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Excitonic Laughlin states in ideal topological insulator flat bands and their possible presence
in moiré superlattice materials
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We investigate few- and many-body states in half-filled ideal topological insulator flat bands realized by two
degenerate Landau levels which experience opposite magnetic fields. This serves as a toy model of flat bands
in moiré materials in which valleys have Chern numbers C = ±1. We argue that although the spontaneously
polarized Ising Chern magnet is a natural ground state for repulsive Coulomb interactions, it can be in reasonable
energetic competition with correlated Laughlin states of excitons when short-distance corrections to interactions
are included. This is because charge neutral excitons in these bands behave effectively as charged particles in
ordinary Landau levels. In particular, the Ising Chern magnet is no longer the ground state once the strength
of a short-range intravalley repulsion is about 30% larger than the intervalley repulsion. Remarkably, these
excitonic Laughlin states feature valley number fractionalization but no charge fractionalization and a quantized
charge Hall conductivity identical to the Ising magnet, σxy = ±e2/h, and thus cannot be distinguished from it
by ordinary charge transport measurements. The Laughlin state with the highest density of excitons that can be
constructed in these bands is an analog of ν = 1/4 bosonic Laughlin state and has no valley polarization even
though it spontaneously breaks time reversal symmetry.
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I. INTRODUCTION

The most experimentally generous platform to realize frac-
tionalized phases of matter to this date are partially filled
low Landau levels of clean two-dimensional electron systems
subjected to strong quantizing magnetic fields. Landau levels
are essentially flat bands with a nonzero Chern number [1].
The facility towards fractionalization in Landau levels is
intimately tied to such band topology which obstructs the
construction of a complete set of localized orbitals [2,3].
The latter forbids the existence of a meaningful Hubbard-
type limit in which interactions are diagonal in the orbital
position basis and devoid from quantum fluctuations, forcing
any physically realistic model of interactions to always lead
to strong quantum fluctuations in the location of the particles
even in the flat band limit, and ultimately leading to the
melting of charge-density-wave states in favor of correlated
Laughlin-type states over a wide range of conditions.

Recently a different platform for the appearance of ex-
tremely flat bands with nontrivial topology has emerged in the
form of moiré superlattices of two-dimensional materials. Fol-
lowing the prediction of the appearance of flat bands at small
twist-angle in graphene moiré superlattices [4,5], experiments
have observed a variety of superconducting and correlated
insulating states in these [6–14] and other moiré superlattice
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materials [15–22]. The mechanisms behind these phenomena
have been strongly debated [23–38]. Moreover superlattices
aligned with a hexagonal boron nitride (hBN) substrate can
harbour valleys with opposite Berry curvatures [39] and can
lead to moiré minibands in which the two valleys have flats
bands with opposite Chern numbers [40–44] and wave func-
tions of the continuum model have been argued to be reminis-
cent of those in Landau levels [42,45,46]. In fact, experiments
have observed hysteretic [7] and quantized anomalous Hall
effect in twisted bilayer graphene [14] and trilayer graphene
[22] moiré superlattices on hBN substrates. These states have

(a) (b)

FIG. 1. (a) Shaded region of optimal conditions for excitonic
Laughlin states for interactions with range a and intra and
intervalley strengths V↑↑ and V↑↓. Above blue line: excitons prolifer-
ate and repel. Below purple line: exciton binding energy is larger than
interexciton interaction. (b) Schematic of the most compact exciton
Laughlin state with zero valley polarization but Hall conductivity
identical to Chern magnet σxy = ±e2/h. Charge neutral valley frac-
tionalized quasiparticles are depicted. Red and blue lines are electron
densities of each valley and dotted line is the total density.
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been theoretically rationalized as spontaneously valley polar-
ized magnetic Chern insulators [40,43,47–53].

In the present study, we take an idealized limit of these
systems in which the valleys are viewed as two Landau levels
experiencing opposite magnetic fields and the physical spin
is taken to be fully polarized [54]. We note that these are not
physical magnetic fields but are simply introduced in order
to emulate two flat bands with opposite Chern numbers. This
can also be viewed as a maximally symmetric model of a
topological insulator with flat bands [55]. We advance several
results on the few- and the many-body problems in these
systems. We show that pairs of electrons in opposite valleys
behave like excitons in the usual quantum Hall context, in
the sense that their momentum is locked to be proportional
and orthogonal to the relative distance between the particles.
Conversely charge neutral intervalley excitons will be shown
to behave like a pair of charged particles in a magnetic field.
We will also demonstrate that the Chern magnet is a stable
exact ground state for a large class of repulsive Hamiltonians
and study its stability against single particle, exciton, and
exciton-pair proliferation instabilities. In spite of its stability,
we will argue that there are competing correlated states in the
form of Laughlin states of excitons, which could be stabilized
with moderate modifications of the relative strength of short-
distance intra and intervalley repulsive interactions. Specifi-
cally, these states are expected to be energetically competitive
once the following three conditions are satisfied: (a) The
Ising Chern magnet is unstable against exciton proliferation,
(b) the excitons remain strongly bound, and (c) the inter-
exciton interactions are repulsive. In the shaded region in
Fig. 1(a) all these three conditions are satisfied for a toy model
with Gaussian repulsive interactions described in Eq. (32).
Remarkably, these states have only valley fractionalization
but no charge fractionalization and their Hall conductivity is
expected to be identical to that of the ordinary Ising Chern
magnet (σxy = ±e2/h), as depicted in Fig. 1(b) making it
hard to distinguish them via conventional charge transport
experiments. In particular, we will show that the most compact
excitonic Laughlin state, which is presumably also the most
stable one, has zero valley polarization in spite of sponta-
neously breaking the time reversal symmetry with a charge
Hall conductivity of σxy = ±e2/h. These excitonic Laughlin
states are sharply distinct from the more conventional analogs
of Laughlin states studied in fractionally filled chern bands of
moiré materials [56–58].

