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Electron energy loss spectroscopy of bulk gold with ultrasoft pseudopotentials
and the Liouville-Lanczos method
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The implementation of ultrasoft pseudopotentials into time-dependent density-functional perturbation theory
is detailed for both the Sternheimer approach and the Liouville-Lanczos (LL) method, and equations are
presented in the scalar relativistic approximation for periodic solids with finite momentum transfer q. The LL
method is applied to calculations of the electron energy loss (EEL) spectrum of face-centered cubic bulk Au both
at vanishing and finite . Our study reveals the richness of the physics underlying the various contributions to
the density fluctuation in gold. In particular, our calculations suggest the existence in gold of two quasiseparate
5d and 6s electron gasses, each one oscillating with its own frequency at, respectively, 5.1 eV and 10.2 eV.
We find that the contribution near 2.2 eV comes from 54 — 6s interband transitions modified by the intraband
contribution to the real part of the dielectric function, which we call a mixed excitation.
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I. INTRODUCTION

Experiments that probe the dielectric function of finite
systems are usefully complemented with ab initio calculations
based on time-dependent density-functional theory (TDDFT)
[1-3], and sometimes also with many-body perturbation the-
ory, for systems in which excitonic effects are important [4—7]
and/or plasmon-phonon interaction is strong, leading to the
presence of satellites in the spectrum [8—11].

Various advances have been made in the implementations
of TDDFT. On the one hand, fully first-principles nonequilib-
rium simulations based on real-time time-dependent density
functional theory (RT-TDDFT) are now accessible [12—14].
On the other hand, the use of perturbation techniques has
allowed progress toward an efficient treatment of the linear
response of an electronic system to external perturbations
within time-dependent (TD) density-functional perturbation
theory (DFPT), based on the solution of the Sternheimer
equation [15,16]. Moreover, the method based on the Lanczos
recursion method to solve the quantum Liouville equation,
called the Liouville-Lanczos (LLL) method, has allowed us
to speed up the efficiency of calculations of the TDDFPT
spectra, avoiding solving the Sternheimer equations at each
frequency [17-19].

The LL method has been applied to the computation of
optical spectra of molecular systems of unprecedented large
sizes [20-23]. Since then, it has been used in the framework
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of many-body perturbation theory to capture the electron-hole
interaction in the Bethe-Salpeter equation [24,25]. The LL
approach to TDDFPT has also been extended to periodic
solids and to finite values of the transferred momentum within
a norm-conserving pseudopotential (NC-PP) framework to
model plasmons [26-29]. The aim was to provide a valuable
and computationally efficient theoretical tool to complement
experiments that probe the dynamical structure factor, as
measured in inelastic x-ray scattering (IXS) or the inverse
dielectric function, as measured in electron-energy-loss spec-
troscopy (EELS) experiments. Moreover, very recently, the
LL method has been also generalized to model magnons in
magnetic periodic solids [30].

In the present paper, we discuss the generalization of the
LL method for EELS to ultrasoft pseudopotentials (US-PPs)
with an application to bulk gold. The objective is to have
a tool to investigate plasmons in systems of large sizes like
surfaces with steps (vicinal surfaces) [31]. As the efficiency of
the treatment of large surfaces in the slab approach is heavily
linked to the size of the plane-wave basis set, a significant
speed-up in the calculations can be obtained when the kinetic
energy cutoff of the plane waves is reduced. To this end,
US-PPs have been developed [32] about three decades ago
to deal with electronic states localized near the nucleus of an
atom. Actually, the lift of the norm conservation constraint
for the pseudo-wave-functions and the use of several reference
energies for each angular momentum, with the multi-projector
scheme inherent to the US-PP formalism, leads to accurate
PPs even with a small kinetic energy cut-off for the plane
waves. Numerous developments have extended the use of
US-PPs in DFPT [15], for instance, for lattice dynamics
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[33,34], electric field perturbations [35], and TDDFPT for
optical absorption of molecules [36]. Most of the work has
been done for the scalar relativistic (SR) US-PP scheme but
both DFT [37] and DFPT for lattice dynamics [38] have been
generalized to the fully relativistic US-PP scheme, including
spin-orbit interaction in the solution of the Sternheimer linear
system.

The LL approach is similar to the Sternheimer method,
in the sense that it does not need to perform expensive
summations over empty states. However, in contrast to the
Sternheimer method, there is no need to perform computa-
tions at each value of the excitation frequency: This is possible
thanks to the use of the recursive Lanczos algorithm, which
allows us to obtain the charge-density susceptibility on an
arbitrarily wide energy range with just one Lanczos chain.
Due to the efficiency of the LL approach, it is used in this work
and extended to the use of US-PPs. The LL method is then
applied to the calculation of the electron energy loss (EEL)
spectrum of fcc-Au. Revisiting the EEL spectrum for ¢ — 0,
we provide a complete characterization and interpretation of
all peaks and, moreover, we provide some more insights into
the understanding of the origin of certain excitations.

This paper is organized as follows. We first present the
TDDFPT formalism with SR US-PPs implemented in two
ways, the Sternheimer equations and the LL method, for
periodic solids and finite momentum transfer (Sec. II). The
LL method with US-PPs is benchmarked against the NC-PP
implementation and the FP-LAPW method for bulk Au; then
we present our results, comparison with the experiments, and
discuss the origin of the peaks in the EEL spectra of bulk Au
in Sec. III. Conclusions are drawn in Sec. IV.

II. TDDFPT FORMALISM WITH ULTRASOFT
PSEUDOPOTENTIALS

In the following, the formalism is detailed for insulators
for the sake of simplicity and clarity and the discussion is
limited to SR PPs. The reader is referred to Ref. [34] for the
metallic case in US-PP DFPT. Hartree atomic units are used
throughout the paper. For operators, we will use a hat ~ on
top of the symbol.

