
at the center of the unit cell: Resonance no. 1 due to LSP (i.e., the
surface plasmon localized around the cylindrical hole) at ωres/ωp =√

1/2 = 0.71 shown by a vertical dashed line—see Eqs. (28) and
(29)—and resonance no. 2 near the frequency determined by Eq. (17)
and forbidden when H = 0 but stimulated by the presence of cylin-
drical holes. Green dashed lines show the numerical result obtained
when the 3D computations are reduced to 2D ones, as described
in Sec. II E. The red dashed line shows the results of a calculation
using the dilute approximation of Eqs. (28) and (29) while the blue
dashed line shows results obtained using the CM approximations [see
Eqs. (30) and (31)]. The resonance frequencies obtained by DA and
CM approximations are in agreement with numerical results, while
the amplitudes are not. τ̃ = 30, pM = 0.8, pI = 0.2, ε0 = 1, εI = 1.

high symmetry of the slab surfaces, e.g., by making holes or
grooves in the metallic slabs, also induces the resonance in the
xx tensor component.

All our analytical results agree qualitatively and even quan-
titatively with the results of numerical calculations on peri-
odic nanostructures performed using the numerical scheme
of Refs. [6,7,10,11,17]. Our method of calculation assumes
that the hole sizes and the lattice constant of the hole lattice
are small compared to the wavelength of light. We emphasize
that in our calculations we have not used any absolute values,
but only relative ones—namely, the ratio between the slab
thicknesses and the ratio between hole sizes and the distance
between the holes. Even though we have used the qua-
sistatic approximation, we believe that the effects predicted
here will persist even for lattice constants comparable to the
wavelength.

The phenomena discussed here can be used for manipulat-
ing the transmission of light through a sandwichlike metal-
dielectric assembly of parallel layers by applying an external
magnetic field. This possibility arises whenever the Hall resis-
tivity of the metal layers exceeds their Ohmic resistivity.

The phenomena discussed in this paper depend on the
dimensionless magnetic field H = ωcτ = μ|B|. Bismuth
[36,74] is a metal where H can easily reach large enough
values with easily achievable magnetic fields. That is because
the low carrier density (∼3×1017 cm3) can make the carrier
cyclotron frequency ωc equal to or greater than the bulk
plasma frequency ωp. Another possibility is to use films of
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FIG. 14. Imaginary (a) and real (b) parts of the xx-component of
the macroscopic permittivity tensor ε̂e of an assembly of parallel flat
slabs with cylindrical holes of radius r = 0.15a (where a is the size
of the unit cell) (see the top part of Fig. 10) vs ω̃ for different values
of the applied magnetic field H . The results are obtained using the
dilute approximation [see Eq. (28)]. When H = 0, the LSP resonance
appears at ω̃res = √

1/2 = 0.71, which increases with H according to
Eq. (30). (c) The resonance frequency ω̃res vs the applied magnetic
field H . Open squares are the maxima values of Im ε(e)

xx taken from
(a), while the dashed red line is the result of Eq. (29) and the dashed
green line is the result of Eq. (30). τ̃ = 30, pM = 0.8, pI = 0.2,
H = 0, ε0 = 1, εI = 1.

highly doped semiconductors such as GaAs [35] and InAs.
The value of ωpτ in this case can be of the same order of

magnitude as in conventional metals—in our calculations we
assumed ωpτ = 30, while for a typical free-electron metal
like Al we have ωpτ � 100. Thus such anisotropic, magnetic-
field-dependent, extraordinary optical transmission in the in-
frared range of frequencies can be sought in heavily doped
semiconductor films with an array of holes with a submicron
periodicity. In transition-metal films of Ag or Au, where
surface plasmons are easily observed in visible light, stronger
magnetic fields would be needed in order to observe the
behavior described here. The detailed treatment would also
require going beyond the quasistatic approximation.

We have used the Drude approximation (2) for the local
permittivity tensor since it allows us to perform analytical
evaluations and to predict the optical behavior and features
of the sandwichlike slab system under consideration. For
the case of real experiment, it is possible to take not the
Drude approximation but measured values of the local per-
mittivity tensor. Then the effective permittivity tensor as well
as the other optical properties can be found numerically
using Eqs. (7) and (8) and other relations presented in this
manuscript. The obtained optical features should be at least
qualitatively similar to those obtained above.

It would be interesting to perform experiments on homo-
geneous and/or perforated metal-dielectric flat slabs nanos-
tructures, for which we have now presented exact theoretical
predictions.
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