II. MAXIMALLY SYMMETRIC 2D
TOPOLOGICAL INSULATORS

Our primary interest is to study the ground states of elec-
trons partially filling the flat bands of a time-reversal invariant
topological insulator that interact via repulsive forces. To do
so it is convenient to consider the largest symmetry that is
compatible with such band topology. This will allow us to
simplify substantially the understanding and the construction
of correlated states, and it is a natural starting point before
adding realistic perturbations that break these symmetries,
such as the band dispersion. In a sense, to not follow this
path would be like trying to understand correlated states in

Chern bands before understanding them in the ideal isolated
Landau levels.

A maximally symmetric realization of a topological insu-
lator band is comprised of two Landau levels with opposite
Chern numbers, C = ±1 [55]. We can view them as the n = 0
Landau level of a Hamiltonian for particles in two valleys that
experience opposite magnetic fields:

H = (p − σzA)2

2m
(1)

where σz = ±1 would be the valley index of two bands
with opposite Chern number in the corresponding moiré su-
perlattice material, A is the vector potential for a uniform
perpendicular magnetic field: ∇ × A = Bẑ, and the magnetic
field would be interpreted simply as the scale that controls the
area of the moiré superlattice unit cell, aUC = 2π l2 = 2π/B.
In addition we will take the particles to experience valley
dependent interactions that separately preserve the number of
particles in each valley, of the form

V =
∑
i< j

V↑↑(ri − r j )δσzi,σz j + V↑↓(ri − r j )δσzi,−σz j , (2)

where V↑↑ and V↑↓ denote intra and intervalley interactions,
respectively. The physical Hamiltonian is understood to be
the interaction from Eq. (2) projected onto one of the doubly
degenerate Landau levels defined by Eq. (1), which we will
take to be the n = 0 for concreteness.

The projected Hamiltonian enjoys a large symmetry group.
In particular, it has three spatially local symmetries that will
be crucial in our subsequent analysis. These are the U (1) ×
U (1) valley resolved particle number conservation

Uc†
mσU † = eiφσ Nσ c†

mσ , U = ei
∑

σ φσ Nσ , (3)

where c†
mσ is the electron creation operator for valley σ and

intra-Landau level index m, and φσ is a valley dependent U(1)
phase. The antiunitary time reversal symmetry (T 2 = −1)

T c†
mσ T −1 = iσ y

σ,σ ′c
†
mσ ′ , T = iσ yK, (4)

and a unitary charge conjugation symmetry that maps parti-
cles into holes of the opposite valley, and can be chosen as

Cc†
mσC† = iσ y

σ,σ ′cmσ ′ . (5)

We note that the valley conservation and time reversal can
be enforced in systems with and without boundaries, but
the particle-hole conjugation can only be strictly enforced in
geometries without boundaries, such as the sphere or the torus,
and boundaries will induce particle-hole symmetry breaking
terms. Additionally, the projected Hamiltonian has a rich
space symmetry group, which is larger than an ordinary lattice
Hamiltonian. For example, in infinite space, it is endowed
with a continuous magnetic translational algebra, analogous to
the magnetic translation algebra of Landau levels, and whose
single particle generators can be written as

Q = π + σzBẑ × r, (6)

where π = p − σzA is the mechanical momentum operator,
which satisfies the commutation relations:

[Qi, Qj] = −iσzBεi j . (7)
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The closely related projected position operator defines an
analog of the guiding center operators of Landau levels, and
is given by

R = −σz

B
ẑ × Q = r − σz

B
ẑ × π. (8)

The translation operator satisfies a noncommutative algebra
that encodes a valley dependent Aharonov-Bohm effect of
the form:

tatb = tbtaeiσzBẑ·(a×b), (9)

where ta = e−ia·Q and a is two-dimensional (2D) vector.
The many-body magnetic translation symmetry can be

used to rigorously prove that valley unpolarized states and
time reversal invariant states do not have exact topological
degeneracies, in contrast to usual Landau levels [59], as we
demonstrate in the Appendix.

III. TWO-PARTICLE PROBLEM

Before tackling the fully fledged complexities of the many-
body problem, we will begin by analyzing the two-particle
problem. This problem is of great significance in conventional
Landau levels, because it can be solved essentially by exhaust-
ing its symmetries, with the center-of-mass position and the
relative angular momentum serving to label unique two-body
states and their energy defining the useful notion of Haldane
pseudopotentials [60]. As we will see, the two-body problem
for flat topological insulator bands can also be fully solved
by employing symmetries, but its structure is very different
from that of usual Landau levels and will resemble rather the
problem of two particles of opposite charge (neutral exciton)
in conventional Landau levels [61,62], as it is intuitively clear
from the form of the Hamiltonian in Eq. (1).