A. TDDFT equations in the US-PP scheme

Both EELS and IXS cross sections are proportional to
S(q, ), the dynamical structure factor per unit volume of
the solid, where q is the transferred momentum and w is the
energy loss. S(q, w) is proportional to the imaginary part of
the charge-density susceptibility x(q, q, »):

1

The charge-density susceptibility x (r, r’, w) of a system re-
lates to the charge density induced by an external perturbing
potential [39]:

n'(r, w) = f Er'y (e, v, o)V, (¥, 0). 2)

Therefore, when the external perturbation is an electron (plane
wave) with a fixed momentum q and the external perturbing
potential is V_, (r', w) = €'9", we see from Eq. (2) that the

charge-density response at frequency w reads
n'(r, w) = x(r,q, w), 3

and the subsequent Fourier transform of n'(r, ®) at q is the
requested charge-density susceptibility x (q, q, ®).

In the time domain, the electronic charge density in Van-
derbilt’s US-PP scheme [32] reads

(e, 1) =2 (Yii() | K () | i), €

k.i

where the index k runs over the points in the Brillouin
zone (BZ), the index i runs over the occupied Kohn-Sham
(KS) wave functions, and the factor of 2 accounts for spin
degeneracy. In Eq. (4), K(r) is a nonlocal operator at every
point in space r and in coordinate representation it would be
K(r,ry,1p) [34]. In the NC-PP case, K(r, r}, rp) is simply
8(r —r;)8(r —ry), with § the Dirac distribution, and hence
Eq. (4) reduces to n(r,t) =2, |1ﬂk,,-(r,t)|2. Instead, in
the US-PP case, it contains the so-called augmentation term
due to the lift of the norm conservation constraint on the
pseudo-wave-function,

Ry =r) i+ > orPa—RBL)(BI. 5

Imn

where the index [ runs over atoms, y () is the type of atom
1,0 (r — R;) and (r|pl)y = B (r — R;) are the augmen-
tation functions and projector functions of atom [ centered
at Ry, respectively, and the indices m and n run over all the
projectors of the atom . Q,l,/lg)(r) are calculated by pseudizing
the difference ¢} * ()l (r) — ¢tV * ()¢l " (r) so they
are easily expanded in plane waves but conserve the multipole
moments. Here (p},ﬁ(l)(r) and ¢} (1)(1.) are the all-electron and
pseudo-partial-waves, respectively [32]. The augmentation
functions and the projector functions are localized in spheres
about each atom 7 and are generated together with the US-PP.

In the US-PP scheme of TDDFPT, the TD KS equations
read [40]

iS

WD _ By o), ©

where S is an overlap operator,

S=1+) a BB,

Imn

, )

whose coefficients are defined as q,}:,fll ) = [d3r 0rD(r). In
Eq. (6), I-?Ks(t) is the TD KS Hamiltonian which reads

Hys(t) = H° +V'(1). 8)

It is a nonlocal operator, where A° is the Hamiltonian of the
unperturbed system and V’(¢) is the TD linearized potential:

V) = [0+ Vi RE). ©)
Here, V/ (r, ) is the external TD perturbing potential, and

Vi (T, 1) is the linear-response TD Hartree and exchange-
and-correlation (Hxc) potential. At variance with the
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NC-PP case, in the US-PP case the operator V’(t) is nonlocal,
because K (r) is nonlocal [see Eq. (5)]: V/(t) in the coordinate
representation is V'(ry, rp,¢). We consider a real external
perturbation of the form [26]

o0
v (rt) = / doV/ (r,w)e

[ee]

o
- / do [V (r,0)e ™ +cel,  (10)
0
J

and compute the linearly induced charge density »'(r, ¢). The
TD KS wave functions can be developed to first order as

[V, (1)) = e [1Ye ) + 1Y ()], (11)

so the TD charge density becomes n(r, t) = n°(r) + n'(r, t),
where n°(r) is the unperturbed charge density. Going from
time to frequency domain by Fourier transforming all quanti-
ties, the Fourier transform of #/(r, ¢) reads

n'(r, o) =2 Z{ (e Il (@) + (Y (o)) (rlyr )
k,i

Imn

+ 22 00 (o = RO[(V 18 (1 Vi (@) + (v ()| ) </3ﬁ|¢§,i>]} : (12)

where |y ;()) is the Fourier transform of |y ,(¢)). The formalism of the NC-PPs can be recovered by setting the augmentation
terms to zero, i.e., only the first row in the equétion above will remain [26].

In a periodic solid, it is convenient to use the Bloch theorem by writing the KS wave functions as (r|yy ;) = e (rluy ;)
where (r|y, ;) is a lattice-periodic function. The total external perturbing potential V, (r, w) can be written as a sum of the
Fourier monochromatic q components, i.e., as

Vi(r ) =Y vl (v, o), (13)
q

where véxtqq(r, w) is the lattice-periodic part of the perturbation. In EELS, for a beam of incoming electrons, each of which
undergoes a certain momentum transfer q, the perturbation is v/, . (r, ) = 1 for a given (, and zero for all the others. In this

ext,q
case, the response KS wave functions can be written as

(Y (@) = Y STV (el o (@) (14)

q

The response charge density and response Hxc potential can be decomposed in the same way,

n'(r, w) = Z ¢ ) (r, w), (15)

where n;l (r, ) is the lattice-periodic part. After introducing the identity 1 = P, + P. in Eq. (12), with P, (respectively, P,) the
projectors onto the conduction (respectively, valence) states, it can be shown that n (r, @) reads

ny(r,w) =2 Z{ (g |r) (0| PEF gy (@) + Gt [0) (0| PEVOU _ i(— o)

k,i
smn

where

APKFO () = f &r By (r — 73) TV (0| PE (o),

+ 00O — 1) (Y| B [AS Y () + By TR (—w)] } (16)

