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Determination of defect ionization energy in low-dimensional semiconductors has been a long-standing
unsolved problem in first-principles defect calculations, because the commonly used methods based on the
jellium model introduce an unphysical charge density uniformly distributed in the material and vacuum regions,
causing the well-known divergence issue of charged defect formation energies. In addition, because of the
unphysical jellium charge, how to determine structures of charged defects is also not clear. These two issues
pose great challenges in studying defect properties of low-dimensional semiconductors. Here in this work, we
combine the jellium framework together with the idea of constraining charge transfer to deal with charged defects
in low-dimensional semiconductors by replacing the unphysical jellium background charge density with the
band-edge charge density. By doing this, we show that not only the total energy calculation but also the structure
relaxation can be self-consistently obtained in one single calculation, thus providing a simple and efficient way
to determine the defect ionization energies in low-dimensional semiconductors.
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I. INTRODUCTION

Understanding defect behaviors has been at the heart of
semiconductor applications, as defects play many important
roles in utilizing semiconductor technologies [1–6]. Among
all the defect-related properties, defect formation energy and
ionization energy (IE) (also known as transition energy level
referenced to band edges) are the most important two key
quantities: The former determines defect concentration under
equilibrium conditions; the latter, defined as the energy cost
to get ionized, determines the ability of a defect to pro-
vide carriers [2,7–9]. To determine defect IE, both formation
energies of neutral and charged defects should be known,
which can be obtained from first-principles defect calculations
based on density-functional theory (DFT). During the past
decades, defect calculations have been widely performed for
three-dimensional (3D) systems [8,10–14], which has pro-
vided guidance for defect control and engineering to boost the
performance and efficiency of many devices [8,15,16].

Usually, a supercell structure model along with periodic
boundary conditions (PBCs) is adopted during defect sim-
ulations and thus periodic images of defects are also cre-
ated [17–19]. The key quantity to be obtained through first-
principles calculations is the total energy of the supercell
with a defect at its neutral or charged state. Equally impor-
tantly, structural relaxations must be performed as defects
will definitely cause local atomic distortions with different
charge states. For a neutral defect under dilute approximation,
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the formation energy can be accurately obtained using a
sufficiently large supercell to eliminate the image interactions.
For a charged defect, q electrons are removed from (added
to) the defect and so are its periodic images. The long-range
Coulomb interactions between the defect and its periodic
images would induce a divergence of the total energy [20]. To
remove such divergence, a so-called jellium model is routinely
used with homogeneous background charge added to the
whole supercell space to neutralize the supercell so that the
total energy and the formation energy of a charged defect can
be obtained. To eliminate the effect of the jellium charge on
the defect formation energy, the following argument is often
adopted: As the supercell size increases, the jellium charge
density will go to zero and the charged defect formation
energy will converge with supercell sizes when interactions
of defect images are negligible. Once converged formation
energies of neutral and charged defects are known, the IE
of the defect can be calculated. During the past decades,
this method has achieved great success to understand defect
behaviors in 3D semiconductors [21–25].

Recently, low-dimensional (LD) semiconductors have at-
tracted more and more research interest [26–31]. Conse-
quently, the defect behaviors in low-dimensional systems,
including two-dimensional (2D) monolayers and surfaces,
and one-dimensional (1D) nanoribbons, nanowires, and nan-
otubes, are becoming more and more important to explore.
During the past decades, people have tried to do so follow-
ing the same treatment as that used for 3D semiconductors.
Particularly, for a charged defect, a homogeneous background
charge is added to the whole space of the slab model including
the vacuum region [32,33]. While the formation energy of a
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FIG. 1. Diagrams to show electron occupations for a donor in an infinitely large supercell at (a) the neutral state, (b) the charged ionized
state, (c) the charged state in the conventional jellium model framework, and (d) the charged state in the present calculation. The charge density
is given with ρi, ρCBM, ρbg, and ρ−1

D standing for the charge density in the ith band, CBM, background, and charged defect level, respectively.
The electrons and holes are represented by solid and hollow circles, respectively. Solid and dashed lines (circles) stand for real and virtual
states (carriers), respectively.

neutral defect can easily converge by increasing the sizes of
the supercell and vacuum regions, the formation energy of a
charged defect is difficult or impossible to converge by in-
creasing the size of the vacuum region, which is a well-known
issue due to the Coulomb interactions between the charge in
the vacuum and that in material regions. Besides, due to the
unphysical jellium charge and the induced incorrect Coulomb
potential, whether structures of charged defects obtained from
the jellium model are reasonable or not remains unclarified.
These two issues pose great challenges in studying defect
properties of 2D semiconductors.