Let us define relative distance (d) and center-of-mass posi-
tion (R) for particles 1 and 2 as follows:

R = R1 + R2

2
, d = R1 − R2, (10)

where R1, R2 are defined in Eq. (8). These operators satisfy
the following commutation relations:

[di, d j] = 4[Ri, Rj] = − i (σz1 + σz2) εi j

B
,

[di, Rj] = − i (σz1 − σz2) εi j

2B
. (11)

The closely related magnetic center of mass (Q) and relative
momentum (q), can be defined as

Q = Q1 + Q2, q = Q1 − Q2

2
, (12)

where Q1,2 are defined in Eq. (6), and satisfy the following
commutation relations:

[Qi, Qj] = 4[qi, q j] = −i(σz1 + σz2)Bεi j,

[Qi, q j] = −i

(
σz1 − σz2

)
Bεi j

2
,

[Ri, Qj] = [di, q j] = iδi j,

[di, Qj] = [Ri, Qj] = 0. (13)

Let us now exploit the symmetries of the Hamiltonian
in Eq. (1) for the case of two particles. First the valley
pseudospin of each particle, σz1 , σz2 , is a conserved number. In
the case of valley polarized states in which the two-particles
have the same pseudo-spin, σz1 = σz2 , the algebra reduces to
that of conventional Landau levels and the problem can be
solved following the standard approach via Haldane pseu-
dopotentials [60]. We will therefore focus on the case of valley
unpolarized states: σz1 = −σz2 . We will take the particles to be
distinguishable and the desired wave functions of bosons and
fermions can be obtained from our results by performing the
corresponding symmetrization or antisymmetrization. Now, in
this case the Hamiltonian between the two particles is only a
function of the relative coordinate variable:

V P
↑↓ = P0V↑↓(r1 − r2)P0, (14)

where P0 denotes projection onto the valley degenerate Lan-
dau levels. From Eq. (11) we see that for σz1 = −σz2 , the
relative coordinates along both directions commute and can
be simultaneously diagonalized:

[dx, dy] = 0, for σz1 = −σz2 . (15)

Therefore, the eigenfunctions can be parametrized by a vector
of two real numbers d = (dx, dy) ∈ R2, and can be written
formally as

|ψ↑↓(d)〉 = |dx, dy〉12 ⊗ |σz〉1 |−σz〉2 . (16)

These states will have an eigenenergy that is simply a con-
volution of the unprojected interaction potential and the form
factor squared of the Landau level of interest:

E↑↓(d) =
∫

d2q

(2π )2
V↑↓(q)|F (q)|2eiq·d. (17)

For example, if the unprojected interaction is a delta function
V↑↓ = g↑↓δ(r), and we project onto the n = 0 Landau level

of Galilean fermions, |F0(q)|2 = e− l2 |q|2
2 , then the energy will

be E↑↓(d) = g↑↓e− |d|2
2l2 /2π . Notice that although the two par-

ticles have a well defined separation vector d, they do not
have a well-defined average or center-of-mass position R,
since Eq. (11) implies that these two sets of variables cannot
be simultaneously specified when σz1 = −σz2 . The particles,
however, have a well defined total or center-of mass-magnetic
momentum Q, which can be simultaneously specified together
with d, according to Eq. (13). However, this is not an indepen-
dent variable but it is locked to be proportional and orthogonal
to d, as follows:

Q = −σz1 Bẑ × d, for σz1 = −σz2 . (18)

The equation above follows from the definitions of Q
in Eq. (12) and d in Eq. (10) combined with the relation
between Q and R from Eq. (8) and the assumption σ1 = −σ2.
Therefore, we see that the behavior of a pair of charged
particles in the flat topological insulator bands resembles that
of a neutral particle-hole pair in ordinary Landau levels.
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IV. ISING CHERN MAGNETS: IDEAL HAMILTONIANS
AND EXACT GROUND STATES

In this section we will exploit the individual valley particle
number conservation to demonstrate that the spontaneous
Ising Chern magnetic insulator that appears at total filling
ν = 1 is the exact many-body ground state for a wide class
of repulsive Hamiltonians.

The valley conservation described in Eq. (3) allows us to
separate the Hilbert into subspaces labeled by the number of
particles in each valley (N↑, N↓). Let us consider the system
to be placed in a finite geometry, such as torus, which restricts
0 � N↑,↓ � Nφ . Then, there are four subspaces that have a
single state, and therefore are automatically guaranteed to
be exact eigenstates of any Hamiltonian with valley number
conservation, namely (0, 0), (0, Nφ ), (Nφ, 0), (Nφ, Nφ ). The
states 	(0, 0), 	(Nφ, Nφ ) are, respectively, the completely
empty and the completely filled topological insulator band,
whereas 	(0, Nφ ), 	(Nφ, 0) represent fully polarized mag-
netic Chern insulators.

Although enforcing valley conservation is a useful the-
oretical device, this is never an exact symmetry in experi-
ments. Additionally, even though it is easy to fix the total
particle number, N↑ + N↓, experimentally it is much harder to
imagine an experimental knob that would control the valley
polarization N↑ − N↓. Therefore, it is natural to consider
the problem of the absolute ground state of the problem at
fixed total particle number, N↑ + N↓, for the various allowed
valley polarizations. In particular, in this section we will
concentrate on determining when the fully polarized Ising
magnets 	(0, Nφ ), 	(Nφ, 0) are the absolute ground states at
total particle N↑ + N↓ = Nφ . These two states are exchanged
either by the time reversal symmetry or the charge conjugation
symmetry T and C defined in Eqs. (4) and (5) and are
therefore degenerate whenever one of these symmetries is
enforced, in which case they would break either of these
symmetries spontaneously. We will now introduce a set of
ideal Hamiltonians for which these states are the exact ground
states at N↑ + N↓ = Nφ . Consider the following interacting
Hamiltonian:

V0 =
∑
i< j

V↑↑l2δ(2)(ri − rj)δσzi,σz j + V↑↓(ri − rj)δσzi,−σz j .