(

In Eqgs. (16)—(19) and in the following, we use the fact that
atomic positions in a periodic solid can be indicated as R; =
R; + t,, where R; is a Bravais lattice vector and z; is the
position of the atom in one unit cell (I = {/, s}). The projector

a7 onto the conduction manifold lA’Ck *4 is defined as [15,34]
Bfl,fqu,[(_w) . occ .
PEFU= 1= g g ) (171 i Sicag - (20)
= /d3r Bi¥(r — t,) e KTOT (r|PCk+qufk,q’,<(—w)), J
(18) where the sum over j runs over the occupied states. The over-

and

Q%ﬁ)’q(r —1,) = e—iqm Zeiq.RI Q;S‘)(r -R—17y). (19)
l

lap operator S‘Hq in the coordinate representation is defined
as

(r|Skiqlr) = e KFOT (S| RTDT, @1

We have used the same notations as in Eq. (34) of Ref. [15].
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B. The Sternheimer equations in the US-PP scheme

The responses of the wave functions, |FA’C'.‘ +qu{( +q,i(a))) and
|PX +quﬁ‘k7q ;(—w)), that appear in Eq. (16) can be obtained,
within TDDFPT, by solving the Sternheimer equations. In
Refs. [26-29], these equations have been derived with NC-
PPs. By inserting Eq. (11) in Eq. (6), using the Bloch theorem,
and making a Fourier transformation from the time domain
to the frequency domain, we obtain the first Sternheimer
equation for the lattice-periodic part of the response KS wave
functions in the US-PP scheme:

(A, — (exi + ©)Skiql|PX TN g (@)
= —PI* 99 (w)|uy ;). (22)
The Hermitian conjugation in the operator P9 comes from
the presence of the overlap matrix with US-PPs and has no

equivalence in the NC-PP case. The operator ﬁlf +q 18 defined
as [15]

(I‘|I‘7]f+q |r/> — e*l’(k#’q)-r <r|Ho |r/)ei(k+q)~r/ . (23)

Considering the complex conjugate of Eq. (22) at —k for a
perturbation with —q and —w, and by using the time-reversal

J

(A2 g — (e + @Skl |[PX 1 (@) = — BTET [luii,i)

4 o sk
[y, q — (e — @)Sisql [P U

—k—q,i(_w)) =—P

where we defined °I;;J as
opa — f dPretT QO (r — 1), (28)
and 31 (w) as
5 (w) = / dre g r (@0 (r— 1), (29)

We have used the notations °I;;d and 3I;3(w) to be consistent
with notations in Ref. [34]. Moreover, we have defined [cf.
with Eq. (19)]

(r|I3’:Yn,k+q> — efi(k+q)-r Z ei(k+q)-R, ﬂn};(s)(r _ Rl _ Ts)- (30)
1

Note that (,B;Wlf’i) = #(ﬂ;’km;i), where N is the number of
cells of the system, so Eqs. (26) and (27) are written in terms
of lattice-periodic functions. The linear system of Egs. (26)
and (27) can be solved self-consistently at each frequency w.
The Fourier transform of the lattice-periodic part of the self-

consistent response charge-density calculated at G = 0 yields

symmetry, we obtain the second Sternheimer equation:
(A g — (Eri — ©)Skrql [P0y (—w)
= —B* 9 (w)luy ;). (24)

Here, due to time-reversal symmetry, vf{’;ciq(r, —w) =
vhxc’q(r, w), and we also used the fact that K(r) is a real

operator. Except for the presence of the overlap matrix S’Hq,
Egs. (22) and (24) are formally similar to the NC-PP case
presented in Refs. [26-29]. Note, however, that in the US-PP
case, the frequency-dependent potential on the right-hand side
of Egs. (22) and (24) is a nonlocal operator and has a more
complex form due to the augmentation terms. Consequently,
the object f)(’](a))|u§,i) must be interpreted as a shorthand

notation for the lattice-periodic part of V’(a))h//li )
(r|0g (@)l ;)
= e x| / ' 1+ By o (F, @)K DY)

(25)

By inserting the expression of K(r') [see Eq. (5)] in Eq. (25),
we can rewrite Eqs. (22) and (24) as

+ e q@lig )+ Y I+ 1 (w)) |ﬂ;;““‘><ﬁz|w§.i>}

smn

(26)

i kta [iu.ﬁ,» + D@ )+ Y (L 421 ) |ﬂ,i;“*‘*>(ﬂz!w&,i>],

smn

27

(
the required susceptibility,

n(@+G,0)=) x(@+G,q+G,0)V,(q+G, ),
G/

(€29)
and to obtain the macroscopic dielectric function we only
need terms for which G = G’ = 0. Finally, the electronic
susceptibility is given by Eq. (3).

