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Floquet engineering of the Luttinger Hamiltonian
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Within the Floquet theory of periodically driven quantum systems, we developed the theory of light-induced
modification of electronic states in semiconductor materials described by the Luttinger Hamiltonian (the
electronic term �8). Particularly, exact solutions of the Floquet problem are found for the band edge in the
cases of linearly and circularly polarized irradiation. It is shown that the irradiation changes electron effective
masses near the band edge, induces anisotropy of the electron dispersion, and splits the bands. It is demonstrated
that the light-induced band splitting strongly depends on the light polarization. Namely, the circularly polarized
light acts similarly to a stationary magnetic field and lifts the spin degeneracy of electron branches, whereas a
linearly polarized light does not affect the spin degeneracy and only splits the bands in the center of the Brillouin
zone. The present theory can be applied to describe electronic properties of various semiconductor structures
irradiated by an electromagnetic field in the broad frequency range.
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I. INTRODUCTION

During the last few years, the control of electronic param-
eters of condensed-matter structures by an electromagnetic
field (so-called “Floquet engineering” based on the Floquet
theory for periodically driven quantum systems) became the
important and established research area which resulted in the
discovery of many fundamental effects (see, e.g., Refs. [1–6]).
It is well known that absorption of an electromagnetic field
by an electron system takes place if only a characteristic
electronic frequency coincides with a field frequency (res-
onant field). However, even if the field is nonresonant and
cannot be absorbed, it still interacts with electrons. Formally,
this nonresonant interaction is described by the nonstationary
Schrödinger equation with a periodically time-dependent po-
tential. Solution of this equation is the Floquet wave function
which is periodic in time with a period of the field. Averaging
all electronic characteristics obtained with using the Floquet
function over the field period, one can construct the quantum
dynamics equations for electrons “dressed” by the field, which
are similar to the equations for “bare” electrons but depend on
field parameters. As a consequence, behavior of dressed elec-
trons can be considered by analogy with the behavior of bare
electrons, stationary physical parameters of which (energy
spectrum, effective mass, etc.) are renormalized by the field.
Therefore, the theory of renormalization of electronic prop-
erties of any structure by an electromagnetic field (Floquet
engineering) is based on the solution of the Floquet problem
for the corresponding nonstationary Schrödinger equation.

Historically, investigations of the processes of a strong
interaction of electrons with an electromagnetic field, which
lead to stationary renormalization of physical properties of
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electronic systems by the field, started in the middle of the
20th century. For a long time, the main objects of the inves-
tigations were atomic and molecular systems. In particular,
the first investigations of nonresonant interaction of electrons
with a strong field were carried out for isolated atoms and
lead to observation of the atomic energy levels shift caused
by light (the Autler-Townes effect) [7,8]. As to investigations
of these effects in solid state structures, they started with the
works done by Galitsky, Goreslavsky, and Elesin [9,10], who
theoretically predicted the existence of light-induced band
gaps in the energy spectrum of semiconductors, which later
were observed experimentally [11]. Their pioneering ideas
about light-induced modification of band electronic structure
of solids were later developed theoretically and experimen-
tally for various crystal structures [12–18]. However, effects
of electromagnetic renormalization of electronic properties of
solids were ignored as a rule in most studies for a long time
because the scattering of conduction electrons significantly
obstructs experimental investigations of them. The situation
changed when it became possible to fabricate solid state struc-
tures with very high charge carrier mobility and, correspond-
ingly, with weak electron scattering. As a consequence, during
the last decade many works dedicated to the Floquet engi-
neering of various solid state structures, including quantum
rings [19–25], quantum wells [26–32], topological insulators
[33–39], graphene and related 2D materials [40–49], etc.,
were published.