(19)
The above Hamiltonian is understood to be projected onto one
of the doubly degenerate Landau levels of Eq. (1). Here we
demand the interactions to be strictly repulsive, namely,

V↑↑ > 0, V↑↓(r) > 0 ∀ r. (20)

The above Hamiltonian is a positive semidefinite operator,
namely its exact eigenstates have energies E � 0. Now, we
can see that the Ising magnets are exact zero energy ground
states of this Hamiltonian:

V0	(0, Nφ ) = V0	(Nφ, 0) = 0. (21)

The above follows from the fact that the Pauli exclusion
principle guarantees that particles of the same valley are never
at the same spatial location and therefore the δ function part
of the intravalley interaction is always identically zero for
any fermionic wave function [63]. Now let us consider a
partially polarized eigenstate (N↑, N↓). This state will have an

intervalley correlation function of the form g↑↓(r↑, r↓), which
we take to measure the probability density of finding a particle
of valley pseudospin σz at position r↓ and a particle of valley
pseudospin −σz at position r↓, given by

g↑↓(r↑, r↓) = 	†(N↑, N↓)

⎛
⎝∑

i, j

δ(2)(r̂i − r↑)

× δ(2)(r̂ j − r↓)δσzi,−σz j

⎞
⎠	(N↑, N↓). (22)

Now the above quantity is always non-negative, but moreover,
if the state 	(N↑, N↓) is partially valley polarized, this func-
tion will be strictly positive at least for some region of finite
measure. This is because if there is a particle of say valley
σz = 1 at r↑ there is some finite probability to find another
particle at some other location r↓ with σz = −1. Now, because
the energy of the eigenstate in question can be written as

E	 = 1

2

∫
dr↑dr↓g↑↓(r↑, r↓)V↑↓(r↑, r↓), (23)

it is clear that the condition stated in Eq. (20) guarantees the
energy of any partially polarized state 	(N↑, N↓) to be strictly
positive E	 > 0. In fact, due to the inability to make fully
localized single-particle wave functions on a Landau level,
it is highly likely that for partially polarized wave function
	(N↑, N↓) the function g↑↓ can only be made zero in a subset
of measure zero, for example one could have very high degree
zero in a correlated wave function when particles approach
each other g↑↓(r↑, r↑ → r↓) → 0. Therefore, to guarantee the
strict positivity of the energies of partially polarized states,
E	 > 0, it is sufficient to demand that V↑↓(r) > 0 only for
r belonging to some region of the 2D plane with nonzero
measure, for example, simply by being nonzero inside a finite
radius defining a hard core. With this we conclude the rigorous
arguments showing that the spontaneously polarized Ising
Chern magnets are exact unique zero energy ground states of
the class of Hamiltonians introduced in Eq. (19).

Now, when the intravalley interactions are not δ functions,
the Ising magnets 	(0, Nφ ), 	(Nφ, 0) can still be the absolute
ground states, even though it is harder to make rigorous
statements in this case. Of particular interest for moiré su-
perlattice materials is the case when intravalley interactions
and intervalley interactions are identical. The reason is that
because the orbitals at different valleys are related by the
microscopic time reversal symmetry, which is local in real
space. Therefore, the probability amplitude of orbitals in both
valleys will have the same space structure, and the leading
density-density interactions between particles in the same and
opposite valleys are therefore expected to be the same. As
we will see in the coming sections, there are good reasons
to expect that the Ising Chern magnets remain unique ground
states for a larger class of such repulsive Hamiltonians, even
though it is harder to make rigorous proof.

V. EXCITONS AND STABILITY OF ISING
CHERN MAGNETS

Having established that the Ising Chern magnet is an
exact and unique ground state for a wide class of repulsive
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Hamiltonians, we will now study the excitations on these
states. To do so, it is convenient to perform a partial particle-
hole transformation of the fully occupied flavor, which we
take to be ↑, as follows:

Pc†
m↑P† = cm↑, Pc†

m↓P† = c†
m↓. (24)

This transformation reverses the sign of the Chern num-
ber of valley ↑, allowing us to view the system as a type
quantum Hall bilayer in which both flavors experience the
same magnetic field at the expense of reversing the sign of
the intervalley interaction and making it effectively attractive
[64]. We will refer to the representation of the problem after
this transformation as the quantum Hall picture, whereas the
original representation will be referred to as the “topological
insulator” or “physical” picture.

Upon performing this transformation on Eq. (2), the
Hamiltonian becomes

PV P† = E0 + V̄ + ε↑N↑ + ε↓N↓,

V̄ =
∑
i< j

V↑↑(ri − rj)δσzi ,σz j
− V↑↓(ri − rj)δσzi ,−σz j

,

ε↑ =
∫

d2q

(2π )2
|F (q)|2V↑↑(q) − V↑↑(0)

2π l2
,

ε↓ = V↑↓(0)

2π l2
. (25)

Here E0 is the energy of the Ising Chern magnet and Vσσ ′ (q) is
the Fourier transform of Vσσ ′ (r). We have kept global Hartree
terms, Vσσ ′ (q = 0), but these could be absent if a neutralizing
background is assumed. Notice that the role of total particle
number, N = N↑ + N↓, and valley polarization, Sz = N↑ −
N↓, are swapped in the quantum Hall picture relative to the
topological insulator picture:

PNP† = Nφ − Sz, PSzP
† = Nφ − N. (26)

If a state 	 has valley occupation in the physical pic-
ture (N↑, N↓), we will denote its occupation in the
quantum Hall picture by (N↑, N↓)P = (Nφ − N↑, N↓). The
physical quasielectron and quasihole excitations have, re-
spectively, (N↑, N↓) = (Nφ, 1), (Nφ − 1, 0), or (N↑, N↓)P =
(0, 1), (1, 0). Their energies relative to the Ising Chern mag-
net can be read from Eq. (25) and are, respectively, ε↑, ε↓.
Therefore, the bulk charge gap of the Ising Chern magnet is