To solve the first issue, that is, the formation energy con-
vergence problem, various methods have been tried, such as
confining the background charge in a given region, introduc-
ing a neutralizing charge by using pseudoatoms, posteriori
corrections to fix the potential at cell boundaries [34–38],
etc. Based on the jellium model, Wang et al. derived an
analytical form of IE as a function of supercell lattice pa-
rameters Lx, Ly, and Lz for 2D semiconductors. They used
an extrapolation method to obtain the converged values of
IE’s [33,39]. Alternatively, Wu, Zhang, and Pantelides (WZP)
considered the physical process of defect ionization, in which
electrons or holes will be removed from the neutral defect
state and excited to the conduction bands or valance bands.
Under the dilute limit of defects, the excited electrons or
holes will occupy the conduction band minimum (CBM)
or the valance band maximum (VBM) after thermodynamic
equilibrium. Based on this process, they proposed to simulate
the charged defect by constraining the electron occupation
numbers at the defect state and the band edges [21]. By doing
this, the defect is charged but the whole supercell is still
neutral. Consequently, the total energy of such charged defect
state has no divergence issue. Recently, Deng and Wei [41]
proposed to simulate an ionized defect by transferring charge
from the defect state to the real host band-edge state (denoted
as TRSM) and they developed a corresponding method to
calculate the total energies of supercells with charged de-
fects. In general, the above methods can solve the formation
energy convergence issue. However, the second issue, that
is, structure relaxation of charged defects in LD semicon-
ductors, is still an open question. In principle, both total
energies and structure relaxations should be self-consistently
obtained in one single calculation and in a physically mean-
ingful way, which is still furnished in present studies as
far as we know.

In this paper, we calculated the charged defect structures
and ionization energies of LD semiconductors in a self-
consistent way. We combine the jellium framework, that is,
the number of occupied orbitals is the same as that in the
jellium model, together with the idea of constraining charge
transfer to deal with charged defects in LD semiconductors.
By doing this, we show that the total electronic charge den-
sity is exactly the same as the real charge density for an
ionized defect, thus ensuring the total energy is physically
meaningful. More importantly, the jellium model framework
ensures that the forces on atoms from the contribution of
both charge densities and occupied wave functions are im-
plicitly included, enabling a self-consistent performance of
structure relaxation and total energy calculation in one single
calculation. By studying defects in typical 2D materials such
as BN, MoS2, and black phosphorus monolayers, we show
that structure relaxation can contribute significantly to the
final defect ionization energies. Our work thus provides a
simple and efficient way to determine the charged defect
structures and defect ionization energies in low-dimensional
semiconductors.

II. CALCULATION METHODOLOGY

In the following, we take a donor (denoted as α) as an
example, to show how the the defect ionization is calculated
in our scheme. The acceptor case is given in the Supplemental
Material (Fig. S1) [40]. Before ionization, the donor state is
neutral and below the CBM. Without loss of generality, let
us suppose that it has one electron and one hole as shown
in Fig. 1(a). All the states below the donor state are fully
occupied by electrons at T = 0. Assume the total number of
electrons in the system is N . Apparently, the whole system is
a ground state and the total energy, denoted as EN (α, 0), can
be easily obtained from the ground-state calculations. After
ionization, the defect donates one electron to the conduc-
tion band, leaving one hole behind. Under thermodynamical
equilibrium condition and at the dilute limit of defects, the
electron finally will be relaxed to the CBM state, as shown in
Fig. 1(b). The ionized defect state is now an excited state of
the N-electron system. Once we know the total energy of the
excited state [denoted as ẼN (α,+1)], the defect IE can then
be calculated as IE = ẼN (α,+1) − EN (α, 0) according to its
definition.
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To obtain ẼN (α,+1), one can directly follow the scheme
in Fig. 1(b) and perform total energy calculations of charged
defective supercells by constraining either charge transfer
[41] or electron occupation [21] to reproduce real ionized
defect states. However, before this, the structure relaxations
of charged defects should be performed, which need to con-
sider forces on atoms. Usually, forces are obtained from the
Hellmann-Feynman theorem in modern first-principles calcu-
lations, which require not only charge densities but also wave
functions of occupied states. For the case in Fig. 1(b), N wave
functions of the occupied states, including the CBM state and
the states below the defect state, should be used to calculate
forces on the atoms. However, present defect calculations
often use small supercells and therefore one cannot identify
the exact CBM state. Consequently, how to choose N wave
functions in Fig. 1(b) is difficult to address, leaving it as
a problem to self-consistently and simultaneously perform
structure relaxations of charged defects and calculate total
energies in one single calculation.

