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We study the interplay between spin-orbit coupling (SOC) and Coulomb repulsion in a Hubbard model on a
decorated honeycomb lattice which leads to a plethora of phases. While a quantum spin Hall insulator is stable
at weak Coulomb repulsion and moderate SOC, a semimetallic phase emerges at large SOC in a broad range
of Coulomb repulsion. This semimetallic phase has topological properties such as a finite, nonquantized spin
Hall conductivity not observed in conventional metals. At large Coulomb repulsion and negligible spin-orbit
coupling, electronic correlations stabilize a resonance valence bond (RVB) spin liquid state in contrast to the
classical antiferromagnetic state predicted by mean-field theory. Under sufficiently strong SOC, such RVB state
is transformed into a magnetic insulator consisting on S � 3/2 localized moments on a honeycomb lattice with
antiferromagnetic order and topological features.
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I. INTRODUCTION

Since the discovery of topological insulators there is an
intense research activity around spin-orbit coupling (SOC) ef-
fects on materials [1]. The quantum spin Hall (QSH) phase [2]
arising in weakly interacting electron systems is well under-
stood by now, however, much less is known about possible
new phases arising from the interplay between SOC and
Coulomb repulsion in strongly correlated materials [3]. This
is relevant to Ir-based pyrochlores in which a topological Mott
insulator (TMI), axion insulator, topological Weyl semimetal,
and quantum spin liquids [4,5] can occur. Many of these
phases are characterized by having topological order, i.e., long
range entanglement [6], rather than being protected by topo-
logical invariants as in conventional topological insulators.

The transition from a topological insulator to a Mott in-
sulator has been explored in the Kane-Mele-Hubbard (KMH)
model [7,8]. With no SOC, a transition from a SM to a Néel
ordered Mott insulator through a quantum spin liquid (QSL)
occurs [9]. For any nonzero SOC, the noninteracting QSH
insulator with metallic edges is stable up to weak Coulomb
repulsion. As Coulomb repulsion is further increased up to
intermediate values, a transition from the QSH to a Mott insu-
lator with easy-axis AF occurs. The QSH phase is stabilized
in a broader range of Coulomb repulsion with the increase
of SOC.

The decorated honeycomb lattice (DHL) is relevant to
many materials such as trinuclear organometallic com-
pounds [10–13], e.g., Mo3S7(dmit)3, organic molecular crys-
tals, iron (III) acetates [14], molecular organic frame-
works [15,16] (MOFs), and cold fermionic atoms loaded in
optical lattices [17]. One may expect interesting physical
phenomena arising from the frustration of the lattice which in-
terpolates between the honeycomb and Kagomé lattices [18].
Indeed, a noninteracting tight-binding model with SOC,

topological phases such as the QSH arise [19]. In a spinless
extended Hubbard model, the off-site Coulomb repulsion
leads to a QAH insulator and/or to a topological metal
which breaks TRS spontaneously even when no SOC is
present [20–22]. Finally, the Hubbard model on the DHL hosts
a broad variety of phases including: a real space Mott insulator
at half-filling, trimer and dimer Mott insulator as well as a spin
triplet Mott at 4/3 filling [23]. In the strong coupling limit,
when local spin-1/2 moments have formed, VBS [24,25] and
quantum spin liquids [26] can be stabilized. Hence, a plethora
of phases arise in a Hubbard model with a single orbital per
site typically associated with multiorbital Hubbard models.

Here, we take a step beyond previous work on the DHL by
considering interacting and spinful electrons. In order to do
this, we explore the phase diagram of a Hubbard model on the
DHL with SOC based on mean-field Hartree-Fock (HF) and
exact diagonalization (ED) techniques. The noninteracting
QSH and SM phases [19] are found to be stable up to SOC
dependent Uc(λSO) that increases with λSO similar to the
behavior in the KMH model but in contrast to a model for
Ir-pyrochlores [4,5]. At weak SOC, a transition from a QSH
to a quantum spin liquid (QSL) phase induced by U occurs. In
contrast, HF would find a transition to a classical AFI phase.
At strong SOC, the SM phase, which is stable in a broad
weak-to-intermediate U repulsion regime, is characterized by
a finite nonquantized spin Hall conductivity (in contrast to the
quantization associated with the QSH phase). At sufficiently
strong U , a transition from the SM to a magnetically or-
dered phase with localized S � 3/2 moments at each triangle
occurs. At the mean-field level, this phase effectively is a
S = 3/2 AF on the honeycomb lattice. The phase diagram
obtained is richer than the one of the KMH model including
new phases (SM and 3/2-MI) and phase transitions.

Our work is organized as follows. In Sec. II the model
and the Hartree-Fock method are introduced. In Sec. III
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the U − λSO mean field phase diagram at half-filling is ob-
tained in Sec. III. In Sec. IV electron correlation effects on
the mean-field states are explored using ED techniques. In
Sec. V we provide an analysis of the spin Hall conduc-
tivity which could be compared with experiments. Finally,
in Sec. VI we conclude the paper giving an outlook of
future works.

II. MODEL AND METHODS

We consider a Hubbard model under the effect of SOC on
the decorated honeycomb lattice:

H = Htb + HCoul + HSO, Htb = −t
∑
〈i j〉,σ

c†
iσ c jσ ,

HCoul = U
∑

i

ni↑ni↓, HSO = iλSO

∑
〈〈i j〉〉

ei j (c
†
i↑c j↑− c†

i↓c j↓),

(1)

where c†
iσ (ciσ ) creates (annihilates) a fermion on site i with

spin σ = ↑,↓. The hopping amplitude t is the same for n.n.
inside and between triangles in the lattice while the n.n.n.
hopping amplitude induced by SOC iλSO changes sign for
right (left) turning electrons as encoded in ei j = +1(−1) [2].
In the present work, we will be interested in the different
phases arising in the model for different U and λSO at
half-filling.

A. Hartree-Fock approach

When we switch the on-site Coulomb repulsion, U �= 0,
the hamiltonian becomes cuartic. Since it cannot be solved
exactly we apply a Hartree-Fock mean-field decoupling of the
Coulomb interaction:

ni↑ni↓ ≈ (ni↑ni↓)Hartree − (ni↑ni↓)Fock, (2)

where (ni↑ni↓)Hartree = ni↑〈ni↓〉 + 〈ni↑〉ni↓ − 〈ni↑〉〈ni↓〉 and
(ni↑ni↓)Fock = c†

i↑ci↓〈c†
i↓ci↑〉+ 〈c†

i↑ci↓〉c†
i↓ci↑−〈c†

i↑ci↓〉〈c†
i↓ci↑〉.