Q = ε↑ + ε↓. (27)

The stability of the Ising Chern magnet requires 
Q > 0.
When V↑↑(ri − rj) is chosen to be a delta-function ε↑ = 0
(since Hartree and exchange exactly cancel each other, re-
flecting the inability of electrons to be at the same position),
and ε↓ > 0 for repulsive interactions, and thus 
Q > 0, in
agreement with the more general arguments of the previ-
ous section. Notice also that when the spatial average of
the inter and intravalley interactions is the same, namely
V↑↑(q = 0) = V↑↓(q = 0) and the intervalley interaction is
repulsive

∫
d2q|F (q)|2V↑↑(q) > 0, then the charge gap is also

positive. The latter criterion encompasses the case of pure
Coulomb interactions since the neutralizing background de-
mands V↑↑(q = 0) = V↑↓(q = 0). A more stringent criterion
on the stability of the Ising Chern magnet is obtained by

FIG. 2. Spectrum of exciton states on the Ising Chern magnet.
m labels the relative angular momentum. If the exciton gap 
Exc

vanishes the state becomes unstable.

studying its problem of particle-hole excitations. The simplest
particle-hole excitation has valley numbers (N↑, N↓) = (Nφ −
1, 1) or (N↑, N↓)P = (1, 1). Therefore, in the quantum Hall
picture these excitons behave as a pair of charged particles
in a magnetic field, and their states can be simply obtained
by exhausting the symmetries of the problem, in analogy to
how the two-body problem in conventional Landau levels is
solved [60]. These states can be labeled by two integers, a
center-of-mass angular momentum, M, and a relative angular
momentum, m. Their energy depends only on their relative
angular momentum, and this defines the notion of an exciton
Haldane pseudo-potential. The energy of the excitonic state
|M, m〉 can therefore be read then directly from Eq. (25)
and it is


Exc(m) = 
Q − Vm,↑↓, (28)

where Vm,↑↓ is the Haldane pseudopotential associated with
the intervalley interaction:

Vm,↑↓ =
∫ ∞

0
qdqV↑↓(q)Lm(q2)e−q2

. (29)

Vm,↑↓ can be interpreted as the exciton binding energy, which
measures the attraction of the electron and the hole as depicted
in Fig. 2. The stability of the Ising Chern magnet also requires
the exciton energy to be positive, namely that its binding
energy is smaller than the charge gap Vm,↑↓ � 
Q, ∀m, to
prevent spontaneous exciton proliferation on top of the Ising
magnet vacuum. A schematic depiction of these energies is
shown in Fig. 2.

We will discuss now the stability of the Ising Chern magnet
against exciton proliferation for two concrete microscopic in-
teractions. For moiré superlattice materials it is likely that the
density-density interactions are roughly the same for inter and
intravalley interactions, since these degrees of freedom are
related by a spatially local time reversal symmetry. Bringing
a metallic gate near the bilayer produces a modified Coulomb
interaction of the form:

V↑↑(r) = V↑↓(r) = e2

εr
− e2

ε
√

r2 + d2
, (30)

where d is twice the distance to the metal gate (distance to the
image charges). This strategy has been successfully employed
recently to induce nontrivial changes in the physics of moiré
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FIG. 3. Charge and exciton gaps for Coulomb interactions
screened by a metallic gate at distance d/2.

superlattice materials [65]. The charge and the exciton gap for
these interactions are given by


Q =
√

π

2

e2

εl

(
1 − e2 d2

l2 Er f c

[√
2

d

l

])
,


Exc(m = 0) = e2√π√
2εl

[
− 1√

2

(
1 − e

d2

l2 Er f c

[
d

l

])

+
(

1 − e2 d2

l2 Er f c

[√
2

d

l

])]
. (31)

These quantities are depicted in Fig. 3 and therefore we
see that although these quantities decrease as the metallic
gate becomes closer to the system, they remain positive and
reveal no instability of the Ising Chern magnet for any finite
d . This provides further evidence of the robust stability of
the Ising Chern magnet, and is in broad agreement with
experiments that have advocated its observation under diverse
circumstances [14,65]. However, there is a possibility, as we
will see, that certain correlated states that we will call exci-
tonic Laughlin states become viable energetic competitors to
the Ising Chern magnet after short-distance valley-dependent
modifications to the Coulomb interactions are added. With
this motivation, we consider a toy model of finite ranged
interactions modeled as Gaussians:

V↑↑(r) = 1

2πa2
↑↑

V↑↑e
−r2

2a2↑↑ , V↑↓(r) = 1

2πa2
↑↓

V↑↓e
−r2

2a2↑↓ . (32)

We restrict to the case of repulsive interactions: V↑↑,V↑↓ � 0.
The charge gap and the exciton gap in this case are


Q = V↑↓
2π

− V↑↑
2π

(
α2

↑↑
l2 + α2

↑↑

)
,


Exc(m = 0) = V↑↓
2π

(
l2 + α2

↑↓
2l2 + α2

↑↓

)
− V↑↑

2π

(
α2

↑↑
l2 + α2

↑↑

)
.