Alternatively, one can calculate ẼN (α,+1) by making
reasonable approximations. At the dilute limit of defects, i.e.,
in an infinitely large supercell, it is a good approximation
that the band edges are not affected by the existence of a
defect, which means that the contribution of this electron
to the total energy of the supercell is just the CBM en-
ergy εCBM. Therefore, ẼN (α,+1) can be approximated as
EN−1(α,+1) + εCBM, where EN−1(α,+1) is the total en-
ergy of the charged defective supercell. Then defect IE can
be calculated as IE = EN−1(α,+1) − EN (α, 0) + εCBM. This
formula has been widely used to calculate defect IEs in the
past decades for 3D semiconductors.

Note that the charged defective supercell in Fig. 1(c)
has (N − 1) electrons and Ne positive charge on the nuclei.
To keep the whole system neutral and obtain converged
EN−1(α,+1), the jellium model is routinely adopted with a
background charge uniformly distributed in the whole space
of the charged defective supercell [42]. In a 3D system, the
jellium charge can be seen as occupying a virtual state with an
eigenenergy of the Fermi level of the system [Fig. 1(c)]. Note
that, in modern defect calculations, the jellium charge density
only plays a role during the solution of Poisson equations
but is not considered during the calculation of exchange and
correlation potentials. Therefore, in the conventional jellium
model method shown in Fig. 1(c), (N − 1) electrons are used
to calculate the exchange and correlation potentials but N-
electron charge density is used to determine the Coulomb po-
tential. However, when the conventional jellium model meets
LD semiconductors, the jellium charge is distributed in the
whole supercell space including material and vacuum regions,
leading to the well-known divergence of formation energies
for charged defects as well as defect IEs. Consequently, one
has to look back at the physical reasonability of the defect IE
calculation methods based on the conventional jellium model.

As we know, total energy is functionals of charge density
in DFT. Therefore, if the charge density in a system is un-
physical, the total energy and the related physical quantities
might also be incorrect. In the conventional jellium model for
a charged defect system, the charge has the following contri-
butions: Ne positive charge from the nuclei, (N − 1)e negative
charge from the electrons, and 1e negative charge from the

jellium background. Compared to the real charge density of
the ionized defect state [Fig. 1(b)], one can see that the 1e
negative jellium background charge is not physical. However,
if we replace the unphysical jellium background charge in
the conventional jellium model by the band-edge charge [i.e.,
VBM for acceptors or CBM for donors; see Fig. 1(d)], the
electronic charge density will be restored back to the real
charge density of the ionized defect state in Fig. 1(b), which
has a clear physical meaning. In practice, this can be done by
adding �ρ = +ρCBM in each electronic iteration within the
jellium model framework (here, we still use the same number
of occupied orbitals as that in the jellium model). By doing
this, we can see that N-electron charge density is used to
determine the exchange and correlation potentials as well as
the Coulomb potential, in agreement with the practical case
shown in Fig. 1(b). Using the corrected charge density, the
total energy of the charged defect system EN−1

corr (α,+1) can be
calculated. Now at the dilute limit of defects, ẼN (α,+1) can
be approximated as EN−1

corr (α,+1) + εCBM and the defect IE
can be calculated as IE = EN−1

corr (α,+1) − EN (α, 0) + εCBM.
Note that the sum of EN−1

corr (α,+1) and εCBM corresponds to
ẼN (α,+1) in Fig. 1(b). The reason for adding εCBM is to
correct the band energies as only (N–1) orbitals are taken
into account to get the total energies in the jellium model
framework.

