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Topological Bose-Mott insulators in one-dimensional non-Hermitian superlattices
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We study the topological properties of Bose-Mott insulators in one-dimensional non-Hermitian superlattices,
which may serve as effective Hamiltonians for cold atomic optical systems with either two-body loss or one-
body loss. We find that in the strongly repulsive limit, the Mott insulator states of the Bose-Hubbard model
with a finite two-body loss under integer fillings are topological insulators characterized by a finite charge gap,
nonzero integer Chern numbers, and nontrivial edge modes in a low-energy excitation spectrum under an open
boundary condition. The two-body loss suppressed by the strong repulsion results in a stable topological Bose-
Mott insulator which has features similar to the Hermitian case. However, for the non-Hermitian model related
to the one-body loss, we find the non-Hermitian topological Mott insulators are unstable with a finite imaginary
excitation gap. Finally, we also discuss the stability of the Mott phase in the presence of two-body loss by solving
the Lindblad master equation.
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I. INTRODUCTION

Non-Hermitian topological systems have attracted much
attention in recent years with the aid of the fast develop-
ment of topological photonics [1–8]. Since non-Hermitian
systems possess more fundamental nonspatial symmetries,
their topological classification goes beyond the standard
ten classes of the corresponding Hermitian systems [9–16].
Non-Hermitian systems have been shown to exhibit many
exotic properties without Hermitian counterparts [17–36],
including half-integer topological invariants [24–29], the non-
Hermitian skin effect, and breakdown of bulk-boundary cor-
respondence in some nonreciprocal systems [9,30–33,37–54].
Recently, exploring topological phases in interacting non-
Hermitian systems was also addressed in several works
[55–57].

Due to their highly controllability, one-dimensional (1D)
optical superlattices, which can be realized by superimpos-
ing two 1D optical lattices with commensurate wavelengths,
have provided an ideal playground for exploring topologically
nontrivial phases [58–69]. The interplay between many-body
interaction and single-particle band topology can lead to
intriguing correlated states exhibiting nontrivial topological
properties, e.g., fractional topological states [62,63] and topo-
logical Mott insulators (TMIs) [64–69] in interacting super-
lattice systems. Recent experimental progress demonstrates
that optical lattice systems may be a controllable candidate
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for studying quantum open systems by introducing a dis-
sipation process [70–73] and the exciton-polaritons releas-
ing coherent radiation are an open quantum system requir-
ing constant pumping of energy and continuously decaying
[74–76], which can be effectively described by an effective
non-Hermitian Hamiltonian under certain conditions. So far,
different kinds of studies on the effect of the dissipation have
been reported due to the particle loss or photon scattering
[71,73,77–88]. Especially, the two-body loss on quantum
many-body systems is realized in the form of inelastic col-
lisions which can be widely controlled [89–93]. One can
tune the inelastic two-body scattering via a photoassociation
resonance in a bosonic or fermionic system, where a delay
of the melting of the Mott insulating state was detected
[92,93].

Motivated by this progress, in this work we study the
realization of the topological Mott phase in 1D non-Hermitian
superlattice systems. For an interacting bosonic gas trapped
in a superlattice with an integer band filling factor, a TMI
is in the formation of the Mott phase characterized by a
nontrivial topological invariant [64,65]. When we consider a
non-Hermitian system, its eigenenergies are generally com-
plex, and natural questions that arise here are whether the Mott
phase still exists and how to characterize the non-Hermitian
TMI.