C. The quantum Liouville equation in the US-PP scheme

An alternative approach to the self-consistent solution of
the Sternheimer equations at each frequency has been devel-
oped using the quantum Liouville equation, the so-called LL
method [17,18,21,26-29,36] that allows a significant reduc-
tion of the required computational resources. In this approach,
one can work in the standard batch representation (SBR),
where the response KS wave functions are rotated and repre-
sented as batches gq = {|qk+q,i)} and pq = {|Px+q,i)}, Where

ldicrai) = 5 [P g (@) + [BEF g ()] (B2)

IPirai) = 3 [|BX Y g (@) = |[BXFO_i(—0))]. (33)
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In the SBR, the linearized quantum Liouville equation in the
US-PP scheme can be derived by writing the Sternheimer
Egs. (26) and (27) in terms of |gx4q,;) and |pg4q,i). Multi-
plying both equations by S'l: iq, we obtain (see Appendix A)

o —’ﬁq qq>=(0)
(_Dq_lcq ® )(pq Ya)’ GY

where the actions of the operators Dy and K on the batches
are defined as

Dy qq = {(Sict Ficq — &5.) ldicra.) | (35)

and

c k
Kq-4qq = {Sk+qPI T Do (@) )

+ 37 2 8) BB Im]} (30

smn

On the right-hand side of Eq. (34), yq is the perturbation term
which reads

yq={5 PR )+ Z"I‘“Iﬂ“‘*qmwk)]}

smn

37

If the exchange-correlation kernel is adiabatic, then Oy, (@)
and I, () depend on o only implicitly through the g4 batch.
Actually, Eq. (16) can be rewritten in terms of gq as

n;l(r, w) = 42 {(ui_ih') (r|qK+q,i)

k,i

+ Y Onar -

smn

7))V f,,)C,i’k+q’i(w)}, (38)

where
CiK i) = / d’r BSF(r — 7,) STV (rlgiiq ). (39)

In this case, the susceptibility x(q, q,®) is given by the
following expression [27,28]:

A -1
X(q, q, w) = <(yq’ 0)‘ <—@qw— K:q _Z))q> <)Sl>>7

(40
and Eq. (34) can be solved using the Lanczos recursive
algorithm [17,18,21,26-29,36] identical to that used for the
NC-PP case for any desired range and number of frequencies
at the same computational cost, irrespective of the number of
frequencies. This is important when semicore states need to
be included in the calculation and treated as valence states
to extend the frequency range on which the EEL spectrum is
computed. We point out that in gold, changes brought in by the
introduction of semicore states in the valence show up above
15 eV (see Appendix B).

We also note that the multiplication by S’l: 41_ is crucial to
obtain an expression of the Liouvillian that has a form similar
to the NC-PP case and can be solved by the Lanczos method

[36]. In other words, we use Sk iq to have equations in which

the frequency w enters as a parameter, such that we can tridi-
agonalize the resulting Liouvillian [defined by Egs. (35) and
(36)] independently on the value of the frequency. Ultimately,
in the postprocessing step, the tridiagonal matrix is used to
solve linear systems for various values of frequency w at a
negligible computational cost.

III. APPLICATIONS: EEL SPECTRA OF BULK AU

In the present paper, we present results obtained using
the LL method and US-PPs. The EEL spectra of bulk Au at
vanishing q are presented, as well as the peak dispersion, and
the origin of the peaks is discussed.

A. Implementations

The LL approach to EELS [26-28] has been implemented
in the turboEELS code [29], which is being distributed with
the QUANTUM ESPRESSO suite [41]. The ultrasoft capabil-
ities introduced in this paper are available as release 6.3 of
QUANTUM ESPRESSO (stable version of turboEELS with
US-PPs). The Sternheimer approach to TDDFPT has been im-
plemented in the private branch of the QUANTUM ESPRESSO
project contained in the Thermo_pw code [42]. Sternheimer
functionalities, for both norm-conserving and US-PPs, will be
made available with the next version of the official distribution
of QUANTUM ESPRESSO [41].

In a previous work [16,31], we compared the results and
performance of the LL and Sternheimer approaches using NC-
PPs. We showed that the two approaches yield the same results
and demonstrated that calculations performed using the LL
method require a CPU time smaller than for calculations per-
formed using Sternheimer’s approach when a given frequency
range needs to be considered [16,31]. In the present paper, we
have verified that also in the US-PP case, both codes and both
approaches give the same results. Performance turned out to
be in favor of the LL. method and the gain comparable to the
case of NC-PPs. We report results at vanishing q and point out
that the method is well suited for finite q by showing the peak
dispersion for gold.

B. Computational details

The results have been obtained with the turboEELS and
SIMPLE codes of QUANTUM ESPRESSO [41,43] project,
and with the Thermo_pw [42] package. The results reported
in the present paper were obtained in the SR approxima-
tion, within the local-density approximation (LDA) for the
exchange-correlation energy, and using US-PPs for Au with
11 (5d"06s") or 19 (5525p°5d'°6s') electrons included in the
valence region [44]. Two projectors have been used for each
of the s, p, and d channels [45]. For the 19 electron PP,
reference energies for the s angular momentum consisted of
the 5s and 6s energy levels (resp. Sp and 6p energies for the p
angular momentum) [45]. We have also used the generalized
gradient approximation (GGA) with the PBE (Perdew-Burke-
Ernzerhof) functional [46,47] to have a close comparison with
the PBE-based calculations of Ref. [48].

The experimental lattice parameter at room temperature,
ap = 4.08 A, was used [49]. A kinetic energy cutoff of 20 Ry
was used for the plane-wave expansion of the pseudo-wave-
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functions for the US-PP with 11 electrons (160 Ry for the
charge density) and 55 Ry was used for the plane-wave
expansion of the pseudo-wave-functions for the NC-PP and
US-PP with 19 electrons (220 Ry for the charge density). Note
that the unusually small kinetic energy cutoff for the US-PP
of Au with 11 electrons is sufficient to converge the reported
spectrum [50], but might be too low for the computation of
other physical properties such as phonon frequencies or elastic
constants. A k-point mesh containing 32 x 32 x 32 special
Monkhorst-Pack points was used for integrations over the BZ.
The Methfessel-Paxton smearing was set to 2 mRy.