Here we discuss how the forces should be dealt with.
In the practical case shown in Fig. 1(b), as we mentioned
above, (N − 1) wave functions below the defect states and the
CBM wave function should be taken into account to calculate
the forces on atoms. However, due to small supercells, the
CBM wave function in defective systems cannot be iden-
tified in practical calculations. Fortunately, the CBM wave
function is delocalized and thus it is reasonable to neglect
the contributions of the CBM wave function to the forces.
Finally, we can use N − 1 wave functions and N-electron
charge density, to obtain the forces on atoms, which is exactly
performed in our scheme in Fig. 1(d). Consequently, the
combination of the jellium model framework with the con-
strained charge transfer gives not only physically meaningful
total energies but also reasonable forces, thus enabling a
self-consistent determination of charged defect structures and
total energies in one single calculation. Consequently, both
the charged defect formation energy convergence issue and
the charged defect structure relaxation issue can be solved
using Fig. 1(d).

III. FIRST-PRINCIPLES CALCULATION METHODS

Based on the above justification of Fig. 1(d) for defect
IE calculations, we implement the scheme in QUANTUM

ESPRESSO [43]. The charge density correction is done in each
electronic iteration which guarantees its contribution to the
potential energy and the total energy (the flow chart of our
scheme is given in Fig. S2 in the Supplemental Material
[40]). Structure relaxations are implicitly and self-consistently
performed together with the total energy calculations. The
norm-conserving pseudopotentials within the Perdew-Burke-
Ernzerhof (PBE) framework [44–46] are used to treat the
valence electrons. For the Brillouin zone integrals in the re-
ciprocal space, a single � point is used for all calculations for
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FIG. 2. Calculated defect properties of two-dimensional BN with the conventional jellium model method and our improved scheme. (a,b)
Formation energies of V+

N and C−
N dependence on vacuum lengths. (c,d) Electrostatic potentials along the vacuum direction of V+

N and C−
N

supercells with the lengths along vacuum directions fixed at 60 Å. (e) Defect IE’s of V+
N and C−

N as functions of vacuum lengths. The lateral
sizes of all supercells are fixed as 12 × 12 of the primitive cells. Note that the (0/–) level of C−

N is equal to its defect IE while the (0/+) level
of V+

N is equal to the band-gap value of BN minus the defect IE of V+
N. The dashes lines are added as a guide for the eye.

simplicity. The kinetic energy cutoff energy of the plane wave
basis is 90 Ry, and the total energy threshold for convergence
is 10−8 Ry. All atoms are relaxed until the Hellmann-Feynman
forces on individual atoms are less than 10−4 Ry/bohr. The
VBM and CBM states are implicitly aligned to the levels
in defective supercells using vacuum levels. To determine
the defect formation energies, we calculate the total energy
E (α, q) for a supercell containing the relaxed defect α in its
charge state q. We also calculate the total energy E (host) for
the same supercell in the absence of the defect, as well as
the total energies of elemental solids or gases at their stable
phases. The defect formation energy �Hf (α, q) as a function
of the electron Fermi energy EF and the atomic chemical

potential μi is given by [47]

�Hf (α, q) = �E (α, q) +
∑

niμi + qEF , (1)

where �E (α, q) = E (α, q) − E (host) + niE (i) + qEVBM,
EF is referenced to the VBM of perfect systems, and μi is the
chemical potential of constituent i referenced to elemental
solid or gas with energy E (i). The ni are the numbers of
atoms taken out of the supercell to form the defects, and q
is the number of electrons transferred from the supercell to
the Fermi reservoirs in forming the defect cell. Here in the
following, the defect formation energies are given by setting
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μi and EF as zeros unless otherwise specified. Note that, in
our improved scheme, E (α, q) is equal to ẼN−1

corr (α,+1).

IV. RESULTS AND DISCUSSIONS

First, we demonstrate that using the implementation shown
in Fig. 1(d), converged charge defect formation energies and
defect IEs with respect to the sizes of vacuum regions are
achieved for LD semiconductors. We take defects in the h-BN
monolayer as examples and consider nitrogen vacancy (VN )
and carbon substituting nitrogen (CN ) as typical donor and
acceptor defects, respectively. By fixing the lateral sizes of
defective supercells as 12 × 12 × 1 of the primitive cells,
Figs. 2(a) and 2(b) show the calculated formation energies
of charged defects of V+

N and C−
N as functions of vacuum

thickness. Clearly, in the conventional method based on the
jellium model, the formation energies of V+