Among various condensed-matter structures important to
both fundamental science and device applications, it should
be noted, especially those which are based on conventional
semiconductor materials (Si, Ge, and A3B5 semiconductors)
and gapless semiconductors (HgTe and related materials).
Particularly, the most modern nanostructures are fabricated
with using them. Since the valence band of the conven-
tional semiconductors and band structure of the gapless
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FIG. 1. Sketch of the semiconductor sample irradiated by an
electromagnetic wave with different polarizations: (a) linear polar-
ization and (b) circular polarization.

semiconductors near the band edge (the electronic term �8

in the � point of the Brillouin zone) are described by the
well-known Luttinger Hamiltonian [50], it is necessary to
develop the consistent Floquet theory for electronic systems
described by the Hamiltonian in order to control electronic
properties of the corresponding semiconductor structures by
an electromagnetic field. The present work is dedicated to
solving this theoretical problem.

The article is organized as follows. In Sec. II we solved the
Floquet problem for the nonstationary Schrödinger equation
based on the Luttinger Hamiltonian in the presence of an
electromagnetic field. In Sec. III we calculated electron dis-
persion of the Luttinger Hamiltonian modified by the field and
discussed possible experimental manifestations of the field-
induced renormalization of electronic properties. The last sec-
tions of the article contain conclusions and acknowledgments.

II. MODEL

Let us consider a semiconductor material with the electron
energy spectrum described by the Luttinger Hamiltonian (the
electronic term �8), which is irradiated by a plane electro-
magnetic wave with the frequency ω and the electric field
amplitude E0 (see Fig. 1). Assuming the size of the irradiated
semiconductor sample along the direction of the wave propa-
gation d to be much larger than the interatomic distance and
much less than the wavelength λ = 2πc/ω, we can neglect
the size quantization of the electron energy spectrum of the
sample and consider the wave field inside the sample as uni-
form. Then electronic states of the irradiated semiconductor
sample near the center of the Brillouin zone (the electronic
term �8) within the conventional minimal coupling approach
can be described by the time-dependent Hamiltonian

Ĥ(k, t ) = ĤL[k − eA(t )/h̄], (1)

where ĤL(k) is the Luttinger Hamiltonian, k = (kx, ky, kz )
is the electron wave vector, and A(t ) = (Ax, Ay, Az ) is the
vector potential of the wave inside the semiconductor, which
periodically depends on the time t . In the present analysis we
will restrict the consideration to the isotropic approximation
of the electron dispersion in the semiconductor. Then the

Luttinger Hamiltonian takes the form [51,52]

ĤL(k) = (γ1 + 5γ /2)k2 − 2γ (kJ)2, (2)

where γ = (2γ2 + 3γ3)/5, γ1,2,3 are the Luttinger parameters,
and Jx,y,z are the 4 × 4 matrices corresponding to the electron
angular momentum J = 3/2. To perform calculations, it is
convenient to rewrite the Hamiltonian (2) as a 4 × 4 matrix
in the basis of Luttinger-Kohn wave functions ψ jz , which
describe fourfold degenerate electron states of the conduction
and valence band in the center of the bulk Brillouin zone (the
� point), and correspond to the four different projections of
electron momentum on the z axis, jz = ±1/2 and jz = ±3/2
(see for more details, e.g., the Appendix in Ref. [53]). In this
basis, the Hamiltonian (2) reads

Ĥ(k) =

jz\ jz +3/2 +1/2 −1/2 −3/2
+3/2 F H I 0
+1/2 H∗ G 0 I
−1/2 I∗ 0 G −H
−3/2 0 I∗ −H∗ F

, (3)

where the matrix elements are

F = (γ1 + γ )
(
k2

x + k2
y

) + (γ1 − 2γ )k2
z ,

G = (γ1 − γ )
(
k2

x + k2
y

) + (γ1 + 2γ )k2
z ,

I = −
√

3γ (kx − iky)2,

H = −2
√

3γ (kx − iky)kz. (4)

In the following we will demonstrate that electronic prop-
erties of an irradiated semiconductor substantially depend
on polarization of the electromagnetic wave. Therefore, it is
convenient to analyze the Hamiltonian (3) for the linear and
circular polarizations separately.