(33)

Figures 1(a) and 4 depict the boundary where these gaps van-
ish indicating an instability of the Ising Chern magnet, where
a different state takes over as the ground state. Although this
is a sufficient criterion for the instability of the Ising Chern

FIG. 4. Shaded region of optimal conditions for excitonic Laugh-
lin states for a model of intravalley and intervalley repulsions of
range a↑↑ = 3a↑↓ and strengths V↑↑ and V↑↓. At the red line their
interaction changes from attractive to repulsive. At the purple line the
exciton binding energy is comparable to the interexciton interaction.
The dashed line indicates the exciton-pair proliferation instability,
which is lower than the single-exciton proliferation instability, in
contrast to the case with α↑↑ = α↑↓ shown in Fig. 1(a).

magnet, it is not necessary. As we will see explicitly in the
next section multiexciton processes can sometimes destabilize
the state before the single exciton instability appears.

VI. EXCITON INTERACTIONS AND EXCITONIC
LAUGHLIN STATES

The fact that excitons in topological insulating bands be-
have as charged particles in a magnetic field leads to the nat-
ural possibility that once the Ising Chern magnet is no longer
the ground state and excitons proliferate they could form
correlated states that appear typically in partially filled Landau
levels. A natural possibility are states with broken transla-
tional symmetry which have been considered in Refs. [43,49].
Here we would like to discuss another possibility, namely
the appearance of excitonic Laughlin-type states. Once they
proliferate, it is reasonable to expect the excitons to form
bosonic Laughlin states, provided the following two criteria
are satisfied: (a) the excitons are well bound, namely the
exciton ionization energy is large compared to the typical
inter-exciton interactions and (b) the excitons have repul-
sive interactions. Under these conditions, a Laughlin state
of NX excitons can form at (N↑, N↓) = (Nφ − NX , NX ) or
(N↑, N↓)P = (NX , NX ) provided that the exciton filling factor,
defined as νX = NX /2Nφ , satisfies

νX = 1

2m
, m = 2, 3, . . . (34)

This exciton filling factor is 1/4 of the filling factor in the
quantum Hall picture defined from Eq. (24) and discussed in
Sec. V. This is because the exciton number equals half the
number of particles in this picture and the excitons experience
twice the magnetic field strength of the particles, and hence
twice the number of effective flux quanta. In defining the
Laughlin states of excitons and the exciton filling factors one
has in mind a picture of tightly bound excitons. However,
we would like to mention that the limit of tightly bound
excitons and the limit defining the Landau level projection
have a certain degree of conflict. For example, if the excitons
have filling νX = 1/2, we would conclude that particles would
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have valley numbers (N↑, N↓) = (0, Nφ ), namely it would
correspond to the Ising Chern magnet with opposite polar-
ization to our reference vacuum, (N↑, N↓) = (Nφ, 0). Clearly
it is impossible to have a topologically ordered state at such
filling if Landau levels are infinitely far away in energy. We
believe, however, that the universal properties of tightly bound
excitonic states can be recovered under strict Landau level
projection for states with exciton fillings 0 < νX < 1/2 and
this is the reason we have excluded m = 1 as a possibility in
Eq. (34).

Now, in order to verify the two criteria that make amenable
the appearance of excitonic Laughlin states, we are led to
consider the problem of short-distance interexciton interac-
tions. For concreteness we will focus on the model with
Gaussian interactions introduced in Eq. (32). To study the
short distance interactions we consider the four-particle state
with valley numbers (N↑, N↓) = (Nφ − 2, 2) or (N↑, N↓)P =
(2, 2), corresponding to two excitons, NX = 2, that describe
the case of closest approach between these particles allowed
by the Pauli exclusion principle:

	2X = (z↑
1 − z↑

2 )(z↓
3 − z↓

4 )e−
∑

i |zi |2
4l2 |↑1↑2↓3↓4〉 , (35)

here the state is written in the symmetric gauge in the quantum
Hall picture defined in Eq. (24) and normalization and full
antisymmetrization are implicit. In the physical picture, the
↑ particles are the holes in the Ising magnet vacuum and the
↓ particles are added to the empty valley. This state can be
viewed as a quantum Hall droplet of ν = 2 constructed on top
of the Ising Chern magnet. Because this is the most compact
two-exciton state, the energy of this state can be viewed as
characterizing the analog of the Haldane pseudo-potential
V2 for the excitons, and due to their underlying fermionic
constituents the excitons behave as hard-core bosons with
infinite V0. States in which the excitons are farther apart are
expected to have lower interaction energy, because their inter-
action decays with distance for simple models of microscopic
interactions such as the Gaussian one. More specifically, the
energy of 	2X measured relative to the Ising Chern magnet,
can be decomposed into exciton gap and exciton interaction
parts as follows:

E2X = 〈	|VP|	〉 − E0 = 2
X + V2X , (36)

where VP = PV P† is given in Eq. (25), E0 is the energy of the
Ising Chern Magnet, and 
X is the single exciton gap defined
in Eq. (28) and given in Eq. (33) for the Gaussian model. For
this Gaussian model the explicit expression for the exciton
interaction is found to be

V2X = V↑↓
π

[
1

2

1

2 + α2
↑↓

− 1 + α2
↑↓

(2 + α2
↑↓)2

− 1

2

2 + 2α2
↑↓ + α4

↑↓
(2 + α2

↑↓)3

]

+ V↑↑
π

α2
↑↑

(2 + α2
↑↑)2

. (37)

The boundary separating the region of effective inter-exciton
attraction and repulsion is shown as a blue line in Fig. 1(a)
for the case in which intervalley and intravalley interactions
have the same range (a↑↑ = a↑↓) and as a red line in Fig. 4 for
the case in which the ranges are different (a↑↑ = 3a↑↓). We
have also added a purple line that qualitatively separates the

region where the excitons are strongly bound from those in
which they are not by determining when the exciton binding
energy, given by Vm=0,↑↓ in Eq. (29), becomes equal to the
magnitude of the exciton interaction V2X from Eq. (37). The
intersection of the regions in which the Ising magnet is
unstable, the excitons are strongly bound, and the excitons
have repulsive interactions, is expected to be a fertile ground
for the appearance of excitonic Laughlin states and it is shown
as a shaded region in Figs. 1(a) and 4.