N and C−
N increase

almost linearly with the length of vacuum regions, in agree-
ment with previous reports [39]. Instead, using our improved
scheme in Fig. 1(d), both the formation energies of V+

N and
C−

N do not change with the vacuum thickness [Figs. 2(a)
and 2(b)]. This can be understood as follows. In the conven-
tional method, the uniformly distributed negative (positive)
background charge for a charged donor (acceptor) increases
(decreases) the electrostatic potentials in the vacuum regions
[Figs. 2(c) and 2(d)]. For acceptor defects, if the electrostatic
potentials drop too much to make the vacuum level lower than
the states in the material regions, electrons will transfer from
material regions to the vacuum [39], causing the deviation of
defect formation energies from linear increase with vacuum
thickness (see also Fig. S3 [40]). In the present scheme, there
is no background charge in the vacuum regions and thus the
electron electrostatic potentials are rather flat [see Fig. 2(b)],
leading to the unchanged formation energies for charged
defects with respect to vacuum thickness. Consequently, the
defect IEs are also converged with respect to vacuum sizes, as
shown in Fig. 2(e).

Next, we consider the effects of finite lateral supercell
sizes on defect IEs. Because of PBCs, there are long-range
Coulomb interactions between the charged defect and its
images. Therefore, convergence of defect IEs also needs to
be achieved with respect to the lateral supercell sizes. By
fixing the vacuum thickness as 15 Å, we gradually increase
the lateral sizes of defect supercells from 3 × 3 to 15 × 15
of the primitive cells. As can be seen in Fig. 3, the calculated
defect IEs using Fig. 1(d) have been converged within 0.1 eV

FIG. 3. Defect IE’s of V+
N and C−

N as functions of lateral supercell
sizes with the supercell length along the vacuum direction fixed
at 15 Å.

TABLE I. Calculated defect IEs in some typical 2D semicon-
ductors using our improved scheme in comparison with available
references using conventional methods based on the jellium model.

Systems Defect Charge state IE (eV) References (eV)

2D BN VB –1 0.965 1.44 [39]
VN +1 2.016 2.50 [39]
CB +1 1.598 2.03 [39], 2.24 [48]
CN –1 1.394 1.86 [39], 2.03 [48]

Quasi-2D BP OP +1 0.782 >0.91 [33]
SP +1 0.487 0.74 [33]
SeP +1 0.437 0.69 [33]
TeP +1 0.344 0.67 [33]

Quasi-2D MoS2 VS –1 1.345 1.40 [49]
VMo –1 0.712 0.85 [49]
ReMo +1 0.112 0.22 [49]

FS +1 0.326 0.65 [49]

using a 12 × 12 supercell, which is a typical supercell size
in modern defect calculations with affordable computational
costs. Combining the results in both Figs. 2 and 3, we can
conclude that the present scheme of dealing with charged
defects in LD semiconductors has eliminated the divergence
problem in the conventional method based on the jellium
model.

Using the newly developed scheme, we have studied defect
properties of several typical 2D semiconductors including
BN, black phosphorus, and MoS2 monolayers. The calculated
defect IE’s are listed in Table I, in comparison with available
results of other methods based on the jellium model. We
notice that our calculated defect IEs are systematically smaller
than those using the methods based on the jellium model.
This can be simply understood from the Coulomb interactions
between the background charge and the charge in the material
regions. In the present scheme, the background charge density
is physically meaningful band-edge charge density, which is
distributed only within the materials. On the other hand, the
background charge density in the jellium model is distributed
in the whole space. As a result, the Coulomb interaction
between the background and the material charge is stronger
in our scheme. As the background charge has an opposite sign
to the net charge in the material regions, the total energies of
charged defective supercells in our scheme are smaller, giving
smaller defect IEs and indicating previous works might have
systematically overestimated defect IEs.

In addition to the defect IEs, we also analyze the structure
relaxations before and after defect ionizations obtained using
our improved scheme. The changes of bond lengths between
the defective atoms and their neighboring atoms for defects in
BN and BP monolayers are given in Table II as well as the
energy contribution to defect IEs due to structure relaxation
(denoted as IErelax). For defects in BN, the lengths of three
bonds (d1, d2, and d3 in Fig. 4) are the same because of sym-
metry. As seen in Table II, the changes of bond lengths due
to defect ionizations are around 0.035 Å, which contributes to
defect IEs by as much as 0.3 eV (see Table II), demonstrating
that structure relaxations are very important to determine final
defect IE’s. For defects in the BP monolayer, the situation is
somewhat different. Because atoms in the BP monolayer are
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TABLE II. Calculated changes of bond lengths between defective atoms and neighboring atoms due to defect ionization using our improved
scheme in comparisons with those obtained using the conventional jellium model. The energy changes due to structure relaxations of charged
defects are listed as IErelax.

