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Nontrivial topological phase with a zero Chern number
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A two-dimensional (2D) topological band is characterized by the (first) Chern number. The zero and nonzero
Chern numbers usually represent the trivial and nontrivial band topologies, respectively. In this paper, we study
an extended Qi-Wu-Zhang model that hosts the topological band with a zero Chern number. We show that the
zero Chern number band is topologically nontrivial, characterized by the half-integer wave polarization. The
nontrivial topology is manifested by the anisotropic in-gap edge states, which are verified to be robust against
2D particle-hole symmetric disorders.
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I. INTRODUCTION

Topological insulators and superconductors have many
potential applications because of their topologically nontriv-
ial bands [1,2]. They support topological transport at the
edges and interfaces, and the transport is robust against the
presented imperfections [3]. Topological insulators in one,
two, three, and even higher dimensions with a synthetic
dimension are proposed and experimentally investigated in
cold atomic gases, photonic crystals, and acoustic lattices
[4–27].

Two-dimensional (2D) topological systems have been in-
tensively investigated in topological physics [28–39]. The
Chern insulator has successfully explained the 2D quantum
Hall effect under a magnetic field [40–42] and the quan-
tum anomalous Hall effect [43–48]. A prototypical Chern
insulator is the Qi-Wu-Zhang (QWZ) model [49]. The (first)
Chern number associated with the energy band is a topo-
logical invariant, which is a quantized Berry flux because
the integration of Berry curvature over the whole Brillouin
zone (BZ) indicates the band topology of 2D topological
phases [50].

The nonzero Chern number yields the topologically non-
trivial phase; the difference between the Chern numbers of
bands indicates the number of topologically protected edge
states in the band gap [51,52]. For example, in the 2D quan-
tum Hall phase formed through breaking the time-reversal
symmetry of the 2D system with a pair of Dirac cones, the
band gap and a pair of edge states connecting the upper and
lower bands are created; in contrast, breaking the inversion
symmetry of the 2D system with a pair of Dirac cones creates
the topologically trivial band that is characterized by the zero
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Chern number, and the topologically protected edge states are
absent [53]. Recently, in an isotropic 2D topological insulator
with the zero integral of the Berry curvature over the BZ,
the zero Berry curvature in the whole BZ except at the C4v-
invariant lines of band degeneracy was reported [54]; the
Chern number associated with the energy band vanishes as
well. However, the 2D Zak phase [55], the Berry connection
integrated over the whole BZ as the generalization of the one-
dimensional (1D) Zak phase, is available for the topological
characterization.

In this paper, we study an anisotropic 2D square lattice
with effective spin-orbital interaction alternatively introduced
along one direction. The 2D lattice is an array of coupled
Creutz ladders and can be taken as an extension of the QWZ
model. The topological properties of different phases of the
anisotropic 2D lattice are investigated. Beyond the traditional
understanding that the topological phase with a nonzero Chern
number supports a pair of chiral edge states, we find that the
anisotropic 2D lattice also has a topologically nontrivial phase
with a zero Chern number but nonzero Berry curvature. A
pair of topologically protected in-gap edge states is present
in the topological phase with a zero Chern number. The in-
gap edge states are robust to the 2D particle-hole symmetric
disorders; this verifies the topological protection. The 2D
Zak phase is employed for the topological characterization
and corresponds to the fractional wave polarization. In our
work, the validity of the 2D Zak phase is ensured by the fact
that the singularity point is absent in the whole BZ under
the properly chosen gauge for the topological phase with a
zero Chern number. Our findings deepen the understanding of
the topologically nontrivial phase present in other topological
systems.