Linear polarization. Let the electromagnetic wave prop-
agate along the x axis and is linearly polarized along the
z axis [see Fig. 1(a)]. Then its vector potential inside the
semiconductor can be written as

A(t ) =
(

0, 0,
E0

ω
cos ωt

)
. (5)

To simplify calculations, let us subject the Hamiltonian (1)
with the vector potential (5) to the unitary transformation

Û = 1√
2

⎡⎢⎢⎣
eiφ 0 0 eiφ

0 eiϕ eiϕ 0
0 −e−iϕ e−iϕ 0

−e−iφ 0 0 e−iφ

⎤⎥⎥⎦, (6)

where φ = −3θ/2 + π/4, ϕ = −θ/2 − π/4, θ is the polar
angle of the electron wave vector in the (x, y) plane, and the
electron wave vector as a function of the angle θ reads

k = (kx, ky, kz ) = (√
k2

x + k2
y cos θ,

√
k2

x + k2
y sin θ, kz

)
.

Then the transformed Hamiltonian (1), Ĥ′(k, t ) =
Û †Ĥ(k, t )Û , takes the block-diagonal form,

Ĥ′(k, t ) =
[
Ĥ(1)(k, t ) 0

0 Ĥ(2)(k, t )

]
, (7)
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where the 2 × 2 matrices are

Ĥ(1)(k, t ) =
[

F̃ M̃
M̃∗ G̃

]
, Ĥ(2)(k, t ) =

[
G̃ −M̃

−M̃∗ F̃

]
,

(8)
and the matrix elements of the Hamiltonian are

F̃ = F + (γ1 − 2γ )

(
eE0

h̄ω
cos ωt − 2kz

)
eE0

h̄ω
cos ωt,

G̃ = G + (γ1 + 2γ )

(
eE0

h̄ω
cos ωt − 2kz

)
eE0

h̄ω
cos ωt,

M̃ = γ

|γ | |I| + i
γ

|γ |
|H |
|kz|

[
kz −

(
eE0

h̄ω

)
cos ωt

]
.

In the most general form, the nonstationary Schrödinger
equation for an electron in a periodically time-dependent field
with the frequency ω can be written as ih̄∂tψ (t ) = Ĥ(t )ψ (t ),
where Ĥ(t + T ) = Ĥ(t ) is the periodically time-dependent
Hamiltonian and T = 2π/ω is the field period. It follows
from the Floquet theorem that solution of the Schrödinger
equation is the Floquet function ψ (t ) = e−iεt/h̄ϕ(t ), where
ϕ(t + T ) = ϕ(t ) is the periodically time-dependent function
and ε is the electron (quasi)energy describing behavior of the
electron in the periodical field [1–6]. The Floquet problem is
aimed to find the electron energy spectrum ε. Let us solve the
problem for the Hamiltonian (7).

The two Hamiltonians (8) describe the two spin-
degenerated electron states of the semiconductor with the
same energy ε(k). Therefore, one can consider any of the two
Hamiltonians Ĥ(1,2)(k, t ) to find the sought energy spectrum
of the irradiated semiconductor ε(k). For definiteness, let
us restrict the consideration by the 2 × 2 matrix Hamilto-
nian Ĥ(1)(k, t ). The Floquet problem with this Hamiltonian
can be solved accurately at k = 0. Namely, the Hamiltonian
Ĥ(1)(k, t ) at k = 0 reads

Ĥ(1)
0 (t ) =

(
eE0

h̄ω

)2

cos2 ωt

[
γ1 − 2γ 0

0 γ1 + 2γ

]
. (9)

Exact solutions of the Schrödinger equation with the Hamilto-
nian (9), ih̄∂t± = Ĥ(1)

0 (t )±, are the two Floquet functions
± = exp(−iε±t/h̄)φ±, where

φ− =
[

e−i[(γ1−2γ )/4h̄ω](eE0/h̄ω)2 sin 2ωt

0

]
,

φ+ =
[

0
e−i[(γ1+2γ )/4h̄ω](eE0/h̄ω)2 sin 2ωt

]
(10)

are the eigenspinors of the Floquet problem with the Hamilto-
nian (9) and the corresponding electron energies at k = 0 are

ε± = γ1 ± 2γ

2

(
eE0

h̄ω

)2

. (11)