Systems Defect Charge state � Length, ours (Å) � Length, jellium (Å) IErelax, ours (eV) IErelax, jellium (eV)

2D-BN CB +1 –0.027 –0.027 –0.300 –0.300
CN –1 –0.038 –0.039 –0.278 –0.282

Quasi-2D BP OP +1 0.001, 0.117 0.001, 0.048 –0.017 –0.025
SP +1 0.037, −0.581 0.040, −0.590 −0.200 −0.208
SeP +1 0.034, −0.478 0.036, −0.487 −0.198 −0.204
TeP +1 0.016, −0.367 0.016, −0.372 −0.179 −0.185

no longer in the same plane, defect atoms have a larger degree
of freedom and the bond lengths around defects are divided
into two kinds, i.e., the bonding of atoms in the same plane
(such as d2 and d3 in Fig. 4) and the bonding between atoms
in different planes (such as d1 in Fig. 4). While changes of d2

and d3 are relatively small, changes of d1 are much larger. As
seen in Table II, the changes of d1 are as large as 0.500 Å. Such
large structure relaxation contributes to defect IEs by as much
as 0.2 eV. Note that IErelax in the BP monolayer has reached
50% of the final defect IEs. Consequently, structure relaxation
due to defect ionization plays important roles in determining
defect IEs and thus should be dealt with carefully.

Because structure relaxation of charged defects is often
considered using the jellium model in previous methods, here
we compare our results of structure relaxations with those ob-
tained using the jellium model. In general, the jellium model
gives similar results of bond length changes and relaxation

FIG. 4. Fully relaxed structures of charged defects. (a,b) Top
view of relaxed defect structures in BN monolayer. (c–f) Top view
of relaxed defect structures in the BP monolayer.

energies compared to our calculations (see Table II). This
can be understood from the following two facts. First, both
our scheme and the jellium model use the wave functions of
the same occupied states to calculate the forces. Second, the
charge density used to calculate the forces in our calculations
is very similar to that used in the jellium model because
the distributions of band-edge charge and the homogeneous
jellium charge are both delocalized in BN and BP monolay-
ers. However, if the band-edge charge distribution is quite
different from the jellium charge, the difference of structure
relaxation can be larger. In fact, such situations do exist in
LD semiconductors. For example, in 1D nanowires, the VBM
can be distributed in the inner part of the nanowire while
the CBM is in the outer part or vice versa. In this case, the
structure relaxation of charged defects given by the jellium
model may be not accurate enough and should be carefully
considered.

V. SUMMARY

In summary, by combining the jellium framework together
with the idea of calculating total energies of ionized defect
supercells by constraining charge transfer, we have realized
the performance of the structure relaxation and total energy
of ionized defect supercells self-consistently in one single
calculation. We have justified our scheme and demonstrated
it can eliminate the divergence issue in the conventional
jellium methods to determine defect IEs. By studying de-
fects in typical 2D materials, we have shown that structure
relaxations can contribute significantly to the final defect
IEs and thus should be considered in accordance with the
total energy calculations. Our work thus provides a simple
and efficient way to determine the structures of charged
defects and defect ionization energies in low-dimensional
semiconductors.

ACKNOWLEDGMENTS

We appreciate useful discussions with Professor Su-Huai
Wei from Beijing Computational Science Research Center.
This work was supported in part by National Natural Science
Foundation of China (Grant No. 11974078), Fudan Start-
up funding (Grant No. JIH1512034), and Shanghai Sailing
Program (Grant No. 19YF1403100). Calculations are per-
formed at the High-Performance Computing Center of Fudan
University.

035202-6



SELF-CONSISTENTLY DETERMINING STRUCTURES OF … PHYSICAL REVIEW B 102, 035202 (2020)

[1] S. Zhang, J. Phys.: Condens. Matter 14, R881 (2002).
[2] C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G.