The remainder of this paper is organized as follows. In
Sec. II, the anisotropic 2D lattice is introduced. The energy
bands and phase diagram are shown. In Sec. III, the topo-
logical characterization of the Chern number and the 2D Zak
phase are discussed, particularly the topologically nontrivial
phase with a zero Chern number. In Sec. IV, the analytical
solution of edge states is given. In Sec. V, the robustness of
the topologically protected in-gap edge states is verified. In
Sec. VI, the conclusion is drawn.
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FIG. 1. (a) Schematic of the 2D square lattice. The Peierls phase
factor eiπ/2 in the nonreciprocal coupling it/2 in the vertical direction
induces ±π magnetic flux in each plaquette. (b) Phase diagram in
the λ-m parameter space; t is taken as the unit. The Chern numbers
are nonzero in the magenta and cyan regions. The Chern number is
C = 0 in the yellow and green regions with the polarizations given;
the half-integer polarization in the y direction indicates the nontrivial
topology. The black dots indicate the parameters chosen in Fig. 2.

II. ANISOTROPIC 2D SQUARE LATTICE

We consider an anisotropic 2D square lattice; the schematic
is given in Fig. 1(a). The coupling strengths in the hori-
zontal and vertical directions are uniform, being m and t/2,
respectively. The Peierls phase factors presented in the vertical
couplings induce the ±π effective magnetic flux in each
plaquette. The lattice is divided into two sublattices colored
in cyan and magenta, respectively. The cross coupling is an
effective spin-orbital coupling; it alternatively presents in the
horizontal direction, and the coupling strength is λ/2.

The anisotropic 2D lattice is a two-band system; the unit
cell is marked by the blue dashed rectangle. The Bloch
Hamiltonian obtained after Fourier transformation is

H (k) = Bxσx + Byσy + Bzσz, (1)

where the effective magnetic field is

Bx = m + m cos kx + λ cos ky,
(2)

By = m sin kx, Bz = t sin ky,

and σx,y,z is the Pauli matrix for spin 1/2. The Bloch Hamil-
tonian H (k) can be taken as an extended QWZ model in the
sense that H (k) under the unitary operation

R̂ = 1√
2

(
1 1
i −i

)
(3)

yields R̂H (k)R̂−1 = Byσx + Bzσy + Bxσz, with
the effective magnetic field being (By, Bz,Bx ) =
(m sin kx, t sin ky, m + m cos kx + λ cos ky). The rotated Bloch
Hamiltonian R̂H (k)R̂−1 at m = λ = t reduces to the QWZ
model in a nontrivial gapped phase with the Chern number
C = 1 [52]. We have R̂3 = eiπ/4σ0 and R̂3H (k)R̂−3 = H (k),
where σ0 is the 2 × 2 identity matrix.

The Bloch Hamiltonian H (k) has particle-hole symmetry
ĈH (k)Ĉ−1 = −H (−k), with Ĉ = σzK , where K is the com-
plex conjugation and the inversion symmetry P̂H (k)P̂−1 =
H (−k), with P̂ = σx. The Bloch Hamiltonian H (k) possesses
the same symmetries as the QWZ model, and both of them

FIG. 2. Energy bands of the anisotropic 2D square lattice.
(a) λ = 0, (b) λ = 1/2, (c) λ = 1, (d) and λ = 2; other parameters
are t = 1 and m = 1/2, as indicated by the black dots in Fig. 1(b).

belong to class D in the tenfold way of Altland-Zirnbauer
classification [56–58]. However, we demonstrate the existence
of in-gap topological edge states in the anisotropic 2D lattice
[Fig. 1(a)] in the zero Chern number phase in contrast to
the nonexistence of edge states in the zero Chern number
phase of the QWZ model.

The spectrum of H (k) is symmetric about zero energy; the
band energy is given by

E (kx, ky) = ±B = ±
√

B2
x + B2

y + B2
z . (4)

Along the vertical direction of the 2D lattice, the unit cells
form the Creutz ladder [24,59]. The coupling strength t does
not affect the band gap closing or the topological phase of the
Creutz ladder. Thus, we can take the vertical coupling strength
t as unity without loss of generality. From the expression of
the band energy E (kx, ky) after substituting Bx,y,z as functions
of the system parameters, we find that the band gap closes un-
der the condition |m/λ| = 1/2 or λ = 0. The band degeneracy
point locates at (kx, ky) = (0, π ) for m/λ = 1/2 and locates
at (kx, ky) = (0, 0) for m/λ = −1/2. For λ = 0 and m �= 0,
the band gap closes at (kx, ky) = (π, 0) and (kx, ky) = (π, π ).
Otherwise, the two energy bands are gapped as the insulator
phase.