Importantly, the stability of the Ising Chern magnet also
demands E2X > 0, otherwise the state would be unstable
to exciton-pair proliferation processes. Figure 4 also shows
the line of exciton pair proliferation E2X = 0, as a dashed
black line. We have found that when intra and intervalley
interactions have different range α↑↑ = α↑↓ the boundary of
the single exciton proliferation instability, 
2X = 0, generally
differs from the boundary of the exciton pair proliferation
instability, E2X = 0, and, in fact, the exciton pair production
instability provides a slightly more stringent criterion for the
stability of the Ising Chern magnet as seen in Fig. 4. However,
when interactions have the same range, the single exciton and
exciton-pair proliferation lines coincide, and this is the reason
why there is no dashed line in Fig. 1(a).

Let us now discuss the properties of the excitonic Laughlin
states. These states break spontaneously the time reversal
symmetry of the topological insulator band. For the cases with
m � 3 in Eq. (34), this is evident because they have a net
valley polarization:

(N↑, N↓) = Nφ

(
1 − 1

m
,

1

m

)
. (38)

These states with m � 3 will have, therefore, some amount of
orbital magnetism although it will tend to be smaller than that
of the Ising Chern magnet. Notably, the state corresponding
to m = 2, which corresponds to exciton filling νX = 1/4 has
equal occupation of both valleys (N↑, N↓) = Nφ (1/2, 1/2).
However, in spite of having zero valley polarization, this
state breaks time reversal symmetry spontaneously as we will
demonstrate next.

To show that this state breaks time reversal symmetry we
begin by noting that the physical time reversal operator, T
from Eq. (4), acts as an antiunitary particle-hole conjugation
in the quantum Hall picture defined by the transformation P
from Eq. (24). Namely, the operator TP = PT P−1 acts as

TPc†
m↑T −1

P = cm↓, TPc†
m↓T −1

P = cm↑. (39)

Once combined with the charge conjugation defined in
Eq. (5), this symmetry is equivalent to the antiunitary particle-
hole symmetry that plays an important role in conventional
quantum Hall bilayers [66]. Now we consider the νX = 1/4
excitonic Laughlin state placed in the surface of the sphere
[67]. The sphere induces a finite size shift in the proportion
between particles and fluxes, and this shift is a topological
invariant of the state [68]. For a tightly bound νX = 1/4
excitonic Laughlin state this proportion is

2Nφ = 4(NX − 1), (40)

where we are using the fact that tightly bound excitons
experience twice the magnetic flux of the particles. There-
fore, the exciton number would be NX = (Nφ + 2)/2, and
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thus requires an even number of flux quanta to be realized
in the sphere. On the other hand, because the number of
single particle orbitals in the sphere is Nφ + 1 a two-valley
fermion state that is particle-hole invariant (i.e., time reversal
invariant in the physical picture) must satisfy (N↑, N↓)P =
((Nφ + 1)/2, (Nφ + 1)/2) and thus would have an exciton
number, NX = (Nφ + 1)/2, and thus requires an odd number
of flux quanta to be realized in the sphere. The inconsistency
between these conditions implies that the νX = 1/4 excitonic
Laughlin state breaks spontaneously time reversal symme-
try, and therefore the state constructed by adding excitons
to valley ↑ is distinct from the one obtained by adding
excitons to valley ↓, even though both have zero valley
polarization.

We will now describe the nature of bulk excitations of
the excitonic Laughlin states. These will have fractionalized
quasiparticles with exciton number quantized in units of
δNX = 1/2m. Therefore the fractionalized excitations will be
charge neutral but contain an excess of valley numbers of
the form δN↑ = −δN↓ = q/2m, q ∈ Z. As it is customary
with Laughlin states, quasihole and quasielectrons will have
a different spatial profile. The quasiholes will typically have
smaller spatial extend and their core will essentially be a
small bubble of fully polarized the parent Ising Chern magnet
state. The quasi-electrons will typically be more spatially
spread, and at its core will try to recover the opposite valley
polarization. An illustration appears in Fig. 1. Due to their
local valley polarization, these quasiparticles will have there-
fore a nontrivial profile of local orbital magnetization relative
to the background, specially in the m = 2 Laughlin state.
On the other hand, charged quasiparticles will be ordinary
quasielectrons and quasiholes with integer quantized charges.

Finally, although the edge states can be fairly complex in
realistic systems, at least in the limit of strong exciton binding,
one expects the excitonic Laughlin states to have the same
charge edge channel as the parent Ising magnet on which it is
constructed, and therefore the same charge Hall conductivity
σxy = ±e2/h. This is because the excitons are added to a
filling factor one parent state, but they are charge-neutral
particles and one expects them to have a charged edge mode
together with a counterpropagating neutral mode, as depicted
in Fig. 1(b). This property makes it hard to distinguish the
excitonic Laughlin states from ordinary Ising Chern Insulators
in usual charge transport experiments. In this sense one could
say that it is hard to rule out that they might already be present
even in the experiments so far reporting the occurrence of
spontaneous anomalous Hall effect [14].