Kresse, A. Janotti, and C. G. Van de Walle, Rev. Mod. Phys.
86, 253 (2014).

[3] Y. Peng, C. Xia, H. Zhang, T. Wang, S. Wei, and Y. Jia, Phys.
Chem. Chem. Phys. 16, 18799 (2014).

[4] T. Gfroerer, Y. Zhang, and M. Wanlass, Appl. Phys. Lett. 102,
012114 (2013).

[5] J. Li, Z.-K. Yuan, S. Chen, X.-G. Gong, and S.-H. Wei, Chem.
Mater. 31, 826 (2019).

[6] J. Weber, W. Koehl, J. Varley, A. Janotti, B. Buckley, C. Van de
Walle, and D. D. Awschalom, Proc. Natl. Acad. Sci. USA 107,
8513 (2010).

[7] F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, Phys. Rev.
B 77, 245202 (2008).

[8] C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851
(2004).

[9] A. Alkauskas, M. D. McCluskey, and C. G. Van de Walle, J.
Appl. Phys. 119, 181101 (2016).

[10] E. G. Seebauer and M. C. Kratzer, Mater. Sci. Eng., R 55, 57
(2006).

[11] C. W. M. Castleton, A. Höglund, and S. Mirbt, Phys. Rev. B 73,
035215 (2006).

[12] J. Shim, E.-K. Lee, Y. J. Lee, and R. M. Nieminen, Phys. Rev.
B 71, 035206 (2005).

[13] A. Wright and N. Modine, Phys. Rev. B 74, 235209 (2006).
[14] M. Leslie and N. Gillan, J. Phys. C: Solid State Phys. 18, 973

(1985).
[15] A. Walsh, S. Chen, S.-H. Wei, and X.-G. Gong, Adv. Energy

Mater. 2, 400 (2012).
[16] W. R. L. Lambrecht, Phys. Status Solidi B 248, 1547 (2011).
[17] J.-Y. Noh, H. Kim, and Y.-S. Kim, Phys. Rev. B 89, 205417

(2014).
[18] J.-Y. Noh, H. Kim, M. Park, and Y.-S. Kim, Phys. Rev. B 92,

115431 (2015).
[19] L. G. Wang and A. Zunger, Phys. Rev. B 66, 161202(R) (2002).
[20] H. P. Komsa and A. Pasquarello, Phys. Rev. Lett. 110, 095505

(2013).
[21] Y.-N. Wu, X. G. Zhang, and S. T. Pantelides, Phys. Rev. Lett.

119, 105501 (2017).
[22] H. X. Deng and S. H. Wei, Phys. Rev. Lett. 120, 039601 (2018).
[23] W. Chen and A. Pasquarello, Phys. Rev. Lett. 120, 039603

(2018).
[24] Y. N. Wu, X. G. Zhang, and S. T. Pantelides, Phys. Rev. Lett.

120, 039604 (2018).
[25] Y. N. Wu, X. G. Zhang, and S. T. Pantelides, Phys. Rev. Lett.

120, 039602 (2018).

[26] M. Xu, T. Liang, M. Shi, and H. Chen, Chem. Rev. 113, 3766
(2013).

[27] G. Slotman and A. Fasolino, J. Phys.: Condens. Matter 25,
045009 (2012).

[28] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and
A. Kis, Nat. Nanotechnol. 6, 147 (2011).

[29] S. B. Desai, S. R. Madhvapathy, A. B. Sachid, J. P. Llinas, Q.
Wang, G. H. Ahn, G. Pitner, M. J. Kim, J. Bokor, C. Hu et al.,
Science 354, 99 (2016).

[30] J. S. Qiao, X. H. Kong, Z. X. Hu, F. Yang, and W. Ji, Nat.
Commun. 5, 4475 (2014).

[31] H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P.
D. Ye, ACS Nano 8, 4033 (2014).

[32] D. Wang, X.-B. Li, D. Han, W. Q. Tian, and H.-B. Sun, Nano
Today 16, 30 (2017).

[33] D. Wang, D. Han, X.-B. Li, N.-K. Chen, D. West, V. Meunier,
S. Zhang, and H.-B. Sun, Phys. Rev. B 96, 155424 (2017).

[34] I. Dabo, B. Kozinsky, N. E. Singh-Miller, and N. Marzari, Phys.
Rev. B 77, 115139 (2008).