Spectra for a very small value of the transferred momentum
have been obtained at |q| =~ 0.03 A~'in the I' — X direction
of the BZ. The dispersion has been computed along this di-
rection. To obtain a converged EEL spectrum, 6 000 Lanczos
iterations have been performed and the Lanczos coefficients
have been extrapolated to 30 000 iterations with the constant
extrapolation method [29]. The frequencies used to compute
the EEL spectrum of bulk Au have an imaginary part of
10 mRy that yields a Lorentzian broadening of the peaks.

To substantiate our analysis, calculations in the random
phase approximation (RPA) neglecting local field effects have
been performed with the SIMPLE code at q =0 exactly [51],
with the 19-electron NC-PP of Ref. [52]. We detail the cal-
culations made with the SIMPLE code. Both the full response
and the contribution of only interband transitions (ITs) have
been obtained. The bulk dielectric function €z at q =0 has
been obtained by summing vertical (q =0) transitions, i.e.,
summing matrix elements of the dipolar operator between
an occupied state and an empty one [51]. The intraband
contribution has been added separately [51]. The loss function
has then been obtained as:

_ Im(eB)
~ Re(ep)? + Im(ep)?’

—Im(ej") (41)
where €5 is the dielectric function of the bulk material with-
out local fields effects, either containing both interband and
intraband contributions, or being restricted to ITs.

Finally, to identify plasmon peak positions, we present the
loss function of two toy models computed with LL using
modified pseudopotentials: A just one-electron PP where 5d
electrons are frozen in the core and a ten-electron PP from
which the 6s electron was removed. These pseudopotentials
were NC-PPs and designed by us by reducing the number
of electrons in the generation of the 11-electron NC-PP of
Ref. [53].

The data used to produce the results of this work is avail-
able on the Materials Cloud Archive [54].

C. Benchmark of the Liouville-Lanczos
implementation with US-PPs

In this section, we present a validation of our implemen-
tation of the LL approach with US-PPs. The EEL spectrum
obtained in TDDFPT-GGA with the 19-electron US-PP devel-
oped in the present paper (solid blue line), closely agree with
our results obtained with the 19-electron NC-PP of Ref. [52]
(dashed black line), and compare well with a previous work
[48], where the loss function was obtained through the so-
lution of the Dyson-like equation [5] with an all-electron

19 e US-PP —— 4 ]

12 F19e NC-PP ---- 3 =

- FP-LAPW - ., ]

1 S 6

~— 08 i AL ,:

| 5 W/

& L ”. ]

_E| 06 |- 2 ' A

C 2’ 1

0a | k

C 1 ]

02 |-1° -

C Interband transitions ]

0 ST T I T

0 10 20 30 40 50
E(eV)

FIG. 1. EEL spectrum of bulk Au computed with 19 electrons in
the valence region, with ultrasoft and norm-conserving pseudopoten-
tials, for |q| =~ 0.03 A" in the [100] direction. Previous FP-LAPW
data [48] is reported for q = 0. Peaks are labeled according to Ref.
[48] and we have added labels 1’ and 2’. The horizontal arrow marks
the frequency domain of pure interband transitions. Computations
performed in TDDFPT-GGA.

full-potential linearized augmented plane-wave (FP-LAPW)
method (red dashed line).

The overall remarkable agreement between the EEL spec-
trum obtained using US-PP with another calculation (Fig. 1)
on a wide energy range confirms the correctness of the imple-
mentation of the LL approach with US-PPs. It is important to
note though that special care must be given to the selection
of US-PPs with high accuracy and transferability if one is
interested in computing EEL spectra on a wide energy range,
as done in the present study.

The implementation of the LL approach with US-PPs can
allow to achieve better performance with respect to NC-PPs
thanks to the reduction of the cutoff and hence reduction of the
CPU time. This is though element dependent. Unfortunately
in Au this cannot be seen because the same value of the cutoff
is needed for both types of PPs (see Sec. III B), however
calculations of plasmons in other elements, for which US-PPs
are in bigger contrast with NC-PPs due to the hardness of the
latter, can benefit more from our implementation of the LL
approach with US-PPs. More specifically, the lower the cutoff
value, the smaller the number of Lanczos iterations necessary
to reach convergence of the EEL spectrum: This is a property
of the LL approach [18]. Moreover, not only the number of
Lanczos iterations can be decreased, but also the cost of each
iteration will be reduced, which overall allows us to lower
the CPU time requirements despite the fact that some extra-
computations are needed because of the presence of the US-
PP-related terms. As a matter of fact, the LL approach with
US-PPs is widely used for the optical absorption spectroscopy
of molecules [18,36].

D. EEL spectra of bulk Au

In Fig. 2, we present the loss functions of bulk Au obtained
in TDDFPT-LDA, with US-PPs having 19 and 11 electrons in
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FIG. 2. EEL spectrum of bulk Au computed with US-PP and 11
valence electrons (black dashed line) or 19 valence electrons (blue
solid line) for |q| =~ 0.03 A~"in the [100] direction. Solid black line:
From REELS experiment [55] at q=0. Peak labels as in Fig. 1.
Computations performed in TDDFPT-LDA.

the valence region (respectively, solid-blue and dashed-black
lines), and compare them with the loss function obtained in
the reflection-EELS (REELS) experiment of Ref. [55] (solid
black line). We note that the difference between the EEL
spectra computed with the same parametrization of US-PP
but different functionals, GGA and LDA, at the same lattice
parameter, look very similar (respectively, Figs. 1 and 2).