II. MODEL AND METHOD

To address these problems, we first consider interacting
bosons trapped in a 1D two-periodic optical lattice with the
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Hamiltonian described by HBH = H0 + HI , with

H0 = −
∑

j

J ( j, θ )(b̂†
j b̂ j+1 + H.c.) +

∑
j

V ( j, θ )

2
n̂ j (1)

and

HI = U

2

∑
j

n̂ j (n̂ j − 1). (2)

Here, b̂ j is the annihilation operator of bosons at site j,
n̂ j = b̂†

j b̂ j is the number operator of the bosons, and the
alternating hopping strengths are given by J ( j, θ ) = J[1 +
δ sin (π j + θ )] with the dimerization strength δ and J being
set as the energy unit (J = 1). The on-site potential is given by
V ( j, θ ) = V cos (π j + θ ), with V cos θ denoting the energy
offset between neighboring sites for the real phase θ of the
potential. We carefully choose the strength of the alternating
tunneling term J ( j, θ ) and the strength of the chemical po-
tentials V ( j, θ ) to keep the gap of the two-band model open
during the rolling of θ , which is necessary to form a topo-
logical insulator. The interaction strength U = Ur is always
real and can be experimentally controlled by the Feshbach
resonance. Complex-valued interactions can emerge in some
effective Hamiltonians of ultracold atomic systems induced by
considering the inelastic processes between different orbitals
which give rise to two-particle loss.

When atoms undergo inelastic collisions, the scattered
atoms are lost from the system. The atom losses are described
by a quantum master equation:

∂tρ(t ) = − i[H, ρ(t )] − 1

2
γ

∑
j

[L†
j L jρ(t ) + ρ(t )L†

j L j

− 2Ljρ(t )L†
j ], (3)

where ρ(t ) is the density matrix of the atomic gas and Lj is
a Lindblad operator at site j which describes a loss with the
rate γ > 0. The process of two-particle loss can be described
by setting Lj → b̂ j b̂ j . Considering the short time evolution,
the quantum-jump term can be negligible, and the dynamical
evolution is described by

∂tρ(t ) = −i
[
H (1)

eff ρ(t ) − ρ(t )H (1)
eff

]
, (4)

where H (1)
eff = H0 + HI is an effective Hamiltonian, with the

interaction amplitude U taking a complex value,

U = Ur − iγ . (5)

Here, Ur � 0 represents the repulsive interaction, and γ � 0
is the rate of loss. In such a case, the lowest real part of the
spectrum is the effective ground state, and the imaginary part
of the energy denotes the decay rate of each eigenstate.

When U = 0, the Hamiltonian reduces to the
topologically nontrivial Rice-Mele model [94]. The energy
spectrum in momentum space with momentum k is ε± =
±

√
2 + V 2 cos2 θ/4 + 2δ2 sin2 θ + 2(1 − δ2 sin2 θ ) cos k,

and the energy gap is 	b = 2
√

V 2 cos2 θ/4 + 4δ2 sin2 θ .
Figure 1(a) shows the single-particle energy spectrum of the
Rice-Mele model as a function of θ with δ = 0.6, V = 2,
and θ = π/4 under the open boundary condition (OBC).
As the phase shift θ varies from zero to 2π , the edge states
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FIG. 1. (a) Single-particle energy spectrum of the Rice-Mele
model as a function of θ under the OBC. (b) The charge gap 	c

as a function of Ur for the Hermitian case with θ = π/4, L = 14,
and ν = 1 under the PBC. The dashed line denotes 	b/2 = 1.1045.
(c) The Chern numbers versus Ur with ν = 1. Here, δ = 0.6 and
V = 2.

connecting two bulk spectra emerge in the gap regime which
characterizes the topologically nontrivial feature. For a
Fermi system, when the band filling factor ν = N/Ncell is an
integer, with N , L, and Ncell = L/2 representing the number
of particles, the lattice site, and the unit cell of the system,
respectively, it corresponds to a band insulator with the lowest
ν bands being fully filled by the fermions. Such a Fermionic
system was demonstrated to be topologically nontrivial with a
nontrivial topological number. However, for a noninteracting
bosonic case, all the bosons are condensed in the k = 0 state,
and the system is in a superfluid state with a trivial topological
number.