The phase diagram of the Bloch Hamiltonian H (k) is
shown in Fig. 1(b), where the band gap closes at the black
solid lines and the system is gapped in the colored regions,
with topological numbers marked in the phase diagram. The
energy bands of the Bloch Hamiltonian H (k) are depicted
in Fig. 2 at several fixed coupling strengths. Figure 2(a) is
a gapless phase with vanishing cross coupling λ/2. In the
presence of cross coupling λ/2, the band gap appears for cross
coupling λ = 1/2 in Fig. 2(b), closes for cross coupling λ = 1
in Fig. 2(c), and reopens at a larger cross coupling, λ = 2, in
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Fig. 2(d). The band-touching points are fixed at kx = π for
λ = 0 and at kx = 0 for λ = ±2m, as mentioned above.

III. TOPOLOGICAL PHASES

Topological properties of H (k) are encoded in the wave
functions of the energy bands. The wave functions of the
upper band (with subscript +) and the lower band (with
subscript −) are given by

|ψ±(k)〉 = 1

N±

(
Bz ± B

Bx + iBy

)
, (5)

where N± = [2B(B ± Bz )]1/2 is the normalization coefficient
and 〈ψ±(k)|ψ±(k)〉 = 1.

In the gapped phase, the Chern number is a topological
invariant that characterizes the topological properties of the
anisotropic 2D lattice. The Chern number of the energy band
is well defined as the integral of Berry curvature over the
entire BZ,

C± = 1

2π

∫∫
BZ

dkxdky�±, (6)

where the Berry curvature is defined as �± = ∇ × A± and the
Berry connection is defined as A± = −i〈ψ±(k)|∇|ψ±(k)〉.
The upper and lower bands are indicated by the subscripts +
and −, respectively [60]. The Chern numbers of the two bands
satisfy C+ + C− = 0; we denote C = C− for convenience. The
phase diagram depicted in Fig. 1(b) shows the Chern numbers
in the parameter space of the Bloch Hamiltonian H (k).

The number and position of singularities in the BZ depend
on the gauge chosen. The number of irremovable singulari-
ties determines the Chern number. In the region m/λ > 1/2
(m/λ < −1/2), there exists at least one singularity in the
BZ that cannot be removed under any chosen gauge. The
singularity in the BZ is the point where the Berry connec-
tion A± is not well defined; for the upper band |ψ+(k)〉, it
appears at certain k where Bx = By = 0 and B = −Bz, and
for the lower band |ψ−(k)〉, it appears at certain k where
Bx = By = 0 and B = Bz. The Chern number calculated in
this situation is C = 1 (C = −1); the nonzero Chern number
indicates the nontrivial band topology; consequently, a pair
of chiral edge states localized at the boundary of the system
under the open boundary condition (OBC) is expected. In
the regions |m/λ| < 1/2, the Chern number is C = 0. We
emphasize that the Berry curvature is continuous in the whole
BZ and nonvanishing, except the Berry curvature crosses zero
from a positive value to a negative value or vice versa. The
Berry curvature in the zero Chern number phase has different
features than that in the 2D square lattice in Ref. [54]. Notably,
R̂2H (k)R̂−2 under twice the rotation operations characterize
H (k) under a different gauge. The wave functions change into
|ψ ′′

±(k)〉 = N ′′−1
± (By ± B, Bz + iBx )T , with the normalization

coefficient N ′′
± = [2B(B ± By)]1/2. In this situation, Bx and Bz

cannot vanish simultaneously in the BZ. Consequently, the
Berry connection A′′

± = −i〈ψ ′′
±(k)|∇|ψ ′′

±(k)〉 has no singular-
ity, and two bands have a zero Chern number. In most cases,
the zero Chern number indicates the trivial band topology
[52]; however, the band topology with the zero Chern number
in the anisotropic 2D lattice model is nontrivial. We will show
that the system under the OBC in the y direction has a pair of

in-gap edge states which is topologically protected and robust
to disorders.