Equations (10) and (11) describe the exact solutions of the
Floquet problem with the Luttinger Hamiltonian at the band
edge (k = 0) in the case of linearly polarized irradiation. As to
the Floquet problem for k �= 0, it can be solved approximately
for small electron wave vectors k as follows. In the new

orthonormal basis (10), the Hamiltonian Ĥ(1)(k, t ) reads

Ĥ(1)(k, t ) =
[

F M
M ∗ G

]
, (12)

where its matrix elements are

F = ε− + F − 2(γ1 − 2γ )kz

(
eE0

h̄ω

)
cos ωt,

G = ε+ + G − 2(γ1 + 2γ )kz

(
eE0

h̄ω

)
cos ωt,

M = M̃e−iη sin 2ωt ,

and η = (γ /h̄ω)(eE0/h̄ω)2. To find the energy spectrum ε(k)
for small electron wave vectors k, one can apply the con-
ventional perturbation theory for periodically driven quan-
tum systems [1–5] to the time-dependent Hamiltonian (12).
As a result, we arrive at the effective time-independent
Hamiltonian

Ĥeff (k) = 1

T

∫ T

0
Ĥ(1)(k, t )dt, (13)

which is correct for small electron wave vectors k, satisfying
the condition k2 � h̄ω/|γ |. Using the well-known Jakobi-
Anger expansion eiz sin γ = ∑∞

n=−∞ Jn(z)einγ to transform the
exponential factor in the Hamiltonian (12), the effective
Hamiltonian (13) can be rewritten in the explicit form as

Ĥeff (k)

=
[

ε− + F γ

|γ |
[|I| + i kz

|kz | |H |]J0(η)

γ

|γ |
[|I| − i kz

|kz | |H |]J0(η) ε+ + G

]
,

(14)

where J0(η) is the zeroth order Bessel function of the first
kind. Diagonalizing the effective Hamiltonian (14), we arrive
at the sought electron energy spectrum near the � point of the
Brillouin zone,

ε(±)(k) = (γ1/2)(eE0/h̄ω)2 + γ1k2 ± γ
{(

2k2
z − k2

x − k2
y

+ [eE0/h̄ω]2
)2 + 3

(
k2

x + k2
y

)
× (

k2
x + k2

y + 4k2
z

)
J2

0 (η)
}1/2

, (15)

where the signs “±” correspond to the two branches of the
Luttinger Hamiltonian. It should be stressed that Eq. (15)
correctly describes the electron energy spectrum near the band
edge (k2 � h̄ω/|γ |) for any field frequency ω. Certainly the
energy spectrum (15) in the absence of the irradiation (E0 =
0) exactly coincides with the spectrum of the unperturbed
Luttinger Hamiltonian (2), ε(±)(k) = (γ1 ± 2γ )k2.

Circular polarization. Let an electromagnetic wave ir-
radiating a semiconductor propagate along the z axis and
is circularly polarized in the (x, y) plane [see Fig. 1(b)].
Then its vector potential inside the semiconductor can be
written as

A =
(

E0

ω
cos ωt,

E0

ω
sin ωt, 0

)
. (16)
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The Floquet problem with the Luttinger Hamiltonian (1) and
the vector potential (16) can be solved accurately in the
particular case of k = 0 as follows. Taking into account the
Luttinger Hamiltonian matrix (3), the considered Hamiltonian
(1) with the vector potential (16) at k = 0 can be written in the
block-diagonal form as

Ĥ0 =
[
Ĥ(+) 0

0 Ĥ(−)

]
, (17)

where the Hamiltonian Ĥ(±)
0 written in the basis

{ψ±3/2, ψ∓1/2} reads

Ĥ(±) =
(

eE0

h̄ω

)2
[

γ1 + γ −√
3γ e∓i2ωt

−√
3γ e±i2ωt γ1 − γ

]
. (18)

Solving the nonstationary Schrödinger equation with the
Hamiltonian (18), ih̄∂t

(±)
1,2 = Ĥ(±)

(±)
1,2 , one can find the four

exact Floquet functions 
(±)
1,2 = exp(−iε(±)