When the repulsive interaction Ur is considered, the
bosonic system with an integer band filling factor ν can enter
a Mott phase. We can calculate the charge gap defined as

	c = 1
2 [E0(N + 1) + E0(N − 1)] − E0(N ) (6)

by numerically diagonalizing the Hamiltonian HBH, where
E0(N ) represents the ground-state energy of the N-boson
system. Figure 1(b) shows the charge gap 	c versus Ur for the
Hermitian case HBH with L = 14, δ = 0.6, V = 2, θ = π/4,
and ν = 1 under the periodic boundary condition (PBC). In
the small-Ur limit, the charge gap 	c → 0, and the charge gap
	c grows with the increase of Ur . In the strongly repulsive
limit, 	c tends to 	b/2, as predicted by applying the Bose-
Fermi mapping [64]. Our results indicate that a Mott insulator
phase emerges in the large-Ur case.

The topological feature of the Mott insulator state can be
characterized by the many-body Chern number in the two-
dimensional (2D) parameter space (ϕ, θ ) [62,64,65]. Here, we
introduce the twist boundary condition, which corresponds
to a shift momentum k = (2πm + ϕ)/Ncell in the Brillouin
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FIG. 2. The real part 	R
c and the imaginary part 	I

c of the charge
gap as a function of Ur for the Hamiltonian H (1)

eff with L = 14, ν = 1,
δ = 0.6, V = 2, θ = π/4, and γ = 1 under the PBC. The orange
dotted line denotes 	b/2 = 1.1045, and the value of the purple
dotted line is zero. The inset shows the power-law decay of |	I

c| with
Ur in the strongly interacting limit, and the dashed line in the inset
indicates a power-law fitting.

zone, with ϕ being a generalized boundary phase and m =
0, 1, . . . , Ncell − 1. The many-body Chern number for the
Hermitian case is defined as C = 1

2π

∫
dϕdθB(ϕ, θ ), with the

Berry curvature B(ϕ, θ ) = Im(〈 ∂ψ

∂θ
| ∂ψ

∂ϕ
〉 − 〈 ∂ψ

∂ϕ
| ∂ψ

∂θ
〉). We ap-

ply the exact diagonalization of a finite-size system L = 12 to
obtain the exact value of C with the manifold of the torus dis-
cretized by 6 × 6 meshes. When the Mott insulator is formed
for ν = 1, the corresponding state has a Chern number C = 1,
indicating that the Mott insulator is topologically nontrivial,
i.e., the formation of a TMI. As shown in Fig. 1(c), when the
system is in the gapless superfluid phase, the Chern number C
is unquantized. Our numerical calculations demonstrate that
the TMI emerges with the increase of Ur , which is consistent
with previous studies [64,65].

III. NON-HERMITIAN TMI

Now we study the non-Hermitian effect induced by the
imaginary part of U . As a concrete example, we consider the
system described by Hamiltonian H (1)

eff with ν = 1, δ = 0.6,
V = 2, θ = π/4, and γ = 1 and calculate the charge gap 	c

defined by Eq. (6). Here, due to the complex-energy spectrum
for a non-Hermitian system, we define E0(N ) as the ground-
state energy for the N-boson system with the minimum value
of the real part. Correspondingly, the real part of the charge
gap for the non-Hermitian case is defined as 	R

c = Re(	c),
and the imaginary part of the charge gap 	I

c = Im(	c) is
also calculated. Figure 2 shows 	R

c and 	I
c as a function of

Ur under the PBC. For Ur = 0, the real part of the charge
gap 	R

c → 0, and 	I
c takes a finite value. The real part of

the charge gap 	R
c shows a monotonic increase with the

increase of Ur and tends to 	b/2 in the strongly repulsive
limit. However, with the increase of Ur , the absolute value of
	I

c first increases and then decreases when Ur > 3.76. In the

large-Ur limit, according to the second perturbation theory,
	I

c ∝ −γ /U 2
r presents a power-law decay with the increase

of Ur , which is shown in the inset of Fig. 2. The two-body
collisions are strongly suppressed, which leads to the decrease
of the atomic loss, indicating that a stable Mott insulator
emerges in the strongly interacting limit.

