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Topological corner modes in a brick lattice with nonsymmorphic symmetry
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The quest for new realizations of higher-order topological system has garnered much recent attention. In this
work, we propose a paradigmatic brick lattice model where corner modes require protection by nonsymmorphic
symmetry in addition to two commuting mirror symmetries. Unlike the well-known square corner mode lattice,
it has an odd number of occupied bands, which necessitates a different definition for the Z2 × Z2 topological
invariant. By studying both the quadrupolar polarization and effective edge model, our study culminates in a
phase diagram containing two distinct topological regimes. Our brick lattice corner modes can be realized in an
RLC circuit setup and detected via colossal “topolectrical” resonances.
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I. INTRODUCTION

In many topological condensed-matter systems, from
quantum Hall gases [1–3] to topological insulators [4–12]
and Weyl semimetals [13,13–18], the focus has been on
protected modes at the boundary of a topological bulk. Such
modes exist by virtue of nontrivial Wannier polarization,
analogous to boundary charge accumulation from classical
electric dipole polarization. But recently, this analogy has
been further extended to quadrupolar or higher polarizations,
where the intrinsic directionality of a multipole gives rise to
enigmatic topological phenomena occurring only when two
or more open boundaries are present [19]. In such systems,
topologically protected “higher-order” corner modes can exist
at the intersection of edges, even if the edges themselves do
not host topological modes [20–25].

From a complementary viewpoint, these corner modes can
also be inferred from special crystal symmetries, with their
host lattices regarded as glorified topological crystalline insu-
lators [23,25–31]. In the archetypal higher-order square lattice
[19], the corner mode is protected by two noncommutable
mirror symmetries that define a nontrivial mirror Chern num-
ber. As a slightly more sophisticated example, corner modes
also exist in the breathing kagome lattice [32], where they
are protected by three mirror symmetries. An advantage of
viewing a higher-order phenomenon as a symmetry-protected
topological order is that it does not presuppose the existence
of a Fermi sea, unlike the viewpoint of nested Wannier po-
larization. As such, bona fide higher-order topological corner
modes should exist in both classical and quantum lattices,
even when higher-order polarization does not correspond to
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any physical charge accumulation. Indeed, topological cor-
ner modes have been experimentally observed with relative
ease in various classical photonic, mechanical, and electrical
lattices [22,33,34], where couplings can be fine-tuned with
precision.

Encouraged by these practical advances, we propose in
this work a higher-order topological brick lattice with non-
symmorphic symmetry in addition to two commuting mirror
symmetries [20], unlike the often-used square corner mode
lattice which possesses C4 rotational symmetry and two non-
commuting mirror symmetries. More fundamentally, it has an
odd instead of even number of occupied bands at half filling,
which necessitates an alternative definition of its Z2 × Z2

topological index distinct from well-studied models [19,35].
First, we begin by describing our brick lattice and providing
numerical evidence for higher-order corner modes. Following
that, we justify their robustness both in terms of a Z2 × Z2

topological index and an edge Hamiltonian picture, with three
distinct gapped phases illustrated in a phase diagram. Next, we
discuss the consequences of breaking nonsymmorphic sym-
metry and thus the crucial mirror symmetries before finally
proposing an experimental setup for detecting these brick
lattice corner modes with circuit impedance measurements.

II. BRICK LATTICE MODEL AND CORNER MODES

A. Brick lattice structure and tight-binding Hamiltonian

We study a brick lattice as shown in Fig. 1. The six sites
in each unit cell are connected via various real hoppings, as
described in Fig. 1(b). Notice that there are two inequivalent
types of “bricks,” one which is wholly contained within a unit
cell and one which straddles three unit cells and contains a
possibly nonvanishing coupling t3 through its width. Note that
all couplings are meant to be properties of the lattice structure

2469-9950/2020/102(3)/035142(10) 035142-1 ©2020 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.035142&domain=pdf&date_stamp=2020-07-22
https://doi.org/10.1103/PhysRevB.102.035142


LIU, WANG, HU, LIN, LEE, AND ZHANG PHYSICAL REVIEW B 102, 035142 (2020)