1,2 t/h̄)φ(±)
1,2 , and the

four eigenspinors of the considered Floquet problem

φ
(±)
1 =

⎡⎢⎣ γ

|γ |
√

�±−�±
2�±

e∓iωt√
�±+�±

2�±
e±iωt

⎤⎥⎦eiωt ,

φ
(±)
2 =

⎡⎢⎣ γ

|γ |
√

�±+�±
2�±

e∓iωt

−
√

�±−�±
2�±

e±iωt

⎤⎥⎦e−iωt , (19)

where �± =
√

�2
± + 3γ 2(eE0/h̄ω)4 , �± = γ (eE0/h̄ω)2 ∓

h̄ω, and the corresponding electron energies at k = 0 are

ε
(±)
1 = γ1(eE0/h̄ω)2 + h̄ω − �±,

ε
(±)
2 = γ1(eE0/h̄ω)2 − h̄ω + �±. (20)

Equations (19) and (20) describe the exact solutions of
the Floquet problem with the Luttinger Hamiltonian at the
band edge (k = 0) in the case of circularly polarized irra-
diation. To solve the Floquet problem with the Luttinger
Hamiltonian (1) and the vector potential (16) at k �= 0, let us
rewrite the Hamiltonian in the new orthonormal basis (19).
For small electron wave vectors k, satisfying the condition
k2 � h̄ω/|γ |, one can apply the conventional perturbation
theory to the rewritten Hamiltonian in the way discussed

above for a linearly polarized field. As a result, we arrive
at the effective time-independent Hamiltonian Ĥeff (k), which
is similar to the Hamiltonian (13). Namely, the Hamiltonian
Ĥeff (k) is the Hamiltonian (1) with the vector potential (16),
which is rewritten in the basis (19) and time averaged over the
field period. In the explicit form, the effective Hamiltonian
describing the sought electron energy spectrum ε(k) at small
wave vectors (k2 � h̄ω/|γ |) reads

Ĥeff (k) =

φ
(±)
j \φ(±)

j φ
(+)
1 φ

(−)
1 φ

(+)
2 φ

(−)
2

φ
(+)
1 A+ −C+ D+ 0

φ
(−)
1 −C∗

+ A− 0 −D−
φ

(+)
2 D∗

+ 0 B+ C−
φ

(−)
2 0 −D∗

− C∗
− B−

, (21)

where the matrix elements are

A± = �± − �±
2�±

F + �± + �±
2�±

G + ε
(±)
1 ,

B± = �± + �±
2�±

F + �± − �±
2�±

G + ε
(±)
2 ,

C± = γ

|γ |
[√

�+ ∓ �+
2�+

√
�− ± �−

2�−

−
√

�− ∓ �−
2�−

√
�+ ± �+

2�+

]
H,

D± = γ

|γ |
�± ∓ �±

2�±
I. (22)

Correspondingly, the energy spectrum ε(k) can be found as a
solution of the secular equation,

det[Ĥeff (k) − 1ε(k)] = 0, (23)

where 1 is the unity matrix. To find the spectrum in the broad
range of electron wave vectors, Eq. (23) should be solved
numerically. However, the spectrum ε(k) can be written in an-
alytical form for the high-symmetry directions in the Brillouin
zone k = (0, 0, kz ) and k = (kx, ky, 0). Namely, we can write
the spectrum as the four branches ε

(±)
1,2 (kz ) for kx = ky = 0 and

ε
(±)
1,2 (kx, ky) for kz = 0, where

ε
(±)
1 (kz ) = γ1

(
eE0

h̄ω

)2

+ h̄ω − �± + γ1k2
z + 2γ k2

z �±
�±

,

ε
(±)
2 (kz ) = γ1

(
eE0

h̄ω

)2

− h̄ω + �± + γ1k2
z − 2γ k2

z �±
�±

, (24)