VII. SUMMARY AND DISCUSSION

We have studied the few- and many-body physics of ideal
maximally symmetric topological insulator flat bands with
repulsive interactions. We have found that charged particle-
particle pairs behave in a similar fashion to neutral particle-
hole pairs in conventional Landau levels, displaying a form
of locking of relative distance and center-of-mass momentum
degrees of freedom. Conversely, neutral particle-hole pairs in
topological insulator flat bands behave similarly to charged
particle-particle pairs in Landau levels, having a flat disper-
sion for their center-of-mass degrees of freedom that exhibit

an analog of cyclotron motion while their relative angular
momentum allows to define a notion of exciton Haldane
pseudopotentials.

We have constructed ideal Hamiltonians for which it can
be rigorously argued that the ground state at total filling
1 is the spontaneously polarized Ising Chern magnet and
studied its stability to single exciton and exciton-pair pro-
liferation processes. We have also studied the interexciton
interactions, and demonstrated that once excitons proliferate
they are repulsive for a model of short-range interactions
in which intra and intervalley interactions have the same
range, as shown in Fig. 1(a). Taking this range to be com-
parable to the interparticle distance (a ∼ l), we have found
that the Ising Chern magnet is no longer the ground state
when the intravalley repulsions are about 30% larger than the
intravalley repulsions. We have argued that Laughlin states of
excitons are energetically competetive ground states once the
Ising Chern magnet is destabilized. Remarkably, these states
display only valley fractionalized charge-neutral quasiparti-
cles, namely, the charge of all quasiparticles is quantized in
units of the electron charge. These excitonic Laughlin states
have a charge Hall conductivity that is identical to Ising
Chern magnet, σxy = ±e2/h, and thus are hard to distinguish
from them in conventional charge transport experiments. In
particular, the most compact excitonic Laughlin state is an
analog of the ν = 1/4 bosonic Laughlin state, and has no
valley polarization despite breaking spontaneously the time
reversal symmetry with a Hall conductivity σxy = ±e2/h.
Due to the orbital magnetism of the valley polarized states
[69], the valley fractionalized quasiparticles of these states
could display substantial local orbital magnetic moments, and
local magnetometry probes could be used to image these
quasiparticles.

Note added in proof. During the completion of our work,
other studies with overlapping ideas and results appeared in
Refs. [70,71].

APPENDIX: ABSENCE OF EXACT TOPOLOGICAL
DEGENERACY FOR UNPOLARIZED STATES

We will now demonstrate that in contrast to the ordinary
quantum Hall Landau levels, there is no generic exact topo-
logical degeneracy for time reversal invariant states in the
Torus, by extending the classic analysis of Haldane [59] to
our topological insulating flat bands. To place the system
in a torus requires the ability to simultaneously diagonalize
translations for two noncollinear vectors Lx, Ly that define
the principal axes of the torus, and thus the system must
enclose an integer number flux quanta: BA = 2πNφ . Similar
to what happens in ordinary Landau levels, the torus induces
a weak breaking of translational symmetry, in the sense that
only a finite subgroup of the magnetic translation algebra is
compatible with any given torus with a specific choice of
twist of boundary conditions. More specifically, one can show
that only the following subset of single particle translations
commutes with the translations tLx , tLy defining the torus:

t (n, m) = t

(
n

Nφ

Lx + m

Nφ

Ly

)
, n, m ∈ Z. (A1)
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The many-body or center-of-mass translation operators are
defined as

T (n, m) =
Ne∏
i

ti(n, m), (A2)

where i labels the particles in the system. The smallest allowed
translations of the center of mass are T (1, 0) and T (0, 1).
Both of these operators commute with the Hamiltonian, but
do not necessarily commute with each other, but instead obey
the following algebra:

T (1, 0)T (0, 1) = e
i2π

∑
i σ z

i
Nφ T (0, 1)T (1, 0). (A3)

Thus we are lead to introduce the notion of the polarization
filling factor:

νz =
∣∣∑Ne

i=1 σ z
i

∣∣
Nφ

. (A4)

This is a rational number that in general differs from the ordi-
nary filling factor ν = Ne/Nφ , and which can be decomposed
as νz = pz/qz, with pz, qz relative primes. Then, one can show
that algebra of Eq. (A2) implies an exact qz-fold degeneracy
of all the eigenstates of the Hamiltonian, and in particular its
ground state. All other translation operators with larger n, m
can be constructed as powers of the two smallest translations
T (1, 0), T (0, 1) and therefore are not independent and do not
lead to extra degeneracies. This generalizes the criterion by

Haldane that guarantees a q-fold degeneracy for a state in a
Landau level with filling factor ν = p/q [59].

States that are valley unpolarized have νz = pz = 0, and
therefore do not have exact degeneracies enforced by the
many-body translation algebra. In particular, time-reversal
invariant states are a subset of valley un-polarized states
(any time-reversal invariant is valley unpolarized, but the
converse is not necessarily true). Valley unpolarized states
have necessarily an even number of particles and therefore
the many-body time reversal symmetry squares to T 2 = 1
and does not imply extra degeneracies. Thus, as a corollary,
we conclude also that any time-reversal invariant state in a
partially filled flat TI band has no generic exact topological
degeneracies.

This should also hold in a realistic partially filled TI bands,
because these can be seen as a problem in which some of the
symmetries we have enforced exactly are explicitly broken,
and therefore this can only result in splitting of the degenera-
cies that are present in our situation of ideal flat bands.

It is important to emphasize that the lack of exact ground
state degeneracy does not imply the absence of topological
order, but only that if the latter exists its degeneracy will
only appear asymptotically in the thermodynamic limit. We
also note that an alternative quick way to recover the results
of this Appendix can be achieved by performing a partial
particle-hole transformation in one of the flavors as described
in Sec. V, since the valley polarization is mapped into the total
filling factor of an ordinary two-component Landau level, as
shown in Eq. (26).
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