We work in the canonical ensemble with a fixed number of
electrons Ne. At a given temperature 1

β
= kBT , the free energy

F is given by F = FT − FHF, where:

FT = −kBT
∑
k,n

ln[1 + e−β(Ek,n−μ)] + μNe (3)

FHF = U
∑

i

(〈ni↑〉〈ni↓〉 − 〈c†
i↑ci↓〉〈c†

i↓ci↑〉) (4)

with μ the chemical potential and Ek,n the nth Hartree-Fock
energy band. We consider complex Fock terms 〈c†

i↑ci↓〉 = ξi +
iηi in such a way that 〈c†

i↑ci↓〉〈c†
i↓ci↑〉 = ξ 2

i + η2
i . These terms

correspond to the spin x and y components, respectively, ηi =
Sy

i and ξi = Sx
i since c†

i↑ci↓ = S+
i and S+

i = Sx
i + iSy

i . Carrying
out the minimization of F with respect to each Hartree-Fock

variable, we get a set of 24 coupled self-consistent equations:

〈ni↑〉(w+1) = 1

U

∑
k,n

∂Ek,n/∂n(w)
i↓

1 + eβ(Ek,n−μ)

〈ni↓〉(w+1) = 1

U

∑
k,n

∂Ek,n/∂n(w)
i↑

1 + eβ(Ek,n−μ)

(5)

ξ
(w+1)
i = − 1

2U

∑
k,n

∂Ek,n/∂ξ
(w)
i

1 + eβ(Ek,n−μ)

η
(w+1)
i = − 1

2U

∑
k,n

∂Ek,n/∂η
(w)
i

1 + eβ(Ek,n−μ)
,

where 1 � i � Ns = 6 and w is the iteration. By solving
them simultaneously for each set of parameters (λSO,U ), we
are able to find the ground state of the system. In addition,
we calculate the correlations matrix 〈�HF|c†

iαc jβ |�HF〉. The
imaginary part of the nondiagonal terms will give us the
elemental current between two sites of the unit cell. Then
we can see how the chiral (or not-chiral) currents seem in
the different phases, obtained additional information. First we
write the Fourier transform of 〈c†

iαc jβ〉 taking into account the
translational invariance:

〈c†
iαc jβ〉 = 1

Ns

∑
k

e−ik·(di−dj )〈c†
iα (k)c jβ (k)〉, (6)

where i, j are the indices for sites and α, β for spins. Now
we have to change to the basis in which the HF hamiltonian
is diagonalized. In this basis the creation (annihilation) oper-
ators, b†

nγ (k) (bmδ (k)), are related with the ordinary fermionic
operator as follows:

b†
nγ (k) =

N∑
iα

ξ iα
nγ (k)c†

iα (k), bmδ (k) =
N∑
jβ

ξ
jβ

mδ (k)
∗
cmβ (k),

(7)

where the spin and bands are labeled by γ , δ and n, m,
respectively, and ξ (k) is the eigenvectors matrix obtained
from the self-consistency. In other words, what we have done
is a basis rotation in which the new operator can be written as
a linear combination of the original ones. Being the global
system eigenvector |�HF〉 = ∏Nb

nγ

∏
k b†

nγ (k)|0〉 and writing
〈c†

nα (k)cmβ (k)〉 in terms of bn′γ (k)† (bm′δ (k)) operators we
obtain the following expression for the correlation matrix:

〈c†
iαc jβ〉 = 1

Ns

∑
k

∑
nδ

e−ik·(di−dj )χnδ
iα (k)χnδ

jβ (k)∗, (8)

where χ (k) ≡ ξ−1(k). The elements in the diagonal are
strictly real and represent the on-site i electronic mean den-
sity 〈ni↑〉(〈ni↓〉). In the nondiagonal terms (which can be
complex), we distinguish the on-site correlations 〈c†

i↑ci↓〉,
which match with ξi + iηi found by the self-consistency (5),
and the off-site correlations 〈c†

iαc jβ〉 with i �= j. The off-site
correlations can be either exchange terms (if the spin changes
from one site to the other) or ordinary terms (if not). The real
part acts as a hopping shift between the involved sites while
the imaginary part represents the elemental current.
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B. Topological properties

It is important to distinguish between a conventional and a
topological insulator with a QSH phase. A gap opening is a
necessary but not sufficient condition for having a topological
insulator. In order to ensure this, we calculate the Z2 bulk
invariant using a method developed for systems with inversion
spatial symmetry [27]. This procedure consists of obtaining
Z2 through the parity eigenvalues of the occupied bands evalu-
ated at the TRIM,  j points. In two-dimensional systems there

are four of these points:
−→
 = (0, 0),

−→
M1 =

−→
b1
2 = π

3l (1,
√

3),
−→
M2 =

−→
b2
2 = π

3l (1,−√
3), and

−→
M3 =

−→
b1 +−→

b2
2 = 2π

3l (1, 0). More
specifically, we have to calculate the product of the par-
ity eigenvalues at each  point (δ j) for all occupied
bands:

δ j =
Nc∏

m=1

ξ2m( j ), (9)

where Nc is the number of occupation bands and ξ is just
the eigenvalue of the parity operator which takes −1 (+1)
if the eigenstate changes sign (or not) when the parity trans-
formation, −→r by −−→r , takes place. Hence, we can label the
states by 2m when IS is preserved in the model which is not
the case for large U (AFI or 3/2-MI) as we will see. It is
neither possible to compute it when the system is immersed
in a gapless state (SM). From δ j one can compute the Z2

invariant (ν):

(−1)ν =
∏

j

δ j . (10)

On this way if ν = 0 the system will be just a band insulator
while if ν = 1 it will have nontrivial topology finding itself
in the QSH phase. The Z2 calculation is not the only way
to search for topological signatures, one can also compute
the spin Chern numbers cσn [28]. The procedure consists of
projecting the wave vectors on each spin subspace (P± =
1±σz

2 ) and carrying out the same numerical procedure than
in the spinless case [22,29]. In this way we are not just able
to characterize topological features inside the QSH phase but
also in the SM region by getting the spin Berry phases γσn

associated with each Fermi surface. The spin Hall conductiv-
ity σ s

xy can be computed from these quantities (16) providing
experimental evidences of these topological states as it is
detailed in Sec. V.

III. MEAN-FIELD ANALYSIS OF THE HUBBARD MODEL
WITH SOC ON THE DECORATED HONEYCOMB LATTICE

In this section we analyze the different ground states
arising in the Hubbard model in the presence of SOC on
the DHL under a Hartree-Fock (HF) treatment. The different
ground states of this model at half-filling are obtained by
solving the HF Eqs. (5) for fixed parameters: U, λSO. In this
way we construct the U − λSO phase diagram of the model
at half-filling. We characterize the electronic, magnetic, and
topological properties of the different ground states obtained
as well as the transitions occurring between them.

FIG. 1. The U vs λSO Hartree-Fock phase diagram of the half-
filled Hubbard model on the decorated honeycomb lattice with SOC.
We find two nonmagnetic phases: the gapped QSH and the gapless
SM, and, two insulating magnetic phases: the AFI and 3/2-MI
phases. The QSH phase and the gapless SM phase preserve TRS
and IS whereas the AFI and the 3/2-MI phases break spontaneously
both symmetries through spin ordering phenomena which patterns
are shown in Fig. 2. All four phases contain nonzero bond currents
as can be seen in Fig. 2 for the spin-up sector, 〈c†

i↑c j↑〉.