ε
(±)
1 (kx, ky) = γ1

(
eE0

h̄ω

)2

+ γ1k2 + ξ±

[(
h̄ω − �± − γ�±

(
k2

x + k2
y

)
�±

)2

+ 3γ 2(�± ∓ �±)2
(
k2

x + k2
y

)2

4�2±

]1/2

,

ε
(±)
2 (kx, ky) = γ1

(
eE0

h̄ω

)2

+ γ1k2 − ξ±

[(
h̄ω − �± − γ�±

(
k2

x + k2
y

)
�±

)2

+ 3γ 2(�± ∓ �±)2
(
k2

x + k2
y

)2

4�2±

]1/2

, (25)

and ξ± = (h̄ω − �±)/|h̄ω − �±|. It should be stressed that
Eqs. (24) and (25) correctly describe the electron energy

spectrum near the band edge (k2 � h̄ω/|γ |) for any field
frequency ω. In the absence of the irradiation (E0 = 0), the
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FIG. 2. Electron energy spectrum of GaAs sample ε(k) without
irradiation (red heavy lines) and in the presence of an electro-
magnetic wave with the intensity I = 1000 W/cm2, photon energy
h̄ω = 1 meV, and different polarizations (blue thin lines): (a) Linear
polarization along the z axis and (b) circular polarization in the (x, y)
plane.

effective Hamiltonian (21) turns into the unperturbed Lut-
tinger Hamiltonian (3) and the solution of the secular equation
(23) exactly coincides with the unperturbed electron disper-
sion ε(±)(k) = (γ1 ± 2γ )k2.

III. RESULTS AND DISCUSSION

As it was mentioned above, the Luttinger Hamiltonian (2)
can describe both the valence band of conventional semicon-
ductors (if the two quantities γ1 ± 2γ are of the same sign)
and the band structure of gapless semiconductors near the
band edge (if they are of opposite signs) since both cases cor-
respond to the same electronic term �8 in the Brillouin zone
center [51]. For definiteness, let us restrict the consideration
by the cases of valence band of such a conventional semicon-
ductor as GaAs (γ1 = −6.96 h̄2/2m0, γ2 = −2.06 h̄2/2m0,
γ3 = −2.93 h̄2/2m0) [54] and the gapless semiconductor
HgTe (γ1 = 15.6 h̄2/2m0, γ2 = 9.6 h̄2/2m0, γ3 = 8.6 h̄2/2m0)
[55], where m0 is the electron mass.

The energy spectrum of the term �8 is defined by Eqs. (15),
(24), and (25) and plotted for GaAs (Fig. 2) and HgTe
(Fig. 3) irradiated by an electromagnetic wave with different
polarizations. In the absence of irradiation, the electronic term
�8 consists of the two branches which correspond to the

FIG. 3. Electron energy spectrum of HgTe sample ε(k) without
irradiation (red heavy lines) and in the presence of an electro-
magnetic wave with the intensity I = 200 W/cm2, photon energy
h̄ω = 1 meV, and different polarizations (blue thin lines): (a) Linear
polarization along the z axis and (b) circular polarization in the (x, y)
plane.

bands of heavy and light holes in GaAs (see the red heavy
lines in Fig. 2) and the conduction and valence bands in
HgTe (see the red heavy lines in Fig. 3). These branches are
degenerated at k = 0 and, in addition, their electron states are
doubly degenerated in spin at any electron wave vector k. It
follows from the plots that the irradiation lifts the degeneracy
but the lifting strongly depends on the light polarization.
Namely, a linearly polarized wave splits the electron bands
at k = 0 but does not lift the spin degeneracy of the bands
[see the two blue thin lines in Figs. 1(a) and 2(a)], whereas a
circularly polarized wave lifts also the spin degeneracy at any
electron wave vector [see the four blue thin lines in Figs. 2(b)
and 3(b)]. It follows from Eqs. (15), (24), and (25) that the
light-induced band splittings marked in the Figs. 2 and 3 as
�i read

�1,5 = 2|γ |(eE0/h̄ω)2,

�2,4,6,8 =
√

[γ (eE0/h̄ω)2 − h̄ω]2 + 3γ 2(eE0/h̄ω)4

+
√

[γ (eE0/h̄ω)2+ h̄ω]2+ 3γ 2(eE0/h̄ω)4− 2h̄ω,

�3 = 2h̄ω− 2
√

[γ (eE0/h̄ω)2+ h̄ω]2 + 3γ 2(eE0/h̄ω)4,

�7 =2h̄ω− 2
√

[γ (eE0/h̄ω)2− h̄ω]2+ 3γ 2(eE0/h̄ω)4.