To elucidate the nontrivial topology and the presence of
topological in-gap edge states in the region with a zero Chern
number, we employ another topological characterization: The
wave polarization, which is related to the integral of the Berry
connection in the whole BZ and is equal to the 2D Zak
phase divided by 2π [54]. The fractional wave polarization
in a certain direction of the 2D lattice predicts the nontrivial
topology. The projections of the wave polarization in the x and
y directions are given by

P±,x = 1

(2π )2

∫∫
BZ

A±,x(kx, ky)dkxdky, (7)

P±,y = 1

(2π )2

∫∫
BZ

A±,y(kx, ky)dkxdky, (8)

where A±,x(kx, ky) = −i〈ψ±(kx, ky)|∂x|ψ±(kx, ky )〉 and
A±,y(kx, ky) = −i〈ψ±(kx, ky)|∂y|ψ±(kx, ky)〉 are the Berry
connections in the x and y directions, respectively. The
polarizations in the x and y directions are given in the phase
diagram of Fig. 1(b). The nonzero half-integer polarization
predicts the presence of in-gap edge states for the phase with
a zero Chern number, in which the number of singularities in
the whole BZ is zero under the properly chosen gauge. The
polarization calculated from the Berry connection under the
proper gauge is capable of correctly predicting the topological
in-gap edge states; the one-half projected polarization in the
y direction in the C = 0 phase indicates the presence of
topological in-gap edge states in the y direction.

The energy bands of the 2D lattice under the OBC in
the x or y direction are depicted in Fig. 3 for two different
topological phases with Chern numbers C = 0 and C = 1.
For the topologically nontrivial phase with a nonzero Chern
number C = 1, Fig. 3(a) [Fig. 3(c)] plots the energy bands
under the periodic boundary condition (PBC) in the y (x)
direction but under the OBC in the x (y) direction. In Figs. 3(a)
and 3(c), we observe a pair of chiral edge states; they are
topologically protected and localized on the two open bound-
aries. In Fig. 3(a), the blue edge state localizes at the left
boundary with velocity vy < 0 moving downward, and the
green edge state localizes at the right boundary with vy > 0
moving upward; in Fig. 3(c), the blue edge state localizes at
the bottom boundary with velocity vx > 0 moving rightward,
and the green edge state localizes at the top boundary with
vx < 0 moving leftward. Thus, the edge states have a definite
chirality, moving counterclockwise in the 2D lattice. For the
topological phase with a zero Chern number, Fig. 3(b) plots
the energy bands under the PBC in the y direction but under
the OBC in the x direction, the polarization in the x direction
is P−,x = 0; consequently, topologically protected edge states
are absent. Figure 3(d) plots the energy band under the PBC
in the x direction but under the OBC in the y direction. In
this phase, the topological protection of the in-gap edge states
is guaranteed by the one-half polarization in the y direction
P−,y = −1/2. A pair of in-gap edge states exists; they are
localized on the top and bottom boundaries in the y direction.

The quantized 2D Zak phase in the C = 0 phase can be
understood as follows. The 1D Zak phase for a fixed kx is
defined as Zy,±(kx ) = ∫ π

−π
Ay,±(kx, ky)dky. To be specific,
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FIG. 3. Energy spectra of the 2D square lattice under different
OBCs. (a) and (b) plot the energy spectra under the PBC in the y
direction but under the OBC in the x direction for different phases.
(c) and (d) plot the energy spectra under the PBC in the x direction
but under the OBC in the y direction for different phases. The
parameters are t = 1, m = 1/2, and λ = 1/2 in (a) and (c) for C = 1
and λ = 2 in (b) and (d) for C = 0.