We also stress that, according to our findings, the 19-
electron US-PP must be used on the extended energy range
(up to 50 eV in this work), while the 11-electron US-PP is
suitable for studies up to 15 eV only (see Appendix B for more
discussion about the semicore 5s and 5p states), as can be seen
in Fig. 2 when comparing with the experimental spectrum.
Therefore, in the rest of this paper, we present the results
obtained with the 19-electron US-PP.

Experimental and theoretical peak positions are summa-
rized in Table I. A slight inaccuracy with respect to the
experiment comes from our neglect of spin-orbit coupling.
Peak positions obtained with the 19-electron US-PP are in

good agreement with Ref. [48], with differences between
—0.6 eV and 0.2 eV. With regard to experiment [55], peaks
1 and 2 show differences of —0.9 eV and —0.8 eV, respec-
tively, while in comparison with the experimental results of
Ref. [56], peaks 1 and 2 show differences of —0.8 eV and
—0.3 eV, respectively.

Part of the inaccuracy comes from the description of 5d
bands of Au in LDA [48,57] that leads to the redshift of the
interband transition onset by approximately 0.5 eV. As can be
seen from Table I, the redshift was only partially corrected by
the approximate GW calculation of Ref. [48].

Finally, the contribution 1’ cannot be singled out as a peak,
in contrast with experiment (Fig. 2). This point is further
discussed below.

E. Origin and dispersion of the peaks
1. Interband transitions

We found the presence of ITs between 2.2 eV and 50 eV,
i.e., the highest energy for which the EEL spectrum has
been computed (Fig. 3, center panel, dotted line). Interband
transitions are characterized in gold by a very weak dispersion
above 12 eV, and peaks 2—6 are attributed to “pure” interband
transitions (Fig. 5, bottom panel). Below 12 eV, ITs are dis-
persing, which is the fingerprint of their mixing with plasmon
excitations, as will be discussed in Sec. I E3 (Fig. 5, top
panel). The attribution of peaks beyond 15 eV is in agreement
with Ref. [48].

2. Plasmon excitations

The energy of a collective excitation like a plasmon cannot
be deduced directly from the band structure. Bulk plasmon
energies are coming from the zeros of the real part of the
dielectric function, with a positive slope of the real part
of €. The crossing of the zero energy axis strictly implies the
existence of a self-sustaining oscillation.

In gold, there are two such oscillation frequencies, as the
real part of the dielectric function crosses the zero energy
axis at 4.8 eV and at 10.05 eV (Fig. 3, bottom panel). There-
fore, peaks 1 and 2’ of the loss function are unambiguously
attributed to plasmons at 5.1 eV and 10.2 eV, respectively
(Fig. 3, top panel). The difference in frequency between the

TABLE I. Bulk Au. Energy of the peak positions in the loss function shown in Fig. 2 for the 19-electron US-PP in LDA. Peaks are labeled
according to Ref. [48] and we have added the labels 1’, 2'. IT stands for interband transition and, by mixed excitation, we mean IT modified
by the intraband (Drude) contribution. ITs are present everywhere between 2.2 eV and 50 eV as a background contribution.

Peak No. This paper Ref. [48] Ref. [48] Expt. [55] Expt. [56]
w (eV) Origin w (eV) Origin w (eV)

19e US-PP FP-LAPW GW REELS
U 2.2 Mixed excitation 2.2 2.65 Weak plasmonlike peak 3.25 2.5
1 5.1 5d plasmon 5.3 5.6 Plasmon type 6.0 5.9
2 10.2 Mainly 6s plasmons 10.5 11.0 10.2¢ 11.9°
2 15.5 IT 15.4 — 1T 16.3 15.8
3 23.8 IT 24.0 - IT 23.6 23.6
4 30.8 IT 31.1 — IT 31.2 31.5
5 36.9 IT 37.5 — IT — 39.5
6 43.5 IT 43.3 - IT - 44.0

?Appears as a shoulder in the spectrum.
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FIG. 3. Dielectric function (DF) and loss function (LF) of bulk
Au with 19 electron PPs. Real part (bottom panel) and imaginary
part (center panel) of the DF and LF (top panel) up to 15 eV
for |q| ~ 0.03 A~ in the [100] direction. Solid lines: Liouville-
Lanczos’s (LL) method as implemented in the turboEELS code.
Dashed lines: SIMPLE code at q =0 with both interband and intra-
band contributions. Dotted line: Interband contributions only to the
imaginary part of the DF at q = 0. The vertical bars show the zeros of
the real part (all panels). Slights differences that are observed in the
imaginary part and real part of the DF below 10 eV when comparing
the calculation at q = 0 and the calculation at |q| ~ 0.03 A~! comes
from the diverging behavior of the intraband contribution at q=0.
Differences that are observed above 10 eV are due to the neglect
of local fields in the calculation with the SIMPLE code at q=0.
Computations in TDDFPT-LDA.

0.6

05 [-US—PP 19e~
0.4

0.3

“Im(e™")

0.2

0.1

. L. ..
0 o RN ERUTROIN SPSeEy e AT NI RS E Il KV SR

0 2 4 6 8 10 12 14
E (eV)

FIG. 4. Toy-model EEL spectra computed using modified NC-
PP pseudopotentials, without the 6s electron (black dashed line) or
without 5d electrons (red dashed line). They are compared to the
EEL spectrum of the 19-electron US-PP that contains both 5d and 6s
electrons (blue solid line, same as in Fig. 2). In the legend, w/o stands
for without. Results computed using the LL method. Computation
performed within TDDFPT-LDA.

zeros of the real part, and the positions of the two plasmon
peaks, is explained below in the present section. The attri-
bution of the peak at 5.1 eV to a plasmonic excitation is in
agreement with Ref. [48].