A. Phase diagram

The U − λSO phase diagram of our model (1) is shown
in Fig. 1. The four different phases found are: a quantum
spin Hall (QSH), a semimetallic (SM), an antiferromagnetic
insulator (AFI), and effective spin S = 3/2 magnetic insulator
(3/2-MI). The real space configurations of these states are
schematically illustrated in Fig. 2. They are characterized
by the value of the third spin component 〈Sz

i 〉 = 〈ni↑〉−〈ni↓〉
2

at each lattice site i and the average n.n. and n.n.n. bond
currents, 〈c†

i↑c j↑〉, obtained from (8). While the QSH and SM
phases are nonmagnetic, the AFI and 3/2-MI phases do order
magnetically as shown in Fig. 2. On the other hand all phases
do sustain spontaneous nonzero bond currents of some kind.
We now discuss each of these phases based on their magnetic
properties and their electronic band structure.

B. QSH phase

We find a QSH phase in the small U, λSO region of the
phase diagram shown in Fig. 1 consistent with the QSH
phase encountered previously in the noninteracting tight-
binding model (U = 0) with SOC [19]. The QSH is sta-
ble for sufficiently weak U � 2.5t in a broad SOC range:
0 < λSO < 0.7t . The noninteracting DHL in the absence of
SOC (U, λSO = 0) is unstable against SOC leading to a QSH
similar to one predicted in the honeycomb lattice [2].

This topological QSH state is characterized by dissipation-
less currents associated with degenerate edge states crossing
the Fermi level [2] which are protected by time-reversal
symmetry (TRS). Copies of the spin currents which propagate
in opposite directions along the edges of the sample occur
conserving TRS. Since the system also has inversion sym-
metry (IS) it is straightforward to characterize the topological
properties of the system through the topological bulk invariant
Z2 using (10). The QSH has ν = 1 since the parity eigenvalues
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FIG. 2. Hartree-Fock ground states of the half-filled Hubbard
model on the decorated honeycomb lattice with SOC. (a) Quantum
spin Hall (QSH) phase: topological insulator characterized by the
Z2 invariant, ν = 1, protected by TRS and IS. The nonzero chiral
currents in the spin-↑ sector shown cancel the spin-↓ currents (not
shown) preserving the TRS. (b) Semimetallic (SM) phase: The
IS and TRS are kept but the Fermi level cross two of the bands
[Fig. 3(c)]. This phase is characterized by nonzero spin Chern
numbers and nonzero spin Berry phases associated with the chiral
currents shown. A nonzero spin Hall conductivity (Fig. 9) can be
associated with this SM phase. (c) Antiferromagnetic insulator (AFI)
phase. TRS is broken since spins are ordered following the color pat-
tern being the intertriangle n.n. spins always opposite. (d) Effective
spin-3/2 magnetic insulator (3/2-MI) phase. The spins belonging to
the same triangle are equally oriented and opposite to the n.n. triangle
forming an effective spin, S = 3/2 antiferromagnetic system. The
third spin component is represented as red for ↑ and yellow for ↓ and
the amplitude depends on the size of the arrow. The currents between
sites are represented as green arrows for n.n.n. loops and blue arrows
for n.n. loops and the thickness reflects the current amplitude. For
phases with uniform spin distribution, this is 〈ni↑〉 = 〈ni↓〉 = 0.5
(QSH and SM), 〈Sz

i 〉 are represented as yellow circles.

of the occupied bands at the TRIM are: (δ, δM1 , δM2 , δM3 ) =
(−1,−1,−1, 1). Apart from the Z2 invariant, we can obtain
additional information about the topological properties of the
QSH phase through the spin Chern numbers c↑n (−c↓n) which
can be unambiguously defined on isolated bands. Under the
action of SOC, bands are strongly deformed eventually lead-
ing to the closing of the gap between two bands. At that
point, the spin Chern numbers, cn↑(= −c↓n), of the two bands
involved in the closure, can change their values (see Fig. 3).
Interestingly, we find that the spin Chern numbers obtained
for 0 < λSO < 0.2t : c↑ = (−1, 1,−1, 2, 0,−1), change to
c↑ = (−1, 0, 0,−1, 3,−1) in the interval, 0.2 < λSO < 0.5,
due to the touching of the second and third bands at the
 point and of the fourth and fifth bands at the K point
before entering the SM phase. Despite these changes on the
band spin Chern numbers, the total spin Chern number of
the insulating QSH state at f = 1/2 C↑ = c↑1 + c↑2 + c↑3

remains constant: C↑ = −1. In contrast, at f = 1/3 the total

FIG. 3. Hartree-Fock electron band dispersions at weak
Coulomb repulsion, U = 2t , across the QSH to SM transition.
(a) λSO = 0.1t . A gap is opened up at  and the system turns
into a topological insulator with the Z2 bulk invariant, ν = 1,
(b) λSO = 0.5t . The band dispersions are strongly modified by SOC
so that the fourth band almost touches the Fermi level. The spin
Chern numbers, c↑, from the second to fifth bands change due to a
topological phase transition occurring at λSO ∼ 0.3t involving the
closing of the gap between the second and third bands at the  point
and between fourth and fifth bands at the K point. (c) λSOC = 0.7t .
The gapless SM having the third and fourth partially filled bands
has formed. Again, the c↑ have been altered due to the gap closing
at K (M) between the (fifth and sixth) third and fourth bands at
λSO ∼ 0.6t (λSO ∼ 0.7t).

spin Chern number changes from C↑ = 0 to C↑ = −1 around
λSO ∼ 0.2t signaling a transition from a band to a topological
insulator [19].

C. Nonzero spin Berry phase semimetal

A SM phase was found in a previous analysis of model (1)
at half-filling but with no Coulomb interaction, U = 0 [19].
Our phase diagram of Fig. 1 shows how a SM phase is stable
in a broad range of U, λSO values up to a substantial Coulomb
interaction, U > 6t . At weak coupling, a transition from the
QSH phase to the SM phase occurs at a critical SOC of λSO =
0.5t . While the system has a gap between the third (valence)
and fourth (conduction) bands for λSO < 0.5t , the Fermi level
crosses both bands simultaneously for λSO > 0.5t as shown in
Fig. 3. We identify the metallic phase as a SM due to the small
overlap between the valence and conduction bands. Although
this SM phase preserves TRS and IS we cannot associate a
Z2 invariant in the SM phase since it is gapless. However,
this does not mean that the SM is topologically trivial. The
SM phase hosts chiral currents in each spin sector similar but
weaker than the chiral currents of the QSH phase as shown in
Fig. 2(b) which suggest nontrivial topology.