FIG. 1. (a) General structure of our brick lattice, which possesses
commuting mirror-reflecting symmetries Mx and My about the x and
y axes, as well as a nonsymmorphic symmetry gy = {my|τx} (red
arrow) consisting of a glide along half a unit cell (horizontal left
arrow) and a reflection (vertical left arrow). Note that the reflection
plane for gy is the blue dashed line, not the x axis. (b) The sublattice
basis and couplings t1, a, t3, p defining the brick Hamiltonian (1).
There are two types of “bricks,” one contained with a single unit cell
(shown) and the other straddling three neighboring unit cells, with an
additional coupling t3 across its width. t3 and p always connect sites
of adjacent unit cells.

and are unaffected by the lattice distortion angle θ . For this
reason, our brick lattice is suitable for circuit implementa-
tion, as described later. In general, such a geometry-agnostic

property is useful for lattice model engineering, where desired
properties can be designed through universal complex analytic
properties that are embedded in the graph structure [36–39],
not the geometric structure of the lattice.

As we can see in Fig. 1(a), the brick lattice possesses
two commuting mirror symmetries Mx and My about the x
and y axes, as well as the nonsymmorphic (glide reflection)
symmetry gy = {my|τx}. Specifically, the lattice is mapped
onto itself when translated along half a unit cell (τx, red dashed
arrow) and then reflected along the mirror plane (my, blue
dashed line). By examining how one lattice point is mapped
in the successive actions of Mxgy and gyMx, it is easy to see
gy does not commute with Mx on the lattice level. In fact,
noncommuting is a general feature of glide symmetry [40],
which is important because having two commuting mirror
symmetries is not sufficient to realize the quadruple [19].
When t1 = a and t3 = 0, our brick lattice possesses the same
C6 rotational symmetry as the corner mode lattice of [21],
but as we shall show, the corner mode behavior can persist
far beyond this limit and hence does not require C6 rotational
symmetry at all. Indeed, nonsymmorphic symmetry has been
known to protect various interesting topological features,
from tilted Dirac cones to surface states with Möbius twists
[40–45].

In the basis of sublattices 1 to 6 illustrated in Fig. 1(b), the
couplings are contained in an effective Hamiltonian,

H (k1, k2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

e a 0 p eik1 0 t1 + t3ei(k1+k2 )

a f a 0 p ei(k1+k2 ) 0
0 a e t1 + t3ei(k1+k2 ) 0 p eik2

p e−ik1 0 t1 + t3e−i(k1+k2 ) e a 0
0 p e−i(k1+k2 ) 0 a f a

t1 + t3e−i(k1+k2) 0 p e−ik2 0 a e

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (1)

with on-site energies e and f at the corners and midpoints
of each brick, respectively. k1, k2 are related to the lattice
momenta kx, ky via k1 = kx cos θ + ky sin θ, k2 = kx cos θ −
ky sin θ , such that θ indeed never appears explicitly. Since
higher-order topological phenomena are essentially mathe-
matical properties of the lattice rather than of the particles
inhabiting it, our results will be equally valid even if H (k1, k2)
is interpreted as a lattice Laplacian or any other linear operator
on the lattice graph.

B. Band structure and corner modes

We next sequentially present the band structure and eigen-
modes of our brick Hamiltonian under periodic and single
and double open boundary conditions (PBCs and single and
double OBCs) to elucidate how exactly the corner modes
emerge.

To present various possible contrasting scenarios, we shall
consider three sets of parameters, as illustrated in the top row
of Fig. 2:

Case A: p = −5.0, t1 = −1.0, t3 = −0.1, a = −1.0,

Case B: p = −0.5, t1 = −1.0, t3 = −0.1, a = −1.0,

Case C: p = −4.0, t1 = −1.0, t3 = −7.0, a = −1.0.

(2)

Case A contains much stronger couplings across unit cells
than case B. Case C is somewhat similar to case A, but with
much stronger t3-type couplings across the widths of bricks
that straddle unit cells. Henceforth, we shall also set the on-
site energies e and f to zero, so that the corner modes can be
pinned at zero energy (ω = 0).