we have Zy,±(kx ) = ∫ π

−π
(Bz∂yBx − Bx∂yBz )/[2B(B ± By)]dky

for the wave function |ψ ′′
±(k)〉 of the rotated Hamiltonian

R̂2H (k)R̂−2 in the topological characterization. From
Bx(kx ) = Bx(−kx ), By(kx ) = −By(−kx ), and Bz(kx ) =
Bz(−kx ), we have the relation Zy,+(−kx ) = Zy,−(kx );
consequently, we obtain Zy,+(−kx ) + Zy,+(kx ) = Zy,−(kx ) +
Zy,+(kx ) = ∫ π

−π
(Bz∂yBx − Bx∂yBz )/(B2

x + B2
z )dky, which is

an integer of 2π . After straightforward calculation, we
have Zy,+(kx ) + Zy,+(−kx ) = −2π for λ > 0. Following the
same approach, we have Zx,±(ky) = ∫ π

−π
Ax,±(kx, ky)dkx =∫ π

−π
(Bz∂xBx − Bx∂xBz )/[2B(B ± By)]dkx; thus, we obtain

Zx,+(−ky) + Zx,+(ky) = 0 from the fact that Bx(ky) =
Bx(−ky), By(ky) = By(−ky), and Bz(ky) = −Bz(−ky). These
results reproduce the quantized 1D Zak phase at both
kx = 0, π and ky = 0, π as a consequence of the inversion
symmetry [61], which is −π and zero for λ > 0, respectively.
Therefore, the polarization integrated in the whole BZ is a
half-integer, and the 2D Zak phase is quantized, being an
integer of π .

A key point for the in-gap edge states is that they are
present in the entire zero to 2π region of the momentum
kx. The continuity of the in-gap feature of the edge state
is related to the absence of singularity, where the 2D Zak
phase is well defined and is suitable for the topological
characterization of the C = 0 phase. The ratio between m and
λ is critical for the presence of the in-gap edge states. This
is explained through the comparison between the anisotropic
2D lattice and the QWZ model. The Bloch Hamiltonian H (k)

of the anisotropic 2D lattice differs from the QWZ model in
the sense that the couplings in the horizontal direction, the
couplings in the vertical direction, and the cross couplings
are all independent of each other, while the couplings in the
QWZ model are uniform, except the horizontal couplings are
staggered. In the QWZ model, the effective magnetic field is
Bx = m + t cos kx + t cos ky, By = t sin kx, and Bz = t sin ky.
The gapped phase with vanishing Chern number |m/t | > 2
is topologically trivial without any edge states in either the
vertical direction or the horizontal direction. After calculating
the wave polarization in the QWZ model, we obtain zeros in
both directions, (P±,x, P±,y )QWZ = (0, 0). The vanishing wave
polarizations are in accord with the nonexistence of edge
states in the topologically trivial phase of the QWZ model.

IV. EDGE STATES

In this section, the wave functions of the topological edge
states in the topologically nontrivial phases are presented. We
consider that N = 2Nx × Ny is the total site number for the
anisotropic 2D lattice; 2Nx is the number of columns, and Ny is
the number of rows. The topological edge states are obtained
from the Schrödinger equations for the 1D projection lattices.

For the system under the OBC in the x direction, the
1D projection lattice is a dimerized chain with staggered
couplings m + λ cos(ky) and m, and the on-site potentials
t sin(ky) and −t sin(ky) are alternatively presented. The site
number of the 1D projection lattice chain is 2Nx. The left
edge state |ψL〉 localizes at the left boundary of the chain; the
corresponding Schrödinger equations read

ELψ2 j−1 = mψ2 j−2 + t sin kyψ2 j−1 + (m + λ cos ky)ψ2 j,

ELψ2 j = (m + λ cos ky)ψ2 j−1 − t sin kyψ2 j + mψ2 j+1,

(9)

where j = 1, 2, 3, . . . , Nx is the index in the x direction and
ψ0 = ψ2Nx+1 = 0. The left edge state |ψL〉 is staggered and
decays from the left boundary of the lattice, and we have
ψ2 j = 0 from the recurrence equations for Nx � 1. From the
Schrödinger equation, we obtain the eigenenergy EL(ky) =
t sin ky and take ψ1 = 1 to express the profile of the edge
states instead of normalizing the edge states without loss of
generality. The wave function of the left edge state reads