Nonzero Berry phases on the Fermi surface of a metal
can lead to an anomalous Hall effect and topological Fermi
liquid properties not contained in Landau original description
of a Fermi liquid [30]. We have explored the existence of
quasiparticles with nonzero Berry phases in the SM phase by
computing spin Berry phases: γ↑n (−γ↓n) associated with the
Fermi surfaces crossing the n partially filled bands. Nonzero
values of γ↑n are found and can lead to a nonquantized spin
Hall conductivity, σ s

xy, which can be experimentally detected
(see Sec. V). Based on these observations we conclude that
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FIG. 4. Hartree-Fock band dispersions across the QSH to AFI
and the SM to 3/2-MI phase. U increases for λSO = 0.4t (top panels)
and for λSO = 1.5t (bottom panels), respectively. (a) λSO = 0.4t and
U = 2t . In the QSH phase the bands are doubly degenerate in the
whole FBZ due to the presence of TRS and IS. (b) λSO = 0.4t and
U = 7t . The bands are splitted by the spontaneous breaking of TRS
due to magnetic order becoming an AFI. (c) λSO = 1.5t and U = 2t .
We are in the SM region with both IS and TRS preserved. (d) λSO =
1.5t and U = 7t . The gap is opened by the action of U driving the
system into the 3/2-MI phase. Similarly the splitting takes place due
to TRS breaking as can be observed in the inset.

our SM phase can be regarded as a topological Fermi liquid
since quasiparticles on the Fermi surfaces carry nonzero spin
Berry phases as envisioned by Haldane [30]. This is a metallic
version of the quantum spin Hall effect in topological insula-
tors but with no quantization of the spin Hall conductivity due
to the finite but noninteger spin Berry phases.

D. Antiferromagnetic insulating phase

When the on-site Coulomb repulsion U becomes suffi-
ciently strong spin ordering occurs driving the system into a
magnetic insulating phase. Our phase diagram of Fig. 1 shows
how for U > 2.5t and SOC 0 < λSO ≈ 1.1t an AFI phase is
stabilized. In this phase the spins are ordered according to
the color pattern of Fig. 2(c), in which the intertriangle n.n.
spins are always opposite. This classical state is similar to the
one found in a Heisenberg antiferromagnetic (HAFM) model
with q = 0 on a 42-sites cluster of the DHL in the absence
of SOC. The band structure for fixed λSO = 0.4t displayed in
Fig. 4(b) shows how a band splitting proportional to U occurs
when the magnetic order sets in disrupting the QSH phase.
The breaking of TRS and IS does not allow the calculation of
either the Z2 invariant nor the spin Chern numbers c↑. This is
because the spin sectors are mixed up by U so that the spin

Chern numbers become ill defined. In the AFI phase nonzero
chiral bond currents 〈c†

i↑c j↑〉, similar to the ones in the QSH
phase, arise but with dominating n.n. bond compared to n.n.n.
bond currents as Fig. 2 shows. The presence of such chiral
currents may indicate that the AFI phase does have nontrivial
topological properties.

E. Magnetic insulator with effective S = 3/2

In the large U and λSO regime we find another type of
magnetic insulator. All the spins of the electrons, Sz

i , in a
triangle are oriented in the same direction leading to an
effective S = 3/2 local moment per triangle. These moments
arranged in an underlying honeycomb lattice order AF as
Fig. 2(d) shows. Thus, we call this magnetic state, effective
S = 3/2 magnetic insulator (3/2-MI). It can be rationalized
from the fact that it is the only magnetic ordered state which
allows AF alignment between all n.n.n. induced by the large
SOC. This state breaks TRS and IS due to the emergence
of local spontaneous magnetization with opposite direction
in each triangle. Band splitting is observed although it is
much smaller [see the inset of Fig. 4(d)] than in the AFI
phase. This can be attributed to the much smaller Fock terms
ξi + ηi in the present S = 3/2-MI phase. However, close to the
transition from the SM to 3/2-MI there is an enhancement of
the Fock terms making the band splitting huge in a small range
of U values.

As found in the weakly interacting QSH and SM phases,
the SOC induces spontaneous currents in the AFI and the
S = 3/2-MI phases as shown in Figs. 2(c) and 2(d). While
the n.n. currents in all the triangles of the AFI have the same
direction, they have alternating directions in the two different
triangles of the S = 3/2-MI phase. We attribute this difference
to the different local magnetization of the triangles in the
two phases. On the other hand, the currents around the n.n.n.
hexagonal loops are more prominent in the 3/2-MI phase than
in the AFI phase since the former phase needs a larger λSO

to be stabilized. The different amplitudes of the currents in
the two triangles of the 3/2-MI phase may also be associated
to the interplay between SOC effects and the opposite local
magnetization of the two triangles. Although the existence
of the spontaneous currents do suggest topological features
in the magnetic phases, a topological invariant different
from the conventional ones (like the Z2 or Cσ used here for the
noninteracting phases) should be introduced to characterize
the possible nontrivial topology of these phases.

IV. BEYOND MEAN-FIELD THEORY: RVB QUANTUM
SPIN LIQUID VS MAGNETIC ORDER

It is interesting to go beyond mean-field theory analyzing
possible electron correlation effects on the various phases of
our HF phase diagram 1, particularly on the large-U mag-
netic phases found. Quantum fluctuations neglected in HF
can distort and even destroy the classical-type magnetically
ordered states found. Here, we are particularly interested in
the possibility that, at large-U , quantum spin liquid (QSL)
phases may arise due to the frustration associated with the
triangular coordination of the decorated honeycomb lattice.
Applying ED techniques and RVB theory on our model (1)
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FIG. 5. Nonlocal spin correlations 〈SiSj〉 in the Hubbard model
with U and λSO on a six-sites cluster. The n.n. spin correlations
〈SiSj〉

�

and 〈SiSj〉
�→�

are represented in blue and red, respectively,
whereas the n.n.n 〈SiSj〉 in green. On the left the spin correlations
are displayed as a function of U in the absence of SOC (λSO = 0).
It can be observed a transition to a more correlated state at U = 4t
marked as a dashed vertical line. The spin correlations got from RVB
are also indicated as colored dashes. On the right the dependence of
〈SiSj〉 with SOC at fixed U = 8t is shown. The dashed vertical line
at λSO = 1.4t indicates when the 〈SiSj〉

�

becomes positive.

in small clusters we find that while an RVB state dominates
at weak SOC, λSO � t instead of the mean-field AFI, the
magnetically ordered 3/2-MI state found in HF survives to
quantum fluctuations at large SOC λSO � t .

A. Magnetic correlations on small clusters

We analyze the spin correlations obtained with ED on a
small cluster with Ns = 6 sites. In Fig. 5(a) we show the
dependence of spin correlations with U and no SOC. At
around U = 4t the magnitude of spin correlations displays a
strong enhancement signaling short range spin ordering inside
the cluster. While both kinds of n.n. spin correlations are AF,
the n.n.n. are FM. The spin correlations saturate rapidly with
increasing U to the U � t values shown as colored dashes
in Fig. 5(a) already at U > (8 − 10)t . It is worth pointing
out how, above the transition point U > 4t , the magnitude
of the intertriangle n.n. spin correlations are much larger

than the intratriangle, i.e., the ratio r = 〈SiSj〉
�→�

〈SiSj〉
� > 1 despite

the fact that all n.n. hoppings (inter- and intratriangle) are
the same. The anisotropy in the spin correlations becomes
substantial, r → 3.5, in the U/t → ∞ limit. We show below
how an RVB ground state of our six site cluster provides a
faithful description of the exact ground state of the cluster
recovering naturally such large unexpected anisotropy in the
n.n. spin correlations. We also explore the AFI to 3/2-
MI transition induced by SOC found in the HF analysis by
computing the dependence of the spin correlations on λSO at
a large U = 8t as Fig. 5(b) shows. For small 0 < λSO ∼ 1.4t
both n.n. intratriangle and n.n. intertriangle spin correlations,
〈SiSj〉

�→�

, remain AF as for the case with no SOC. At a
larger SOC, λSO > 1.4t, 〈SiSj〉

�

becomes positive indicating
a FM coupling between spins within the same triangle, while
〈SiSj〉

�→�

remains AF. These spin correlations are consistent
with the 3/2-MI state obtained from HF theory shown in
Fig. 2(d).