First, we examine the bulk (PBC) band structure of the
brick lattice. In all three cases, a gap clearly separates the
upper three bands from the lower three bands (Fig. 2, middle
row), allowing unambiguous topological characterization of
potential midgap modes.

Next, we introduce a boundary perpendicular to the x axis,
such that k2 remains a good “quantum number” (Fig. 2, bot-
tom row). While edge modes (red) now appear in cases A and
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FIG. 2. Bulk and edge spectra of our brick lattice Hamiltonian, with columns in (a) to (c) corresponding to parameters given by cases
A to C (3). Top row: Lattice couplings for each case, colored according to Fig. 1(b) with thicknesses proportional to coupling magnitude.
Middle row: PBC band structures with well-defined zero-energy gaps for all three cases. Bottom row: Spectra under a single OBC along the
x direction, with bulk (edge) modes colored black (red). All cases have trivial first-order topology: The edge modes of cases A and C do not
traverse the gap, and case B does not even have edge modes.

C, they do not traverse the gap. This indicates constant first-
order polarization and hence trivial first-order Z2 topology,
which is expected from our simple lattice structure devoid of
effective pseudospin-orbit coupling [46,47].

What is interesting is that, after taking OBCs in both the
x and y directions (double OBCs), second-order topological
corner modes can still appear even though the edge modes
with a single OBC do not exhibit topological polarization.
As shown in Fig. 3, such corner modes occur in cases A and
C, but not B. In case A [Fig. 3(a)], we observe a twofold-
degenerate density of states (DOS) peak at energy ω = 0,
with each copy corresponding to a corner mode plotted in the
lower left panel. Other DOS peaks away from zero energy but
within the bulk gap correspond to edge modes. Neither corner
nor edge modes exist in case B [Fig. 3(b)], which exhibits

only bulk modes. Indeed, without edge modes from single
OBCs, corner modes cannot possibly appear when another
open boundary is introduced. Case C [Fig. 3(c)] is somewhat
similar to case A, but its zero energy modes are not isolated
from the other modes and hence do not form well-defined cor-
ner modes. In the following, we shall explain and substantiate
these observations through topological arguments.

III. TOPOLOGICAL CHARACTERIZATION
OF CORNER MODES

We now briefly recap the theory of higher-order topological
polarization before describing a Z2 × Z2 topological classifi-
cation of our brick lattice corner modes different from that in
the existing literature.
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FIG. 3. Double OBC density of states (DOS) for cases (a) A,
(b) B, and (c) C as a function of energy ω, calculated on a finite lattice
with 10 × 10 unit cells. Midgap modes exist within the bulk gap for
cases A and C, but only case A has well-separated doubly degenerate
corner zero modes. Its spatial wave function distribution is illustrated
at frequencies ω = 0 (left), ω = 0.78 (middle), and ω = 4.10 (right),
where it is dominated by corner, edge, and bulk modes, respectively.
The DOS vertical axis is plotted on a logarithmic scale.

A. First-order polarization

First, we introduce the notion of topological (Wannier) po-
larization. Consider a two-dimensional Hamiltonian H (k1, k2)
with OBCs in the x direction, such that its eigenstates |�(k2)〉
are indexed by k2 ∈ [0, 2π ), which remains a good quantum
number. Of central importance is the projected periodic posi-
tion operator

X̂P(k2) = P̂(k2)e2π ix̂/Nx P̂(k2), (3)

where x̂ is the usual position operator, P̂(k2) = |�(k2)〉〈�(k2)|
is the projection onto a chosen |�(k2)〉 band, and Nx is the
number of unit cells along the x direction. The first-order
polarization 〈x(k2)〉 is given by the rescaled phase of the
eigenvalues of X̂P(k2):

〈x(k2)〉 = Nx

2π
Im ln 〈�(k2)|e2π ix̂/Nx |�(k2)〉. (4)

FIG. 4. Evolution of Wannier centers 〈x(k2)〉 for cases (a) A, (b),
and (c) C over one period of k2. For all cases, there is no partner
switching, and a dispersionless trajectory always exists. Cases A and
C, which contain edge modes, also have Wannier centers hovering
around 0.5. These first-order polarizations should not be confused
with the second-order polarizations pj

y, which define the second-
order Z2 × Z2 via Eq. (7).