(26)
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Since the band splittings (26) are of meV scale for the
irradiation intensities around I ∼ kW/cm2, they can be ob-
served experimentally in optical electron transitions induced
by another weak (probing) electromagnetic wave. Particularly,
such optical transitions between the split bands will lead to
fine structure of the optical spectra. Besides the conventional
optical measurements, the modern angle-resolved photoemis-
sion spectroscopy (ARPES) can also be applied to study the
electron energy spectra plotted in Figs. 2 and 3. Indeed, ultra-
violet laser-based ARPES provides sub-meV resolution (see,
e.g., Refs. [56,57]), which is enough for detecting features
of them. It should be noted also that the band splittings (26)
appear from exact solutions of the Floquet problem at k = 0
and, therefore, go beyond the scope of the known simple
model [58] based on the direct time averaging of the Luttinger
Hamiltonian.

To clarify the physical nature of the light-induced band
splitting, it should be noted that a circularly polarized electro-
magnetic wave breaks the time-reversal symmetry (since the
time reversal turns left-polarized photons into right-polarized
ones and vice versa). Therefore, a circularly polarized elec-
tromagnetic wave acts similarly to a magnetic field which lifts
the spin degeneracy and induces the asymmetry of electronic
properties along the field direction and perpendicularly to the
field. As to a linearly polarized electromagnetic wave, it acts
similarly to an uniaxial mechanical stress along the direction
of the polarization vector, which both splits the degeneracy of
electron states at k = 0 and induces the anisotropy of electron
dispersion [51]. As a consequence, the light-induced band
splitting is accompanied by the anisotropy of electronic prop-
erties. Indeed, the unperturbed electron dispersion ε(±)(k) =
(γ1 ± 2γ )k2 is isotropic, whereas an irradiation results in
the anisotropy of electron dispersions (15), (24), and (25)
along different axes in the k space (see the blue thin lines in
Figs. 2 and 3). Certainly the anisotropy of electron dispersion
will result in the anisotropy of electron transport which is
discussed in the following.

Let charge carriers fill only the ground band of the split
bands near the band edge. Then the anisotropic transport
can be described by effective electron masses. Expanding the
electron energy spectra (15), (24), and (25) into the series
expansion in powers of electron wave vector k, they can be
easily rewritten near the band edge in the parabolic form,

ε(k) = h̄2
(
k2

x + k2
y

)
2m⊥

+ h̄2k2
z

2m‖
, (27)

where m⊥ and m‖ are the electron effective masses of the band.
It should be stressed that the anisotropic electron dispersion
(27) also takes place in the valence band of conventional
semiconductors under uniaxial mechanical stress. Therefore,
we can apply the approach known from the theory of strained
semiconductors, which is based on the the relaxation time
approximation [51]. Within this approach the conductivity
tensor is

σαβ = e2ν

∫
d3k

(2π )3
vα (k)vβ (k)τ (ε)

[
−∂ f0(ε)

∂ε

]
, (28)

where ε(k) is the electron energy spectrum (27) in the ground
band, v(k) = ∂ε(k)/h̄∂k is the electron velocity, τ (ε) is the

electron relaxation time, f0(ε) is the Fermi-Dirac distribution
function, and ν is the factor of spin degeneracy of the band
(ν = 1, 2 for the cases of linear and circular polarizations, re-
spectively). Assuming that the temperature is T = 0, Eq. (28)
yields the sought light-induced anisotropy of conductivity,

σzz

σxx
= σzz

σyy
= m⊥

m‖
. (29)

Particularly, for GaAs irradiated by a linearly polarized elec-
tromagnetic wave and the Fermi electron wave vector satisfy-
ing the condition kF � eE0/h̄ω, the anisotropy (29) does not
depend on the field parameters and reads

σzz

σxx
= σzz

σyy
= γ1 − 2γ

γ1 + γ
.