To characterize the topological feature, we now construct
the many-body Chern number for the non-Hermitian case.
In the 2D parameter space of (ϕ, θ ), the Chern number of
the ground state for a non-Hermitian system is an integral
invariant, which can be defined as

Cαβ = 1

2π

∫
dϕdθBαβ (ϕ, θ ), (7)

where the Berry curvatures Bαβ (ϕ, θ ) =
Im(〈 ∂ψα

∂θ
| ∂ψβ

∂ϕ
〉 − 〈 ∂ψα

∂ϕ
| ∂ψβ

∂θ
〉), with α, β = R/L. These

definitions are a direct generalization of non-Hermitian
Chern numbers [26] to the many-body systems. We note
that for an open quantum system the topological invariant
can be extracted from the ensemble geometric phase for
mixed quantum states [95]. Here, the right eigenstates
|ψR〉 and the left eigenstates |ψL〉 can be respectively
defined as H |ψR〉 = E |ψR〉 and H†|ψL〉 = E∗|ψL〉, with
the normalization condition 〈ψα|ψβ〉 = 1. We numerically
calculate four different Chern numbers, CLL, CLR, CRL,
and CRR, of the Hamiltonian H (1)

eff with ν = 1, γ = 1, and
different Ur . We find CLL = CLR = CRL = CRR = 1 for this
non-Hermitian interacting boson system with finite repulsive
Ur . The proof of the equivalence of four many-body Chern
numbers for non-Hermitian cases is presented in Appendix A.
In the large-Ur limit, the stable Mott insulators are formed
for ν = 1, corresponding to the states with nontrivial Chern
numbers, which show features similar to the Hermitian case,
and the stable Mott insulators are topologically nontrivial.

According to the bulk-edge correspondence, one may ex-
pect that the non-Hermitian TMIs also exhibit nontrivial edge
states under the OBC. In Fig. 3, we show the real part (left
column) and the imaginary part (right column) of the low-
energy spectrum En − E0 versus θ with ν = 1, γ = 1, L = 12,
and various Ur under both the PBC and the OBC, where n
marks the energy states to fulfill Re(E1) � Re(E2) � · · · . As
shown in Figs. 3(a) and 3(c), there is an obvious gap of the real
part of the low-energy spectrum between the ground state and
the first excited state for systems with Ur = 10 and Ur = 100
under the PBC, respectively. Correspondingly, the edge states
emerge in the real gap regimes of the low-energy excitation
spectrum under the OBC. As the phase shift θ varies from
zero to 2π , the edge states connect the ground state to the
excited band, as shown in Figs. 3(b) and 3(d) for systems
with Ur = 10 and Ur = 100 under the OBC, respectively. The
real part of the low-energy excitation spectrum for the system
with Ur = 100 of H (1)

eff exhibits almost the same behaviors as
its corresponding Hermitian case. The imaginary part of the
low-energy excitation spectrum gradually converges to zero
with the growth of Ur , indicating that the effect of the finite
two-body loss is almost completely suppressed and a stable
TMI exists in the strongly repulsive limit. To analyze the edge
modes in the strongly interacting limit, we numerically calcu-
late the density distributions of such in-gap modes which can
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FIG. 3. (a)–(d) The real part (left column) and the imaginary part
(right column) of the low-energy spectrum En − E0 versus θ with
different Ur , L = 12, ν = 1, δ = 0.6, V = 2, and γ = 1. (a) Ur = 10
under the PBC. (b) Ur = 10 under the OBC. (c) Ur = 100 under the
PBC. (d) Ur = 100 under the OBC. (e) The density distributions of
the edge modes 	nj with L = 14, N = 7, δ = 0.6, V = 2, γ = 1,
and different Ur and θ under the OBC.

be defined as 	n j = 〈ψR
N+1|n̂ j |ψR

N+1〉 − 〈ψR
N |n̂ j |ψR

N 〉, where
|ψR

N 〉 is the ground-state wave function of the right state with
N bosonic atoms. Figure 3(e) shows the density distributions
of the edge modes with L = 14, N = 7, δ = 0.6, V = 2, and
γ = 1 under the OBC. The in-gap states mainly distribute
near the right edge for θ = 0.45π and both Ur = 10 and 100.
With the increase of θ , there are bosons shifting from the right
edge to the left in the large-Ur case as shown in Fig. 3(e) with
θ = 0.55π . With the rolling of θ in the large-repulsion case,
the boson pumping from one edge to another indicates the
topologically nontrivial property of the Bose-Mott insulator
phase.