On the other hand, peak 2’, which is also found in the cal-
culated spectrum of Ref. [48] (Table I), has not been discussed
so far. Thanks to the two toy-model PP calculations with only
6s electrons and with only 5d electrons, we unambiguously
conclude that plasmon peak 2’ is coming mainly from the
collective excitation of 6s electrons. Indeed, in Fig. 4, the
spectrum computed with a toy model containing only the 6s
electron is represented by a single plasmon at 10.05 eV (red
dotted line). There is hardly any peak in the calculation with
only 5d electrons and no 6s ones, while all of the calculations
with more than ten electrons consistently show a peak at
10.2 eV.

On the other hand, peak 1 is attributed to a plasmon
oscillation from 5d electrons. Indeed, in Fig. 4, the spectrum
computed with the toy model PP without the 6s electron,
containing only 5d electrons, has a well pronounced peak at
5.1 eV (black dashed line), in close-to-perfect agreement with
the plasmon positions reported in Ref. [48] (Table I). Thus,
electrons in gold behave as two quasiseparate electron gasses,
each one oscillating with its own frequency.

However, as seen above, in our calculations, the two plas-
mons are intimately influenced by the interband transitions
contained in Im(e) around the respective plasmon frequen-
cies. This is the reason why the zeros of the real part of
the dielectric function (respectively, 4.8 eV and at 10.05 eV)
and the main peaks of the energy loss function (5.1 eV and
10.2 eV) do not exactly coincide: The imaginary part is not
minimal at the position of the zeros of the real part in the
calculations, and the plasmon positions are blueshifted by
0.3 eV and approximately 0.15 eV with respect to the zeros of
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FIG. 5. Loss function of bulk Au with the 19-electron US-PP.
Loss function as a function of energy and transferred momentum g
in the [100] direction (black solid lines). Energy below 12 eV (top)
and above 12 eV (bottom panel). The thin dotted lines in the top
panel are guides for the eyes to highlight the peak dispersion. Results
computed with the LL. method within TDDFPT-LDA.

the real part of the dielectric function. We point out that while
crystal local fields have no effect on the zero energy crossing
at 4.8 eV coming from the 5d electron gas (Fig. 3, bottom
panel, dotted vertical line on the left-hand side), they have an
important effect at the 10.05 eV (Fig. 3, bottom panel, black
and blue dotted vertical lines on the right-hand side) [58]. We
also note that in the experimental data reported around 10 eV,
the real part of the dielectric function is found to be positive
[59].

Finally, inspection of our calculations does not allow us to
attribute a bulk plasmonic origin to the peak at 3.25 eV [55]
or 2.5 eV [56] observed in the REELS experiments (Table I).
This point is discussed in more detail in the next section.

3. Mixed excitations

In this section, we discuss the remaining peaks in the
EEL spectra of bulk Au. There is no clear peak that can be
singled out near 2 eV in the loss function (contribution 1/,
Fig. 3, top panel) nor any zero of the real part of the dielectric

function near 2 eV in the SR calculation (bottom panel). Thus,
contributions in the loss function between ~2 and ~4 eV are
due to 5d — 6s interband contributions. We note, however,
that, in this energy interval, the interband contributions are
modified by the intraband component of the excitation coming
from the presence of a plasmon at 4.8 eV in the real part of
the dielectric function. This can be numerically checked by
inserting in Eq. (41) Re(eg) of the total dielectric function
(both intraband and interband) and Im(ep) containing only the
interband contribution (not shown). Thus contribution 1’ near
2.2 eV is attributed to mixed excitations and has no plasmonic
origin (Table I).

On the other hand, the interpretation of the contribution
near 2.2 eV in previous works [48] was made in analogy with
the plasmon in silver. In silver, there is a plasmon at 3.8 eV
whose position is due to the shift of the mainly-s plasmon at
9.7 eV, caused by the presence of interband transitions [48].
By analogy, in gold, it was thought that a very weak plasmon-
like peak was developing at 2.65 eV when calculations were
performed with methods beyond DFT, e.g., with the approxi-
mate GW calculations (Ref. [48], Supplemental Material). In
gold, however, we find the well-defined s plasmon at 10.2 eV
(see previous section), and a related peak is also found in
the GW calculations at 11.0 eV (Table I). Consequently, the
contribution near 2.2 eV, in bulk gold, is probably solely made
of a wealth of 5d — 6s interband contributions.

Moreover, it should be noted that, from the experimental
side, extra complications come from the fact that, at a similar
energy, several contributions show up [56]. In particular, the
deconvolution of the bulk and surface contributions from the
experimental total spectra is very sensitive to many details.
This makes it hard to determine precisely the exact position of
the contribution 1’ (Table I, last two columns on the right-hand
side).

Finally, the dispersion of the contribution 1’ is reported in
Fig. 5 (top panel). Indeed, as the loss function due to interband
transitions is modified by the intraband contribution to the real
part of the dielectric function, it shows some dispersion. This
is the case for the contribution 1’ in gold, as well as for the
peak around 5 eV in bulk bismuth [60]. This is general to
materials in which there are interband transitions below the
(not too far) plasmon energy: Interband transitions then show
some dispersion.

IV. CONCLUSION

In conclusion, in the present paper we have demonstrated
how the LL and the Sternheimer approaches to the TDDFPT
calculations of EELS and IXS cross sections can be general-
ized to Vanderbilt’s US-PPs. We have shown, on the example
of bulk Au, that results obtained with the LL method and
US-PPs agree with other TDDFT studies.