For a Hamiltonian with b bands, there exist bNx eigenvalues
of XP(k2), but only b of them are independent: The rest are
translated by a phase of 2π/Nx and as such correspond to the
same polarization [48,49] 〈x(k2)〉.

Physically, the polarization is the center-of-mass position
of its corresponding X̂P(k2) eigenstate, which is also a max-
imally localized Wannier function for any given k2 [50–53].
Hence, it is also called the Wannier center. For a Fermi gas
of electrons, the polarization tells us, through the Laughlin
gauge argument, how charge within the occupied Fermi sea
is inevitably topologically “pumped” by an electric field that
translates k2. Numerically, the Wannier centers can be com-
puted via the Wilson loop operator Wk1+2π←k1 , as detailed in
Sec. A1.

In our brick lattice with time-reversal symmetry, the band
topology is characterized by a Z2 invariant [4,6,52] which
can be read from the spectral flow of the polarization [52].
Specifically, the Z2 index is trivial or nontrivial depending on
whether the 〈x(k2)〉 eigenvalues “switch partners” as k2 varies
over half a period, i.e., from one time-reversal-invariant point
to the other. This is equivalent to checking whether a particular
〈x(k2)〉 Wannier center trajectory crosses an arbitrary line
parallel to the k2 axis an even or odd number of times as k2

varies over a period.
In general, the polarization flow bears a one-to-one cor-

respondence with the energy spectral flow: for each pair of
Wannier centers that switch partners, there also exists a pair of
gapless edge modes that switch partners and traverse the bulk
gap. In particular, a gapped OBC spectrum can contain only
Z2 = 0 bulk bands, as in all of the cases plotted in the bottom
row of Fig. 2. They can possess either edge modes that do
not traverse the gap (cases A and C) or no edge modes at all
(case B). These behaviors are reflected in their polarization
trajectories, shown in Fig. 4. While none of them exhibit
partner switching and are hence all Z2 trivial, cases A and C
both possess polarizations that fluctuate about 0.5, indicative
of midgap localization tendencies of their respective OBC
edge modes.

B. Second-order polarization and Z2 × Z2 classification
of corner modes

To understand how topological corner modes can arise
from trivial single OBC Z2 edge modes, we now introduce
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the concept of second-order quadrupole polarization [19]. The
main idea is to use the gapped (first-order) Wannier bands
as the “bulk” bands of a new effective system and apply
the machinery of Wannier polarization on it to obtain the
second-order polarization properties of the original system.
This procedure can, of course, be repeated ad infinitum to ob-
tain higher-order polarizations in a higher-dimension system,
although we shall stop at the second order in this work since
the brick lattice is two-dimensional.

More concretely, one divides the set of Wannier centers
〈x(k2)〉 into mutually nonintersecting (gapped) sectors, such
that intersecting Wannier centers combine to form a single
sector [19,35]. Just like gapped bands, each sector is well
separated from the others and can thus be unambiguously
characterized topologically. For each jth Wannier center, j =
1, . . . , NF , where NF is the number of occupied bands, we can
define an effective second-order “bulk” state |ω j

x,k〉 in terms of
its corresponding Wannier function:

∣∣ω j
x (k)