IV. TMI IN THE NON-HERMITIAN RICE-MELE MODEL

Next, we consider another non-Hermitian extension of the
Hamiltonian by taking a complex phase θ , i.e., H (2)

eff = HNH
0 +

HI , where HNH
0 is obtained by replacing θ → θ + iβ in H0,

with β being an imaginary phase shift. The non-Hermitian
Hamiltonian HNH

0 may serve as an effective Hamiltonian
related to some one-body loss processes [96,97], and similar
models were studied in Refs. [98–100]. We take β = 0.1π as
an example to exhibit our calculation results. In the absence
of Ur , the energy gap in the complex-energy plane as defined
in Ref. [26] emerges for rolling θ ∈ [0, 2π ], which is shown
in Fig. 4(a) with δ = 0.6 and V = 2 under the PBC. When the
OBC is considered, the edge states emerge between the two
bulk bands [see Fig. 4(b)], with the corresponding bulk state
characterized by a nonzero band Chern number [26].
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FIG. 4. Complex-energy spectrum of HNH
0 by rolling θ ∈ [0, 2π ]

with β = 0.1π , δ = 0.6, and V = 2 under (a) the PBC and (b) the
OBC.

In the presence of the interaction, we first calculate the
charge gap 	c versus Ur with β = 0.1π , δ = 0.6, V = 2, θ =
π/4, and L = 14 under the PBC, as shown in Fig. 5(a). With
the increase of repulsion, both the real and imaginary parts
of the charge gap 	R

c increase, and in the strong repulsion,
	R

c → Re(	b)/2 = 1.1065, and 	I
c → Im(	b)/2 = 0.0667.

A finite imaginary-valued gap indicates that the Mott phase
will collapse in the long-time evolution. To characterize the
topological property of the unstable Mott insulators, we nu-
merically calculate the Chern number equation (7) defined in
the non-Hermitian case. For a finite Ur , the four Chern num-
bers are equal, and CLL = CLR = CRL = CRR = 1, as shown
in the inset of Fig. 5(a). Due to the finite-size effect, the Chern
number is not well defined for small Ur . The existence of
the nonzero Chern number implies the repulsively interacting
system with an integer filling factor with nontrivial topologi-
cal properties. The topological phase would exhibit nontrivial
edge modes in the gap regions under the OBC. We calculate
the low-energy excitation spectra of H (2)

eff with L = 14, ν =
1, δ = 0.6, V = 2, and β = 0.1π by rolling θ ∈ [0, 2π ], as
shown in Figs. 5(b)–5(e). As shown in Figs. 5(b) and 5(d), an
obvious energy gap is seen between the ground state and the
low-energy excitation states for Ur = 10 and 100 under the
PBC, respectively. Under the OBC, as the phase shift θ varies
from zero to 2π , the low-energy spectra with Ur = 10 and 100
are shown in Figs. 5(c) and 5(e), respectively. The edge states
connecting the ground states and low-energy part emerge in
the gap, and the position of the edge states continuously varies
with the rolling of θ in the complex-energy plane. Specifically,
the energies of the ground states and the edge modes exhibit a
finite imaginary part, which implies that the non-Hermitian
TMIs with one-body loss are formed, but due to the finite
imaginary parts of the ground energies, the TMIs are unstable
and will break down during the time evolution.