The theoretical studies of periodically driven systems de-
scribed by the Luttinger Hamiltonian, which were based on
approximate solutions of the Floquet problem, should also
be noted [59–61]. Particularly, light-induced modifications of
the electron bands originated from the Luttinger Hamilto-
nian were analyzed there as a series expansion in powers of
1/ω. As a consequence, these results can be applied to real
condensed-matter structures only in the high-frequency limit.
In contrast to them, we found exact solutions of the Floquet
problem with the Luttinger Hamiltonian at the band edge.
Therefore, the present theory accurately describes all features
of the electron dispersion near the band edge—the light-
induced band splitting, the light-induced anisotropy of effec-
tive masses, the effects depending on the light polarization,
etc.—in the broad frequency range, including low frequencies
as well. To clarify the great importance of the low-frequency
range for condensed-matter structures, it should be noted that
the light-induced shift of electron energies in semiconductor
materials is � ∼ (eE0)2/m∗ω2, where m∗ is the effective mass
of charge carriers. To induce the experimentally observable
shift � ∼ meV for infrared frequencies (h̄ω ∼ eV), an ex-
perimental sample should be irradiated by an electromag-
netic wave with the giant intensity I ∼ GW/cm2, which can
destruct the sample. However, the same energy shift � ∼
meV can be achieved with a microwave electromagnetic field
(h̄ω ∼ meV) with the reasonable intensity I ∼ kW/cm2.
Therefore, the low-frequency irradiation is preferable from
the experimental viewpoint to observe the light-induced elec-
tronic features. Unfortunately, the microwave frequency range
goes beyond the high-frequency approximation of the Floquet
problem studied before and needs special consideration. As a
consequence, the low-frequency Floquet engineering of vari-
ous condensed-matter structures became the exciting research
area in the state-of-the-art Floquet theory (see, e.g., Ref. [62]).
Therefore, efforts to find solutions of the Floquet problem
with the Luttinger Hamiltonian in the broad frequency range
fit well the current tendencies in condensed-matter physics.

It should be noted also that an analysis of the electronic
term �8 based on the tight-binding Hamiltonian is also possi-
ble. However, there is the native problem of all tight-binding
Hamiltonians: The correct choice of basic (atomic) wave func-
tions. Since interatomic matrix elements of the tight-binding
Hamiltonian strongly depend on a chosen atomic basis, it is
not an easy task to compare the theoretical calculations with
experimental data. On the contrary, the Luttinger Hamiltonian
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depends only on the three parameters γ1,2,3 which are accu-
rately found from many optical and transport measurements.
Therefore, we believe that the approach based on the Luttinger
Hamiltonian is preferable to study electronic states arisen
from the �8 term.

Finalizing the discussion, it should be reminded that the
present theory is developed under the assumption of a contin-
uous electron wave vector k. However, the effective Hamilto-
nians Ĥeff (k) derived above can also be used to describe elec-
tronic properties of nanostructures, where the electron wave
vector is discontinuous. To take into account the size quanti-
zation in nanostructures, one has to analyze the Schrödinger
problem with the Hamiltonian Ĥeff (k̂) + U (r), where k̂ =
−i∂/∂r is the electron wave vector operator, U (r) is the
quantizing potential of the nanostructure, and the Hamiltonian
Ĥeff (k̂) results from the effective Hamiltonians (14) and (21)
with the replacement k → k̂.

IV. CONCLUSION

Applying the Floquet formalism to electron states de-
scribed by the Luttinger Hamiltonian, we developed the the-
ory of optical control of the states originated from the elec-
tronic term �8 (valence band in conventional semiconductors

like GaAs and the valence and conduction bands in gapless
semiconductors like HgTe). As a main result, exact solutions
of the Floquet problem at the band edge are found and the
electron energy spectrum of such materials renormalized by
light is derived near the band edge for any field frequency. It
follows from analysis of the spectrum that the electronic prop-
erties crucially depend on the irradiation which can induce the
anisotropy of electronic properties for different directions in
the Brillouin zone, band gaps in the spectrum, and the spin
splitting of the bands. Possible manifestations of the found
electronic features in optical spectra and transport measure-
ments are discussed. Since semiconductor materials described
by the Luttinger Hamiltonian are actively used in modern
nanotechnology, the present theory can be helpful to describe
electronic properties of various micro- and nanostructures.
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