〉 =
NF∑

n=1

|uk〉
[
ν

j
x,k2

]n
, (5)

where [ν j
x,k2

]n is the nth component of the jth Wannier func-
tion in the basis of occupied bands and |un

k〉 is the nth Bloch
state. In analogy to the first-order polarization, one can thus
compute a second-order polarization

pj
y = − i

2π

1

Nx

∑
k1

ln
(
W̃ j

y,k1

)
(6)

from the nested Wilson loop operator W̃ j
y,k1

formed from

|ω j
x (k)〉, as detailed in Sec. A1. The y subscript in pj

y indi-
cates that it refers to the y-direction nested polarization of
open boundary condition in the x direction (x-OBC) Wannier
functions; pj

x does not necessarily equal pj
y unless a mirror

symmetry maps one boundary to the other.
The topological class of a second-order (double OBC)

system is given by the set of Z2 numbers associated with
the Wannier sectors. In the well-studied square corner mode
lattice [19,35] with NF = 2 gapped occupied edge bands at
half filling, there are two Wannier sectors, and a Z2 × Z2

classification can be defined [54]. But in our model with
NF = 3 occupied bands at half filling, a different [19] Z2 × Z2

classification must be defined. Since there is already a disper-
sionless Wannier center due to odd NF and Mx symmetry, we
shall let it be in its own Wannier sector with corresponding
second-order polarization p1

y (a flat trajectory in each plot
of Fig. 4). The other two Wannier bands may generically
intersect and will be taken to form the other sector. Hence,
we define, for our brick lattice, a Z2 × Z2 topological index,

(μ, ν) = (
p1

y, p2
y + p3

y

)
. (7)

A phase diagram for the brick lattice is shown in Fig. 5
for fixed intra-unit-cell couplings a = t1 = −1 and variable
inter-unit-cell couplings p and t3. Case A is deep within the
(μ, ν) = (0.5, 0.5) region with p1

y = 0.5 and p2
y + p3

y = 0.5
and hosts two distinct degenerate corner modes. Case B,
which essentially consists of islands dominated by intra-unit-
cell couplings a, t , is nontopological as expected, with neither
edge (Fig. 2) nor corner modes. Case C belongs to the more

FIG. 5. Topological phase diagram for our brick lattice, with
cases A to C each corresponding to a different (μ, ν ) ∈ Z2 × Z2

class. Interestingly, the trivial (0,0) phase occupies a relatively small
region and is separated from the two distinct topological phases via
a somewhat larger gapless regime (gray), where the topology is not
well defined. Generally, |p| > |t3| favors the blue (0.5,0.5) nontrivial
phase (and vice versa for |p| < |t3|), illustrating the competition
between width and edge couplings across the unit cells.

enigmatic (0.5,0) phase, which is encouraged by a dominant
t3. To gain some intuition, consider the extreme limit of large
|t3| and small |p|, where the brick lattice essentially splits into
weakly coupled one-dimensional (1D) Su-Schrieffer-Heeger
(SSH) ladders with strong coupling t3 and weak coupling
t1 and relatively weak “rungs” composed of two successive
a couplings (Fig. 1). In this quasi-1D limit, corner modes
obviously should not exist, although a continuum of boundary
modes at the ends of each ladder still gives rise to 1/2
polarization. In this sense, the (0.5,0) phase can be regarded
as the “horizontal half” of the (0.5,0.5) phase, although the
above analogy quickly becomes inaccurate away from the
extreme limit. Finally, we note that the various topological
phases are usually not adjacent to each other: To transform
from one topological phase to another, the requisite band gap
closure may last indefinitely long, i.e., if the parameters are
transformed along the gray strip t3 ≈ p.

IV. CORNER MODES FROM THE EFFECTIVE 1D EDGE
PICTURE

To more intuitively understand the origin of the corner
modes, we now consider cases where the corner mode can be
largely explained with a 1D edge picture. Instead of invoking
the rather abstract nested polarizations, we attempt to visual-
ize corner modes as the intersections of the boundary modes
of 1D SSH-like edges.

The double OBCs in our brick lattice produce armchairlike
edges in both directions, as shown in Fig. 6. Evidently, the
edgemost couplings form SSH-like chains along each edge,
each with four sites per unit cell:

Hedge(k) =

⎛
⎜⎜⎝

0 t1 0 p e−ik

t1 0 a 0
0 a 0 a

p eik 0 a 0

⎞
⎟⎟⎠. (8)
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FIG. 6. One-dimensional armchair chains �1 and �2 at the edges
of both boundaries, which are equivalent due to lattice mirror
symmetry. The four inequivalent atoms in their unit cells couple
according to Hedge [Eq. (8)], whose gap closure at p = t1 for t3 =
0, a = −1 agrees with the phase diagram for the full brick lattice
(Fig. 5).