V. SUMMARY AND DISCUSSION

In summary, we have discussed topological Bose-Mott in-
sulators in 1D non-Hermitian superlattices which are charac-
terized by a finite charge gap, nonzero integer Chern numbers
defined in the non-Hermitian case, and nontrivial edge modes
in the low-energy excitation spectrum under the OBC. We
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FIG. 5. (a) The real part 	R
c and the imaginary part 	I

c of the
charge gap as a function of Ur for the Hamiltonian H (2)

eff with θ = π/4
under the PBC. The value of the orange dotted line is equal to
Re(	b)/2 = 1.1065, and the value of the purple dotted line amounts
to Im(	b)/2 = 0.0667. (b)–(e) Low-energy excitation spectra of
H (2)

eff by rolling θ ∈ [0, 2π ]. (b) Ur = 10 under the PBC. (c) Ur = 10
under the OBC. (d) Ur = 100 under the PBC. (e) Ur = 100 under the
OBC. The inset in (a) shows the four Chern numbers Cαβ versus Ur .
Here, L = 14, ν = 1, δ = 0.6, V = 2, and β = 0.1π .

found that for the non-Hermitian effect induced by a finite
two-body loss, the nontrivial TMIs are stable in the strong-
repulsion limit. However, for a non-Hermitian TMI associated
with one-body loss, the low-energy excitation spectrum with
a finite imaginary part suggests the TMI is unstable and will
collapse with time.

As our results are obtained on the framework of the effec-
tive Hamiltonian, it is important to ask whether the conclusion
of the existence of stable TMIs in the strong-repulsion limit
still holds true if we consider the quantum-jump terms by
solving the Lindblad master equation. Although a full under-
standing of correlated topological states in the scheme of open
systems is still a challenging open question [101], in order
to gain insight into the above question, here, we shall study
the dynamical evolution of the full master equation described
by Eq. (3) with the Bose-Hubbard model HBH subjected to
a two-particle loss by applying a quantum-trajectory method
[102–107] (see Appendix B for the description of the method
in detail).
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FIG. 6. (a1) and (a2) The real and imaginary parts of 〈H (1)
eff (t )〉

for Ur = 5, respectively. (b1) and (b2) The real and imaginary parts

of 〈H (1)
eff (t )〉 for Ur = 100, respectively. Here, J = 1, L = 8, ν = 1,

θ = π/4, δ = 0.6, V = 2, and γ = 1. The dashed lines correspond
to the cases without quantum-jump events.

We consider the dynamical evolution of the master equa-
tion with the initial state taken as the ground state with the
lowest real part of the spectra of the effective Hamiltonian
H (1)

eff with L = 8, N = 4, γ = 1, and different Ur under the
PBC. For a trajectory that does not involve any loss event,
along the trajectory, the initial state being the eigenstate
of H (1)

eff remains unchanged, and the corresponding physi-
cal quantities stay constant. When we include the effect of
quantum jumps, the created holes scramble over time due
to the two-particle loss. As concrete examples, we choose
Ur = 5 and 100 to do our calculations. In the numerical
simulation, we use N = 104 trajectories for Ur = 5 and N =
105 trajectories for Ur = 100. Figure 6 shows the dynamics of

〈H (1)
eff (t )〉 for the dissipative eight-site systems in the present

of quantum-jump events with δ = 0.6, V = 2, θ = π/4, and
γ = 1 under the PBC. Here, · · · denotes a statistical average
over different quantum trajectories, and 〈H (1)

eff (t )〉 denotes the
quantum-mechanical expectation values H (1)

eff at time t . As
shown in Figs. 6(a1) and 6(a2) for Ur = 5, both the real

and imaginary parts of 〈H (1)
eff (t )〉 rapidly increase with time,

compared to the case in the absence of quantum-jump events
〈H (1)

eff (t )〉 = −7.07 − 0.078i, denoted by the dashed lines. The
result means that the system rapidly involves many more
quantum-jump events with the increase of time. In the strong-
repulsion limit Ur = 100 shown in Figs. 6(b1) and 6(b2), we
can see the values of 〈H (1)

eff (t )〉 approach the results in quantum
trajectories without quantum-jump events in the short-time
limits. With the increase of time, the probability of quantum-
jump events occurring grows much slower than in the Ur = 5
case.