FIG. 6. Dependence of the magnetic order parameter m+2 on U
and SOC on Ns = 12 clusters. On the left panel m+2 is represented as
a function of U for fixed λSO = 0. The dashed horizontal line shows
the saturation for large U . In the same way, the right panel shows the
dependence of the order parameter on λSO at fixed U = 8t .

Further insight into the various transitions found can be
obtained by analyzing the U dependence of the magnetic
order parameter, m†, introduced earlier [24]:

m+2 = 1

N2
s

∑
i, j

|〈SiSj〉|, (11)

where Ns is the number of sites of the cluster. In Fig. 6(a)
we show the dependence of m+2

in the Hubbard model on
a 12-site cluster in the absence of SOC: λSO = 0. The rapid
increase of m+2

with U indicates the building up of AF spin
correlations which start to saturate around U ≈ (6 − 7)t sig-
naling the formation of a S = 1/2 state with short range mag-
netism. In order to make contact with the Heisenberg model
we show in Fig. 6(a) the value of m+2 = 0.1927 obtained
for U � t and no SOC, which is consistent with the order
parameter m†2 ∼ 0.2167 extrapolated to a 12-site cluster [24].
These values are strongly suppressed in the extrapolation to
the thermodynamic limit of the Heisenberg model which find
m+2 ≈ 0.0025 which, at the same time, is much smaller than
the classical value, m+2 ≈ 0.1665, indicating a spin disor-
dered state. The SOC dependence of m+2

at fixed U = 8t
is shown in Fig. 6(b). The m+2

is suppressed with SOC as
expected from the suppression of the spin correlations 〈SiSj〉
shown in Fig. 5(b) which is associated with the formation of
the 3/2-MI phase.

Hence, our analysis suggests that a transition from a quan-
tum paramagnet to a quantum spin state with short range
magnetic order occurs for U > 5t at weak SOC. Increasing
SOC drives this state into a 3/2-MI state around a critical
λSO = 1.4t . This picture is qualitatively consistent with the
HF phase diagram with, however, the AFI state replaced by a
spin disordered phase.

B. RVB state at large U and weak SOC

Previous studies of the S = 1/2 Heisenberg model on
the decorated honeycomb lattice indicate the existence of a
valence bond crystal (VBC) state with no long range mag-
netic order [24,25]. The destruction of magnetic order can
be associated with the triangular coordination of the lattice
inducing strong magnetic frustration. An interesting property
of such VBC is the fact that n.n. intertriangle spin correlations
are much stronger than intratriangle despite the fact that all
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FIG. 7. Valence bond configurations considered in the RVB wave
function on a six-sites cluster. The singlet pairings between n.n.
spins composing each valence bond are marked with ellipses: In-
tratriangle singlets (blue dashed) and intertriangle (green dashed).
The RVB state consisting on a linear combination of these four
configurations provides a faithful description of the ground state of
the S = 1/2 Heisenberg model on a six-site cluster of the decorated
honeycomb lattice.

n.n. exchange couplings are the same. This was already found
in previous ED studies of the S = 1/2 Heisenberg model on
the decorated honeycomb lattice on clusters up to Ns = 42
sites [24]. In order to compare with these results we fix U =
100t and λSO = 0 in our Hubbard model on a Ns = 6 cluster,
finding that indeed the AF spin correlations are very different:
〈SiS j〉

�→�

= −0.600 and 〈SiS j〉
�

= −0.208. Our results
are consistent with the spin correlations in the Heisenberg
model obtained through ED on much larger clusters of Ns =
42 sites: 〈SiS j〉

�→�

= −0.591 and 〈SiS
�

j 〉 = −0.168 [24].
The good agreement between the n.n. spin correlations of
Ns = 6 and Ns = 42 clusters indicates that the short range
AF correlations of isolated triangular dimers are dominant.
This is further corroborated by the large singlet-triplet gap,
� ≈ 0.38J , and the lack of spin singlet excitations within the
gap weakly dependent on the cluster size [24] in close resem-
blance with the spin excitation spectrum of isolated triangular
dimer units. This motivates an analysis of triangular dimers in
order to gain insight about the ground state of the system in the
thermodynamic limit when U � t . We consider an RVB state
as a possible candidate for the ground state wave function of
the Heisenberg model on a DHL. Such RVB is constructed as
a linear combination of all possible configurations in which
n.n. spins are paired up into singlets. On a six-site cluster,
the RVB state consists of the linear combination of the four
possible valence bond (VB) configurations of Fig. 7, which
can be expressed as:

|RV B〉 = (14)(23)(56) + (13)(25)(46)

+ (12)(36)(45) − (14)(25)(36), (12)

where (i j) = 1√
2
(c†

i↑c†
j↓ − c†

i↓c†
j↑)|0〉 is a singlet between n.n.

sites i j with the numeration of the sites as shown in Fig. 7
(see Appendix for further details). The overlap between this
RVB and the exact ground state wave function obtained from
ED for U � t is nearly one: 〈RV B|�0〉 = 0.9988, and the
RVB energy is only a 0.16% higher than the exact ground
state energy obtained with ED. These facts indicate that such
an RVB state provides a very good description of the exact
ground state of the Heisenberg model on this six-site cluster
including the large difference between the n.n. inter- and
intratriangle spin correlations is naturally captured by such
an RVB state. Indeed, we find that while 〈SiSj〉

�

= − 13
17×4 ≈

FIG. 8. Dependence of ground state wave function on SOC. The
modulus of the coefficients of the dominant nonionic configurations
|〈m|�0〉| for U = 8t labeled as in the RVB wave function (see
Appendix) are shown. The SOC, λSO, favors the formation of a S =
3/2 AF configuration in which each triangle contains three parallel
spins which are oppositely oriented to the spins of its n.n. triangles
as shown in Fig. 2(d). The values of these three coefficients of the
RVB model (U � t) at λSO = 0 are displayed as colored dashes:
〈1|RV B〉 = 〈2|RV B〉 = 0.121 in cyan and 〈4|RV B〉 = 0.364 in dark
red (A6).