We have analyzed in detail the origin of various peaks
in the EEL spectra of bulk Au. We have found that the
signature of plasmons in EEL spectra of bulk Au revealed
by our study shows the richness of the physics underlying
the various contributions to the density fluctuation in gold. In
particular, we have attributed peaks at 5.1 eV and 10.2 eV to
plasmon excitations coming from 5d and 6s electron gasses,
respectively. We have defined as a mixed excitation a contri-
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bution from interband transitions that lies below the plasmon
frequencies and is modified by the real part of the intraband
contribution, and given a way to characterize numerically a
mixed excitation in the calculations. We have then identified
the contributions between ~2.2 eV and ~4 eV as mixed
excitations. We have concluded that, alone, contributions of
bulk Au cannot explain the presence of the well-defined peak
at low energy observed in the REELS experiments. Finally, we
have shown the dispersion of plasmons and mixed excitation,
and the very weak dispersion of pure interband transitions at
energies above the plasmon frequencies.
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APPENDIX A: INVERSE OVERLAP OPERATOR
FOR PERIODIC SOLIDS

In the US-PP case, the inverse of the overlap operator §
needs to be introduced in the LL + NC-PPs algorithm of the
TDDFPT equations. It was introduced in Ref. [36] as

STh=1+4 > A BNB ]

1J,mn

(AT)

where the sum over / and J runs on the atoms of the system
and the sum over m and n runs over the projectors of each
atom. In Ref. [36], the coefficients A// are obtained from the

NN mn
condition $S~! = 1 which gives the linear systems:

5 (armam Yl BN')A;@ — o

Im

(A2)

where B! = (BN|! ) and 8y, is the Kronecker symbol. There
are Np llnear systems (for each J and n) of size Ng X Np,
where Np is the number of projectors in the system.

In a periodic solid, we can write I = {/, s},J = {l, s}, and

= {l”, s"} and use periodicity to remove the dependence on
the unit cell index, obtaining in this way N}, linear systems of
dimension N, x Nj, where N, is the number of projectors in
one unit cell. Clearly, different systems will be obtained for
each k point in the BZ. To compute the action of the operator
$~! on a Bloch function Yk.i(r), it is convenient to define the

coefficients,

k,ss’ —ik-R; ¢ Is,l's’ Jik-Ry
I =N TR Ry (A3)

mn
14

where Ak are independent from [ since A’%:/*" depend on
R; — R, Inserting this definition in the expression of $~!, we

find
Z AH |/3 ><ﬁn|wk ”)

1J,mn

= D0 A ST BLIEMRBY v,
1

ss’,mn

(A4)

For each k, the N7 coefficients AXS*', are solutions of the N},

mn >

linear systems (for each s’ and n),

Z (5”7185 's + Z qn B:jnv S) )L};;r = _Qi;as”s’, (AS)
where

:jns s Z KR deFﬁly(s/«)*(r _ T‘Y”)ﬂ’);(s)(r —-R, — 1),

(A6)

which can be obtained by multiplying Eq. (A2) by ¢*® and

adding on /’.
Finally, the operator S, ! that appear in Egs. (35)-(37) can
be obtained from the relationship

ST i(r) = €8 uy (),

and can be written as

S— =1+ Z )\k ss’ Y Y,,k|'

YY mn

(A7)

(A8)

We benchmarked the implementation of the operator S‘l: !
in the LL method by comparing the final results with the
results obtained using the method based on the solution of the
Sternheimer equations, since the latter does not require S‘l: L

APPENDIX B: EFFECT OF THE SEMICORE STATES

In the present Appendix, we discuss the effect of semicore
5s and 5p states on the EEL spectrum of bulk Au.

This is an important aspect, because in many studies semi-
core states are frozen in the core, and hence it is important
to clarify in which energy range this approximation gives
reliable results. In fact, in the case of Bi it was shown that
by freezing the 5d semicore states in the core region, the
plasmon peak position is strongly affected and the high-
energy part of the spectrum is completely missing [60]. In
a previous study of the electronic band structure of gold,
inclusion of the semicore states was shown to have practically
no effect on the DFT-level, but to be very important in the GW
calculations [57]. Here we determine the energy range on
which the EEL spectra are accurate with 5s and 5p semicore
states frozen in the core in the case of gold, and also we
highlight at which energies the effect of 55 and 5p in the
valence region is crucial.

In this paper, we used two types of US-PPs: The 11-
electron case (with 5s and 5p semicore states frozen in the
core) and 19-electron case (with 5s and 5p semicore states
included in the valence region of the electronic configuration).
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TABLE II. Peak positions (in eV) in the EEL spectrum of bulk
Au (see Fig. 2) computed with two types of US-PPs, containing 11
electrons (without semicore states) and 19 electrons (with semicore
states) in the valence.

Peak No. 1 1 2 2 3 4 5 6

11 elec. 22 53 105 161 247 325 385 440
19 elec. 22 51 102 155 238 30.8 369 435

We find that the US-PPs with 11 and 19 electrons are in
close-to-perfect agreement with each other up to 15 eV, i.e,,
for contribution 1’ and peaks 1 and 2’ (see Fig. 2 and Table II).
This validates the use of the US-PP with 11 electrons to

study low-energy excitations in large systems made of gold
atoms, and confirms an anterior work [61]. However, for
energies above 15 eV there are significant deviations in the
peak positions and in their intensities (peaks 2—6).

Moreover, the origins of the peaks are also left unchanged:
At low energy all is exactly the same, while at higher en-
ergies all peaks come from the interband transitions (with
missing interband contributions in the 11-electron case due
to missing initial states (5s and 5p) which are frozen in the
core).

Therefore, we conclude that the 11-electron US-PP can
be safely used to describe low-energy excitations, while the
19-electron case is absolutely needed for investigations of
extended energy portions of the EEL spectra.
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