Both the initial states for Ur = 5 and Ur = 100 are Mott
insulator states which present a charge density wave (CDW)
structure and can be identified by the structure factor Sk (t ),
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FIG. 7. The structure factor Sk (t ) at different t for (a) Ur = 5 and
(b) Ur = 100. The inset of (b) shows SkF (t ) at different t . Here, J =
1, L = 8, ν = 1, θ = π/4, δ = 0.6, V = 2, and γ = 1.

where

Sk = 1

L

L∑
i, j=1

eik(i− j)[〈nin j〉 − 〈ni〉〈n j〉], (8)

with k = 2m̄π/L, m̄ = 0, 1, . . . , L. The CDW phase can be
characterized by the onset of the kF = 2πN/L peak in the
structure factor. In our case, the initial states are in the
subspace of N = 4, and the peak of Sk (0) is at k = π for both
cases, as shown by the dashed lines in Figs. 7(a) and 7(b). In
the short-time limits (t = 5, as shown in Fig. 7), one can see
that the system still presents the structure of a CDW. For the
Ur = 5 case, the kF peak of Sk (t ) decreases with the increase
of time and finally vanishes, which suggests the instability
of the Mott phase. However, for Ur = 100, even at t = 40,
the system is still in the CDW-dominated phase characterized
by the kF peak, and the tiny decay of the values of SkF (t )
[see the inset of Fig. 7(b)] implies that the probability of the
quantum-jump events occurring is greatly suppressed and the
Mott phase can still be observed.

According to the numerical calculations of the full master
equation of the modulated Bose-Hubbard model with two-
particle loss, we find that the quantum-jump term can be
negligible in a sufficiently short time, which relies on the
interaction strength. While the system is unstable and quickly
decays with time for the intermediate Ur cases, the non-
Hermitian TMI states are stable in the strong-repulsion limit.
The fact that the correlated topological states are maintained
even in the presence of the quantum-jump term suggests that
the topological properties can be encoded in the effective
non-Hermitian Hamiltonian in some parameter regions. We
believe that our study will motivate further studies on the
exploration of correlated topological properties in quantum
open systems.

Note added. Recently, we became aware of similar works
[108,109] which discuss the non-Hermitian topological Mott
insulators in the interacting non-Hermitian Aubry-André-
Harper model with different focus issues.
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APPENDIX A: PROOF OF MANY-BODY CHERN
NUMBER EQUALITIES

In this Appendix, we present the proof that the four
many-body Chern numbers for the non-Hermitian cases give
the same value. We generalize the proof in Ref. [26] for
a single-particle case to many-body systems. We notice the
fact that the Chern number is seen as an obstruction to a
global gauge of the wave function in the parameter space
X = (ϕ, θ ) [110], where ϕ is a generalized boundary phase
obtained by twisting the boundary condition and θ is a sys-
tem parameter shown in the Hamiltonian (1) in the main
text. We consider a patch P with a boundary ∂P having
circumference CL in the parameter space X = (ϕ, θ ). In the
P regime, we choose a local gauge I and choose another local
gauge II outside the P regime, and corresponding eigenstates
are denoted as |ψα

I 〉 and |ψα
II〉, respectively, with α = {R, L}.

For the inner product 〈ψα (X )|ψα (X )〉 = 1, the two gauges
on the boundary ∂P are related by the gauge transformation
|ψα

II (X )〉 = ei f (X )|ψα
I (X )〉. However, for the inner product

〈ψα (X )|ψβ (X )〉 = 1 (α �= β ), on the boundary the gauge
transformations are written as |ψα

II (X )〉 = r(X )ei f (X )|ψα
I (X )〉

and |ψβ
II (X )〉 = ei f (X )/r(X )|ψβ

I (X )〉. Here, both r(X ) and
f (X ) are continuous real functions. First, we consider CRR =
CLR. For the Berry connection Aαβ (X ) = 〈ψα (X )|∇X ψβ (X )〉,
the transformation law of the Berry connection can be written
as