−0.191, 〈SiSj〉
�→�

= − 39
17×4 ≈ −0.573 in very good agree-

ment with the exact result. This allows us to understand
the large anisotropy in the n.n. spin correlations arising in
the Heisenberg model on the DHL despite isotropic n.n.
exchange couplings. This can be understood as a consequence
of the interference of the VB configurations contributing to
the RVB wave function. Note also that the RVB configurations
involving singlets between triangles occur with an opposite
sign to the configurations involving singlets in the triangles.

From the above analysis, we conclude that the RVB state
is a good candidate for the ground state wave function of the
Heisenberg model on the infinite DHL. Such an RVB state
would read:

|RV B〉 =
∑

m

am|m〉, (13)

where |m〉 denotes a VB configuration in which all n.n. spins
of the DHL are paired up into singlets and am = ±1. Although
this RVB state neglects VB configurations containing singlets
between spins at sites beyond the n.n., we expect that it will
still provide a good description of the n.n. spin correlations
of the exact ground state including the unexpected large
anisotropy in the n.n. spin correlations.

C. Magnetic order at large U and strong SOC

We can gain further insight into the formation of the
3/2-MI state at strong SOC from a direct inspection of the
exact ground state wave function, |�0〉, on the Ns = 6 site
cluster. This provides useful complementary information to
the spin correlations discussed previously. In Fig. 8, the de-
pendence of the exact wave-function coefficients: |〈m||�0〉|
on λSO is shown at a large U = 8t . The three dominant
configurations, |m〉, plotted are the nonionic configurations
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of the wave function and are given explicitly in Appendix.
While for λSO → 0 the wave-function coefficients match al-
most perfectly with the RVB state ones shown as colored
dashes, in the λSO � t limit, the |1〉 = c†

1↑c†
2↑c†

3↑c†
4↓c†

5↓c†
6↓|0〉

and |20〉 = c†
1↓c†

2↓c†
3↓c†

4↑c†
5↑c†

6↑|0〉 configurations dominate
the wave function. These two configurations are equivalent
energetically having the same weight in the wave function of
our finite cluster. However, in the thermodynamic limit we
expect that only one of these configurations is picked up due
to the spontaneous symmetry breaking process leading to the
classical 3/2-MI phase of Fig. 2(d). The magnetic moment
of such magnetic state would be effectively decreased, i.e.,
S � 3/2, by quantum fluctuations coming from the non-
negligible weight of configuration |2〉 in the ground state.
More careful work on larger clusters is needed to confirm
our prediction. By comparing both quantities 〈Si · S j〉 and
|〈m|�0〉| in Figs. 5(b) and 8, respectively, we note that the
critical SOC at which the n.n.(

�
) spin correlations become

positive occurs at λSO = 1.4t which is somewhat larger than
the value of λSO = 0.8t at which the |1〉, |20〉 configurations
start to dominate. This mismatch can be attributed to the small
but non-negligible contributions of the ionic configurations
still present at U = 8t .

We finally provide a simple explanation for the formation
of the 3/2-MI state. SOC acts as a chiral imaginary hopping,
±iλSO, connecting n.n.n. sites. In the large-U limit: U � λSO

and such hopping leads to an AF spin exchange coupling, J ′ =
4 λ2

SO
U , between n.n.n. sites. However, due to the particular form

of the SOC hopping term, it leads instead to a coupling which
differs somewhat from the pure Heisenberg type [7]:

HJ ′ = J ′ ∑
〈〈i j〉〉

( − Sx
i Sx

j − Sy
i Sy

j + Sz
i

)
. (14)

This model couples ferromagnetically the x, y components
and antiferromagnetically the z components of the n.n.n
spins of the lattice. Thus, the complete effective spin model
arising from the original Hubbard model in the U � λSO, t
limit reads:

HJ−J ′ = J
∑
〈i j〉

SiS j + HJ ′ , (15)

where J = 4t2/U . Hence, we can expect that in the limit,
λSO � t, J ′ � J so that it is energetically favorable to ori-
entate the z component of two n.n.n. spins of the DHL in
opposite directions while keeping the components in the x, y
plane aligned. This is achieved if the z component of the three
spins inside a triangle are FM aligned and AFM aligned with
the three spins in the n.n. triangle. A transition from the RVB
to a 3/2-MI state is found around a critical SOC of λSO ∼
0.8t , as discussed in Appendix 2 based on this J − J ′ model.
This critical λSO is in good agreement with our results on the
Hubbard model for U = 8t shown in Fig. 5(b) indicating that
the large-U regime has been reached.

V. SPIN HALL EFFECT

We now discuss the implications of some of our results
on experiments. We consider the spin Hall conductivity, σ s

xy,
in the noninteracting limit of the model. We are particularly

FIG. 9. Spin Hall conductivity σ s
xy as a function of λSO at U = 0.

The dashed vertical line indicates the point at which the system
turns into SM. We find nonzero conductivity inside the SM zone
keeping the characteristic chiral currents of the QSH phase as can be
seen in Fig. 2(b).

interested in the dependence of σ s
xy with increasing λSO. In

the QSH phase obtained at 0 < λSO < 0.5t the spin Hall
conductivity can be obtained from the spin Chern numbers
of the occupied bands as: σ s

xy = − e2

h

∑Nc
n=1(c↑n − c↓n) where

Nc denotes the highest occupied band of the system. For
λSO > 0.5t , in the SM phase we can evaluate the spin Hall
conductivity based on the Haldane expression for 2D metallic
systems [30]:

σ s
xy = −e2

h

Nc∑
n=1

(c↑n − c↓n) − e2

h

Nc+2∑
n=Nc+1

(γ↑n − γ↓n)

2π
(16)

which involves the spin Chern numbers cσ,n of the occupied
bands and the spin Berry phases γσn of the closed Fermi
surface sections associated with the bands crossing the Fermi
energy. The n = Nc + 1 and n = Nc + 2 bands are the two
partially filled bands in the SM phase. The calculated spin Hall
conductivity as a function of λSO is shown in Fig. 9. For 0 <

λSO < 0.5 the system is in the QSH and σ s
xy is quantized with

a value of σ s
xy = −2e2/h. When λSO > 0.5t the system enters

the SM phase and a strong variation of σ s
xy with λSO occurs. It

is interesting to notice that the spin Hall conductivity, although
nonquantized, is nonzero in the SM phase.