ψ2 j−1 = [1 + (λ/m) cos ky] j−1, ψ2 j = 0. (10)

The right edge state |ψR〉 localizes at the right boundary of
the chain, and the corresponding Schrödinger equations read

ERψ2 j = mψ2 j+1 − t sin kyψ2 j + (m + λ cos ky)ψ2 j−1,

ERψ2 j−1 = (m + λ cos ky)ψ2 j + t sin kyψ2 j−1 + mψ2 j−2,

(11)

where j = 1, 2, 3, . . . , Nx is the index in the x direction and
ψ0 = ψ2Nx+1 = 0. The right edge state |ψR〉 is staggered and
decays from the right boundary of the chain; similarly, we
have ψ2 j−1 = 0, and the eigenenergy of the right edge state is
obtained as ER(ky) = −t sin ky. If we take ψ2Nx = 1, the wave
function of the right edge state is given by

ψ2Nx+2−2 j = [1 + (λ/m) cos ky] j−1, ψ2Nx+1−2 j = 0. (12)
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FIG. 4. Edge states for the 1D (quasi-1D) projection under the
OBC. (a) λ = 1/2, ky = 4π/5; (b) λ = 2, kx = 4π/5. The black
circles and squares are the numerical simulations, and the crosses
are the analytical results. The other parameters are t = 1, m = 1/2.

For the 2D lattice under the OBC in the y direction,
topological edge states are always present. The projection of
the 2D lattice in the y direction is a quasi-1D ladder with two
legs; the total site number is 2Ny. The topological edge states
in the C = 1 phase and the in-gap edge states in the C = 0
phase have identical expressions of energy and the wave
function. The topological edge states are obtained following
the same approach as discussed previously. The bottom edge
state |ψB〉 localizes at the bottom boundary of the ladder and
has eigenenergy EB(kx ) = −m sin kx. If we take ψ1 = 1, the
wave function of the bottom edge state can be expressed as

ψ3 = 2(iEB − m − me−ikx )

t + λ
ψ1,

ψ2 j+3 = 2(iEB − m − me−ikx )

t + λ
ψ2 j+1 + t − λ

t + λ
ψ2 j−1,

ψ2 j = −iψ2 j−1, (13)

where j = 1, 2, 3, . . . , Ny − 2 is the index in the y direction;
ψ2Ny−2 = −iψ2Ny−3, and ψ2Ny = −iψ2Ny−1. The top edge state
|ψT 〉 localizes at the top boundary of the ladder and has
eigenenergy ET (kx ) = m sin kx. If we take ψ2Ny = 1, the wave
function of the top edge state is given by

ψ2Ny−2 = 2(iET − m − meikx )

t + λ
ψ2Ny ,

ψ2Ny−2−2 j = 2(iET − m − meikx )

t + λ
ψ2Ny−2 j + t − λ

t + λ
ψ2Ny+2−2 j,

ψ2Ny+1−2 j = −iψ2Ny+2−2 j, (14)

where j = 1, 2, 3, . . . , Ny − 2 is the index in the y direction;
ψ3 = −iψ4, and ψ1 = −iψ2.

Figure 4 presents the analytical result and the numerical
result of the topological edge states that localize at the left,
right, bottom, and top boundaries. The analytical result and
the numerical result are well in agreement with each other.
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FIG. 5. The disordered 2D square lattice under the PBC in the x
direction and the OBC in the y direction. The perturbations present
in the coupling terms. Notably, the disturbed lattice still possesses
the particle-hole symmetry but not the inversion symmetry. Without
the perturbations, the edge state energies are ±m sin kx , as marked
by the dashed red lines. The perturbations are (a) m(1 + 0.2Ri, j )
(the dotted blue ellipse) in each unit cell (i, j); Ri, j is a random
real number within the region [0,1]. (b) λ(1 + 0.2Ri, j ) (the dotted
red circle) for each cross coupling λ. The perturbations are shown in
(a) [(b)] for (c) and (e) [(d) and (f)]. The parameters are t = 1, m =
1/2, and Ny = 20; λ = 2 for (c) and (d), and Nx = 4 for (e) and (f).