ARR
II (X ) = ARR

I + i∇X f (X ), (A1)

ALR
II (X ) = ALR

I + i∇X f (X ) + ∇X r(X )

r(X )
. (A2)

The Berry curvature is the imaginary part of the curl of the
Berry connection, and we can apply the Stokes theorem for
the definition of the many-body Chern number,

CαR = 1

2π

∫
X

dϕdθBαR(ϕ, θ )

= Im

{∮
∂P

[
AαR

I (X ) − AαR
II (X )

] · dl
}

=
∮

∂P
∇X f (X ) · dl = f (CL ) − f (0), (A3)
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where the result is independent of the choice of α and r(X ).
For the α = L case, we have

∮
∂P

∇X r(X )

r(X )
= ln

r(CL )

r(0)
= 0. (A4)

Thus, we can prove CRR = CLR. For CLL = CRL, we can apply
the same process. And for CRL = CLR, we have BRL(ϕ, θ ) =
BLR(ϕ, θ ), so the integrals of those two Berry curvatures have
the same values. Combining all the results, we finish the proof
CLL = CRR = CLR = CLR.

APPENDIX B: DYNAMICAL EVOLUTION OF THE
MASTER EQUATION

In this Appendix, we describe the details of the method for
solving the dynamical evolution of the full master equation
described by Eq. (3) with the Bose-Hubbard model HBH

subjected to a two-particle loss. To study the dynamics of
a dissipative Hubbard model, we apply a quantum-trajectory
method [102–106], which involves rewriting the master equa-
tion as a stochastic average over individual trajectories. This
method can avoid propagating a full density matrix in time
and replaces the complexity with stochastic sampling. This
change means if the Hilbert space has dimension NH , then
the density matrix propagates with the size N2

H , whereas
stochastic sampling of states requires the propagation of states
of size NH instead. The penalty is the need to collect many
samples for small statistical errors.

We follow a revised quantum-trajectory method that was
originally proposed by Dum et al. [107], and the scheme takes
the following form:

(1) Sample a random number r1, uniformly distributed in
the interval 0 � r1 � 1.

(2) The wave function |ψ̃ (t )〉 evolves under the nonunitary
Schrödinger equation i∂t |ψ̃ (t )〉 = H (1)

eff |ψ̃ (t )〉. Numerically
solve the equation || exp(−iH (1)

eff t1)|ψ̃ (τ0)〉||2 = r1 in order to
find the time t1 at which a loss event occurs. Here, |ψ̃ (0)〉
is the initial state, and H (1)

eff is the effective non-Hermitian
Hamiltonian with two-particle loss under the PBC in the main
text.

(3) The state is then computed numerically in the time
interval t ∈ [0, t1] as

|ψ̃ (t )〉 = exp(−iHefft )|ψ̃ (0)〉
|| exp(−iHefft )|ψ̃ (0)〉|| . (B1)

At time t1, a quantum jump takes place, and the state |ψ̃ (t+
1 )〉

is acted on by the quantum-jump operator Lj with a particular
j based on the probabilities δpm ∝ 〈ψ̃ (t1)|L†

j L j |ψ̃ (t1)〉 and
then normalized:

|ψ̃ (t+
1 )〉 = Lj |ψ̃ (t−

1 )〉
||Lj |ψ̃ (t−

1 )〉|| . (B2)

(4) After t1, another random number r2 is chosen, and the
above procedure is repeated.

For a sufficiently large number N of samples of quantum
trajectories, the density matrix of the solution of the full
master equation is

ρ(t ) ≈ 1

N

N∑
a=1

|ψ̃a(t )〉〈ψ̃a(t )|, (B3)

where |ψ̃a(t )〉 is the state along the ath quantum trajectory
(a = 1, 2, . . . ,N ). When N → ∞, the result becomes an
exact one.
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