[35] O. Sinai and L. Kronik, Phys. Rev. B 87, 235305
(2013).

[36] N. A. Richter, S. Sicolo, S. V. Levchenko, J. Sauer, and M.
Scheffler, Phys. Rev. Lett. 111, 045502 (2013).

[37] T. Cao and A. Bongiorno, Sci. Rep. 7, 2834 (2017).
[38] P. Pulay, Mol Phys. 100, 57 (2002).
[39] D. Wang, D. Han, X. B. Li, S. Y. Xie, N. K. Chen, W. Q. Tian, D.

West, H. B. Sun, and S. B. Zhang, Phys. Rev. Lett. 114, 196801
(2015).

[40] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.102.035202 for the acceptor case and de-
tails of the self-consistent loop process in our scheme.

[41] J. Xiao, K. K. Yang, D. Guo, T. Shen, H. X. Deng, S. S. Li, J.
W. Luo, and S. H. Wei, Phys. Rev. B 101, 165306 (2020).

[42] C. G. Van de Walle, P. J. H. Denteneer, Y. Bar-Yam, and S. T.
Pantelides, Phys. Rev. B 39, 10791 (1989).

[43] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C.
Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo
et al., J. Phys.: Condens. Matter 21, 395502 (2009).

[44] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[45] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[46] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
[47] S.-H. Wei, Comput. Mater. Sci. 30, 337 (2004).
[48] H.-P. Komsa, N. Berseneva, A. V. Krasheninnikov, and R. M.

Nieminen, Phys. Rev. X 4, 031044 (2014).
[49] H.-P. Komsa and A. V. Krasheninnikov, Phys. Rev. B 91,

125304 (2015).

035202-7

https://doi.org/10.1088/0953-8984/14/34/201
https://doi.org/10.1103/RevModPhys.86.253
https://doi.org/10.1039/C4CP02880E
https://doi.org/10.1063/1.4775369
https://doi.org/10.1021/acs.chemmater.8b03933
https://doi.org/10.1073/pnas.1003052107
https://doi.org/10.1103/PhysRevB.77.245202
https://doi.org/10.1063/1.1682673
https://doi.org/10.1063/1.4948245
https://doi.org/10.1016/j.mser.2006.01.002
https://doi.org/10.1103/PhysRevB.73.035215
https://doi.org/10.1103/PhysRevB.71.035206
https://doi.org/10.1103/PhysRevB.74.235209
https://doi.org/10.1088/0022-3719/18/5/005
https://doi.org/10.1002/aenm.201100630
https://doi.org/10.1002/pssb.201046327
https://doi.org/10.1103/PhysRevB.89.205417
https://doi.org/10.1103/PhysRevB.92.115431
https://doi.org/10.1103/PhysRevB.66.161202
https://doi.org/10.1103/PhysRevLett.110.095505
https://doi.org/10.1103/PhysRevLett.119.105501
https://doi.org/10.1103/PhysRevLett.120.039601
https://doi.org/10.1103/PhysRevLett.120.039603
https://doi.org/10.1103/PhysRevLett.120.039604
https://doi.org/10.1103/PhysRevLett.120.039602
https://doi.org/10.1021/cr300263a
https://doi.org/10.1088/0953-8984/25/4/045009
https://doi.org/10.1038/nnano.2010.279
https://doi.org/10.1126/science.aah4698
https://doi.org/10.1038/ncomms5475
https://doi.org/10.1021/nn501226z
https://doi.org/10.1016/j.nantod.2017.07.001
https://doi.org/10.1103/PhysRevB.96.155424
https://doi.org/10.1103/PhysRevB.77.115139
https://doi.org/10.1103/PhysRevB.87.235305
https://doi.org/10.1103/PhysRevLett.111.045502
https://doi.org/10.1038/s41598-017-02986-5
https://doi.org/10.1080/00268970110088884
https://doi.org/10.1103/PhysRevLett.114.196801
http://link.aps.org/supplemental/10.1103/PhysRevB.102.035202
https://doi.org/10.1103/PhysRevB.101.165306
https://doi.org/10.1103/PhysRevB.39.10791
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1016/j.commatsci.2004.02.024
https://doi.org/10.1103/PhysRevX.4.031044
https://doi.org/10.1103/PhysRevB.91.125304