V. ROBUSTNESS OF IN-GAP EDGE STATES

In the anisotropic 2D square lattice, the topological edge
states are robust to the system disorders under the particle-
hole symmetry. In this section, we mainly focus on demon-
strating the robustness of the in-gap edge states in the nontriv-
ial phase with a zero Chern number, C = 0. The in-gap edge
states appear under the PBC in the x direction and the OBC in
the y direction.

Schematics of the 2D lattice with perturbations are shown
in Figs. 5(a) and 5(b). The disorders considered in the real
couplings m and λ satisfy the particle-hole symmetry. The
couplings with perturbations are marked by the blue ellipses
and red circles. In Fig. 5(a), the perturbations presented in
the intracell coupling (the dotted blue ellipses) are m(1 +
0.2Ri, j ), where the subscripts (i, j) are the indices of the unit
cell and Ri, j are random real numbers within the region [0,1].
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In Fig. 5(b), the perturbations are chosen as λ(1 + 0.2Ri, j ) for
each cross coupling λ (the dotted red circles) between the unit
cells.

We also perform two types of 2D disorders to unveil the
robustness of the in-gap edge states. One type of disorder
has the translational symmetry in the x direction; that is, the
coupling disorders in different unit cells along the x direction
are identical but are different in different unit cells along
the y direction. The energy spectra of the 2D lattice for
the parameters t = 1, m = 1/2, and λ = 2 are depicted in
Fig. 5(c) for the disorders presented in the intracell couplings
m [Fig. 5(a)] and in Fig. 5(d) for the disorders presented in
the intercell coupling λ [Fig. 5(b)]. The disorders are chosen
to be translationally invariant in the x direction in Figs. 5(c)
and 5(d). The system is in the nontrivial phase with a zero
Chern number, C = 0, and the in-gap edge state energies
are ±m sin kx. The edge state energies are unchanged in the
presence of coupling perturbations, and the robustness of in-
gap edge states is verified.

The other type of disorder exhibited does not have the
translational symmetry in either the x direction or the y
direction. In the absence of perturbations, the momentum
is kx = 2nπ/Nx, with n = 1, 2, 3, . . . , Nx. Taking Nx = 4,
the set of discrete kx involves π/2, π, 3π/2, and 2π . The
eigenenergies in the absence of perturbations are constituted
by all four kx in Fig. 3(d). All the N = 2NxNy eigenenergies
of the 2D lattice as functions of the coupling strength λ are
shown in Figs. 5(e) and 5(f) for the disorders presented in
the couplings m [Fig. 5(a)] and the disorders presented in the
couplings λ [Fig. 5 (b)], respectively, where the parameters are

t = 1 and m = 1/2. The system is in the nontrivial phase with
a zero Chern number, C = 0, and the in-gap edge states with
energies Ed = ±m sin kx exist at kx = π/2, π, 3π/2, and 2π .
The dashed red lines are the edge state energies in the systems
without perturbations for comparison. Notably, the edge states
are robust to the 2D particle-hole symmetric disorders.

VI. CONCLUSION

In conclusion, we have investigated an anisotropic 2D
lattice that supports topologically nontrivial phases with a
zero Chern number. The wave polarization is a topological
characterization in the absence of the singularity in the whole
BZ under the properly chosen gauge. The absence and pres-
ence of in-gap edge states can be predicted from the zero and
half-integer polarizations defined as the integral of the Berry
connection in the whole BZ, respectively. The topologically
protected in-gap edge states are present inside the band gap
and detach the bulk band. The in-gap edge states are robust
to the 2D particle-hole symmetric disorders. The in-gap edge
states in the nontrivial phase with vanishing Chern numbers
do not exist only in the 2D square lattice; further explorations
on the 2D honeycomb lattice or multiband systems would also
be interesting.
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