The behavior of σ s
xy with λSO observed in Fig. 9 is asso-

ciated with changes in the spin Chern numbers due to band
gap closings induced by SOC as can be observed in Fig. 3.
These changes, in turn, influence the spin Berry phases (γσn)
on the Fermi surface which are fractions of the spin Chern
numbers associated with the partially filled bands of the SM
phase. Based on this observation we can explain the maximum
in σ s

xy around λSO ≈ 0.7t . For this SOC, the third and fourth
bands touch at the M points so that the spin Chern numbers
become: c↑ = (−1, 0, 3,−4, 1, 1), and the third (fourth) band
reach their largest values found, c↑3 = 3 (c↑4 = −4). Spin
Hall conductivity experiments on DHL materials may be
the most direct way to probe the presence of the SM phase
found here.
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VI. CONCLUSIONS

The interplay of Coulomb repulsion and SOC on decorated
honeycomb lattices (DHL) leads to a rich phase diagram
including topological insulating and metallic phases as well
as quantum spin liquid and magnetically ordered phases.
At weak Coulomb repulsion and nonzero SOC, we find
that the topological QSH and SM phases are stable up to
moderate values of U . Our HF analysis predicts that the
spontaneous counterpropagating chiral currents expected in
the QSH persist in the SM phase as shown in Fig. 2(b).
The nonzero spin Chern numbers obtained in the QSH leads
to a quantized spin Hall conductivity (as expected in Z2

topological insulators) of σ s
xy = −2 e2

h . In contrast, the SM
phase is characterized by a finite but nonquantized σ s

xy aris-
ing from the nonzero spin Chern numbers of the occupied
bands as well as from the spin Berry phases of the Fermi
surfaces. Hence, measuring a nonzero spin Hall conductivity
would provide evidence for such an SM phase which can
be considered as a topological Fermi liquid as envisioned by
Haldane [30].

Magnetic ordering occurs at a critical Uc(λSO) obtained
from HF that increases with λSO. This increase is attributed
to the deformation of the flat band at the Fermi energy [22]
with no SOC making the QSH and SM phases more unstable
to magnetic order as λSO is decreased. Two different spin or-
dered states emerge depending on the values of SOC: an AFI
phase for 0 < λSO < 1.1 and an effective S = 3/2 magnetic
insulator, the 3/2-MI phase at larger SOC.

In order to explore the robustness of the HF phases for
strong Coulomb repulsion we have analyzed electron corre-
lations effects based on ED techniques. At weak SOC we
conclude that the ground state of the Hubbard model on
the DHL is an RVB state in contrast to the classical AFI
phase found with HF. RVB theory on small clusters naturally
explains the unexpected large anisotropy of the n.n. spin
correlations noted previously [24,25]. A VBS is proposed as
the ground state of the Heisenberg the model on the DHL
since the n.n. intertriangle, (

� → �
), spin correlations are

3.5 times larger than the intratriangle, (
�

), in spite of the
isotropic n.n. exchange couplings considered. Here, we find
that such anisotropy arises naturally from the interference
effects encoded in the RVB state. On the other hand, our ED
analysis on small clusters indicates that a FM alignment of
the spins in each triangle occurs consistent with the classical
3/2-MI state found in HF. This can be easily understood in
terms of a J − J ′ Heisenberg model in which the AF n.n.n.
exchange coupling, J ′ ∝ λ2

SO/U > 0, induced by SOC wins
over the n.n. exchange, J ∝ t2/U>0, at large SOC, i.e., J ′�J .
In this situation, it is energetically favorable to align FM the
three spins in a given triangle and AF with the three spins in
any n.n. triangle leading to a non-fully-saturated 3/2-MI state.

Our results open interesting avenues including the pos-
sibility of inducing superconductivity in the DHL by dop-
ing the RVB state found at half-filling as proposed for
the cuprates [31]. On the other hand, the DHL at strong
Coulomb repulsion and strong SOC provides a playground
to study quantum magnetism of AF coupled S = 3/2 local
moments in a honeycomb lattice. These issues are left for
future studies.
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APPENDIX: HEISENBERG MODEL AND THE RVB STATE
ON SMALL CLUSTERS

Here we describe the similarities between the exact ground
state obtained by ED on six-site clusters and the approximate
RVB theory on small clusters. In the limit of U � t , our
Hubbard model with SOC can be mapped onto a Heisenberg-
type model on the decorated honeycomb lattice:

HJ−J ′ = J
∑
〈i j〉

SiS j + J ′ ∑
〈〈i j〉〉

( − Sx
i Sx

j − Sy
i Sy

j + Sz
i Sz

j

)
, (A1)

neglecting constant terms. The first term describes a n.n.
AF Heisenberg exchange coupling with J = 4t2/U while the
second term describes the magnetic exchange between n.n.n.
induced by SOC, J ′ = 4λ2

SO/U . This model contains frustra-
tion of spin order in the z components due to competition
between the n.n. AF J and the n.n.n. AF J ′. Also the x-y
coupling between spins displays competition between the n.n.
AF J and the n.n.n. FM J ′.

On the six-site cluster of Fig. 7, this model can be ex-
pressed on the valence bond (VB) basis leading to a reduced
20 × 20 hamiltonian matrix instead of 400 × 400 of the Hub-
bard model. These VB basis states are:

|1〉 = c†
1↑c†

2↑c†
3↑c†

4↓c†
5↓c†

6↓|0〉
|2〉 = c†

1↑c†
2↑c†

3↓c†
4↑c†

5↓c†
6↓|0〉

|3〉 = c†
1↑c†

2↑c†
3↓c†

4↓c†
5↑c†

6↓|0〉
|4〉 = c†

1↑c†
2↑c†

3↓c†
4↓c†

5↓c†
6↑|0〉

|5〉 = c†
1↑c†

2↓c†
3↑c†

4↑c†
5↓c†

6↓|0〉
|6〉 = c†

1↑c†
2↓c†

3↑c†
4↓c†

5↑c†
6↓|0〉

|7〉 = c†
1↑c†

2↓c†
3↑c†

4↓c†
5↓c†

6↑|0〉
|8〉 = c†

1↑c†
2↓c†

3↓c†
4↑c†

5↑c†
6↓|0〉

|9〉 = c†
1↑c†

2↓c†
3↓c†

4↑c†
5↓c†

6↑|0〉
|10〉 = c†

1↑c†
2↓c†

3↓c†
4↓c†

5↑c†
6↑|0〉

|11〉 = c†
1↓c†

2↑c†
3↑c†

4↑c†
5↓c†

6↓|0〉
|12〉 = c†

1↓c†
2↑c†

3↑c†
4↓c†

5↑c†
6↓|0〉

|13〉 = c†
1↓c†

2↑c†
3↑c†

4↓c†
5↓c†

6↑|0〉
|14〉 = c†

1↓c†
2↑c†

3↓c†
4↑c†

5↑c†
6↓|0〉

|15〉 = c†
1↓c†

2↑c†
3↓c†

4↑c†
5↓c†

6↑|0〉
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|16〉 = c†
1↓c†

2↑c†
3↓c†

4↓c†
5↑c†

6↑|0〉
|17〉 = c†

1↓c†
2↓c†

3↑c†
4↑c†

5↑c†
6↓|0〉

|18〉 = c†
1↓c†

2↓c†
3↑c†

4↑c†
5↓c†

6↑|0〉

|19〉 = c†
1↓c†

2↓c†
3↑c†

4↓c†
5↑c†

6↑|0〉
|20〉 = c†

1↓c†
2↓c†

3↓c†
4↑c†

5↑c†
6↑|0〉, (A2)

where |0〉 is the vacuum state of the 6-sites DHL. The hamil-
tonian HJ−J ′ = HJ + HJ ′ in this basis reads:

HJ = J

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0 2 0 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0
0 −1 2 2 2 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0
0 2 −1 2 0 2 0 0 0 0 0 2 0 2 0 0 0 0 0 0
2 2 2 −5 0 0 2 0 0 2 0 0 2 0 2 0 0 0 0 0
0 2 0 0 −1 2 2 0 2 0 2 0 0 0 0 0 0 0 0 0
2 0 2 0 2 −5 2 0 0 2 0 2 0 0 0 0 2 0 0 0
0 0 0 2 2 2 −1 0 0 0 0 0 2 0 0 0 0 2 0 0
0 2 0 0 0 0 0 −1 2 2 0 0 0 2 0 0 2 0 0 0
0 0 0 0 2 0 0 2 −1 2 0 0 0 0 2 0 0 2 0 0
0 0 0 2 0 2 0 2 2 −5 0 0 0 0 0 2 0 0 2 2
2 2 0 0 2 0 0 0 0 0 −5 2 2 0 2 0 2 0 0 0
0 0 2 0 0 2 0 0 0 0 2 −1 2 0 0 2 0 0 0 0
0 0 0 2 0 0 2 0 0 0 2 2 −1 0 0 0 0 0 2 0
0 0 2 0 0 0 0 2 0 0 0 0 0 −1 2 2 2 0 0 0
0 0 0 2 0 0 0 0 2 0 2 0 0 2 −5 2 0 2 0 2
0 0 0 0 0 0 0 0 0 2 0 2 0 2 2 −1 0 0 2 0
0 0 0 0 0 2 0 2 0 0 2 0 0 2 0 0 −5 2 2 2
0 0 0 0 0 0 2 0 2 0 0 0 0 0 2 0 2 −1 2 0
0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 2 2 2 −1 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 2 0 0 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A3)

HJ ′ = −J ′

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0
1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0
0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0
0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1 1 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A4)

1. Zero spin-orbit coupling, J′/J = 0

We now discuss the solution to the model. The ground
state of the cluster obtained from the diagonalization of H in
this basis:

|�0〉 =
∑

m

am|m〉, (A5)

where the coefficients (from larger to smaller weights)
are: −a4 = −a6 = a10 = −a11 = a15 = a17 = 0.367328 ≡
a, a1 = −a20 = 0.144892 ≡ b, a2 = a3 = a5 = a7 =
−a8 = −a9 = a12 = a13 = −a14 = −a16 = −a18 = −a19 =

0.111218 ≡ c. The symmetry in the coefficients can be
attributed to the number of spin permutations np needed
in a triangle to get the other triangle spin configuration
(np = 3, np = 1, and np = 3, respectively). This is directly
related to the number of connected states corresponding
with the nonzero elements of (A3) + (A4). Moreover, it
can be justified also from the symmetries presented in
the system. While TRS, which switches both k → −k
(IS) and σ → −σ , is preserved in states with coefficients
a and b (in this last one C3 is kept too), for states with
coefficients c this invariance is lost. The ground state energy
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is EHeis
0 = −5.30278J (J = 4t2/U ) which matches very well

with the exact solution of the Hubbard model for U � t :
EHubb(U = 20t ) = −1.031859t (EHeis

0 = −1.060556t),
EHubb(U = 100t ) = −0.211866t (EHeis

0 = −0.212111t).
We can compare our exact results in the U � t limit with

an RVB ansatz for the wave function [32,33]. We consider
an RVB wave function which is a superposition of singlet
configurations between nearest neighbor sites only. Hence,
we only include the four configurations of Fig. 7 giving the
|RV B〉 state expressed in (12). When expanding this state on
the different VB configurations we get:

|RV B〉 = 1√
17 × 4

(|1〉 + |2〉 + |3〉 − 3|4〉 + |5〉

− 3|6〉 + |7〉 − |8〉 − |9〉 + 3|10〉 − 3|11〉
+ |12〉 + |13〉 − |14〉 + 3|15〉 − |16〉
+ 3|17〉| − |18〉 − |19〉 − |20〉). (A6)

The overlap of the exact wave function with this |RV B〉
is 〈RV B|�0〉 = 0.9988, indicating that |RV B〉 provides an
accurate description of the Hubbard cluster in the U � t limit.
The energy associated with the |RV B〉 state: 〈RV B|H|RV B〉 =
−5.29412J which provides a very good estimate of the
exact ground state energy only being a 0.16% higher. The
tiny differences between the exact ground state and the
|RV B〉 state can be attributed to neglecting singlets be-
tween next-nearest neighbors in |RV B〉 which favor the
S = 3/2 AF type of configurations |1〉 and |20〉. The
RVB describes the large anisotropy between the n.n. spin
correlations: 〈RV B|SiS j |RV B〉

�→�

= − 39
17×4 ≈ −0.573 and

〈RV B|SiS j |RV B〉
�

= − 13
17×4 ≈ −0.191 and consistent with

the ED calculations up to Ns = 42 sites. The n.n.n. spin corre-
lations are: 〈RV B|SiS j |RV B〉 = 36

17×16 ≈ +0.132, i.e., FM and
close to (≈ + 0.107) in the Ns = 42 site cluster.

2. Finite spin-orbit coupling, J′/J �= 0

In Fig. 10 we show the dependence of the main components
of the ground state of the six-site cluster with spin-orbit
coupling, λSO. The ground state of the Hubbard model for
U � t is compared with the ground state of the Heisenberg
model (15) showing a good agreement, as it should. A transi-
tion to a state in which the configurations |1〉, |20〉 dominate
occurs around λSO ∼ 0.8t , in good agreement with our results

FIG. 10. Dependence of the ground state wave function on SOC
at strong coupling, U � t . The modulus of the dominant nonionic
configurations of the wave function, |〈m|�0〉|, contributing to the
ground state of the Hubbard model with SOC on a six-site cluster for
U = 100t are shown. A transition from the RVB state at λSO → 0
to a 3/2-MI-like state occurs around λSO ≈ 0.8t . The results from
the Hubbard model (solid lines) are compared with the Heisenberg
model (empty circles) showing very good agreement. We also show
the coefficients from RVB at λSO = 0: |〈1|RV B〉| = |〈2|RV B〉| and
|〈3|RV B〉| as cyan and dark red dashes, respectively (A6).

for U = 8t in Fig. 8. These configurations are consistent
with the 3/2-MI state found in Hartree Fock. However, in
contrast to Hartree-Fock calculations, we find other configu-
rations with non-negligible weight in the ground state. These
are associated with quantum fluctuations which effectively
decrease the magnetic order of the pure classical 3/2-MI state.
Hence, our exact treatment of the model is consistent with the
3/2-MI state but with a somewhat smaller staggered magnetic
moment, i.e., S � 3/2. More careful work on larger clusters
is needed to confirm our prediction. Note that due to the
small size of the six-site cluster with PBC analyzed, it is
necessary to take: J ′ = 4(2λSO)2/U instead of J ′ = 4λ2

SO/U
in evaluating the Heisenberg model. This is because each
lattice site is connected to a n.n.n. site by two hoppings of
magnitude ±iλSO due to the PBC. This is equivalent to having
the two n.n.n. sites connected by a single hopping, ±i2λSO,
which is twice the original.
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