In chains �1 and �2 as shown, the basis in Hedge is taken to be
sites 1,6,5,4 and 6,1,2,3, respectively.

Like the well-known SSH model, this four-band model
contains topological zero modes when the inter-unit-cell cou-
pling p is larger than the intra-unit-cell coupling t1. This
can be seen from the analytic expression of its eigenen-
ergies ω2 = a2 + Q2 ±

√
a4 + Q4 + 2a2 pt1 cos k, with Q2 =

(p2 + t2
1 )/2, which gives the only gap closure and hence

the possible topological phase transition at t = p1. In other
words, the a intra-unit-cell couplings are “spectators” that
play no part in determining the topology and leave be-
hind an SSH-like dimerization mechanism for topological
boundary modes. Setting t1 = a = −1 as before, we see
that the topological phase transition point p = a = −1 for
Hedge indeed agrees with the phase diagram of the full brick
lattice in Fig. 5. Indeed, as shown in Fig. 7(c), its DOS
also agrees qualitatively with that of the full brick lattice in
Fig. 3, with corner modes comprising superposed SSH-like
boundary modes from both chains �1 and �2. Note that this
admittedly rudimentary edge model completely ignores the
effects of coupling between adjacent chains and thus cannot
predict the effects of t3. A more detailed analysis of these
neighboring couplings may provide intuition for the entire
phase diagram, as has been done for the square corner mode
model [55].

V. EFFECT OF BREAKING NONSYMMORPHIC
SYMMETRY

As previously emphasized, a hallmark of our brick
lattice is its nonsymmorphic symmetry in addition to
its two commuting mirror symmetries. Below, we show
that with our lattice structure, the nonsymmorphic sym-
metry gy = {my|τx}, if broken in certain ways, also
leads to the disappearance of well-defined corner zero
modes.

As illustrated in Fig. 8(a), we break the nonsymmorphic
symmetry gy = {my|τx} by removing the t1 couplings of al-
ternate original unit cells (green → white), i.e., sites 1,6 and

FIG. 7. (a) Illustration of one-dimensional armchair chains at
the edges (we take �2 for an example) with different coupling
parameters p. (b) The bulk modes and (c) DOS plots reveal the
existence of corner modes in the one-dimensional armchair chains
with topologically nontrivial p, with qualitative agreement with the
DOS of the full brick lattice in Fig. 3.

3,4 are no longer coupled by t1. Thus, the mirror symmetries
Mx and My are obviously preserved since the t1’s are removed
symmetrically within each unit cell. However, nonsymmor-
phic symmetry is broken because site 12 no longer maps
identically to site 4 and vice versa for site 11 to site 5, etc.
In Figs. 8(b) and 8(c), we no longer observe well-defined zero
modes in the DOS. This destruction of the corner zero modes
is expected from the previous effective edge picture, which
gives two inequivalent SSH-like chains that do not “dimerize”
in the same way.

VI. EXPERIMENTAL PROPOSAL VIA RLC CIRCUITS

Finally, we briefly discuss how to experimentally realize a
brick lattice and measure its corner modes. Of various possi-
ble platforms in photonic, mechanical, and acoustic systems
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FIG. 8. (a) Illustration of a modification to the brick lattice that
breaks the nonsymmorphic symmetry gy but preserves the mirror
symmetries Mx and My. Each unit cell now consists of 12 sites, with
half of the t1 (green) couplings removed. (b) Single OBC spectrum
and (c) double OBC DOS, showing the absence of isolated zero-
energy topological modes.

[34,56,57], an RLC circuit realization is arguably the least
challenging, with an experimental smoking gun being easily
performed impedance experiments [22,47,58–60]. Since this
approach is already quite mature, with a related corner mode
circuit experiment performed last year [22], we shall refer the
reader to various excellent references for most of the details
[46,61–63].

In a circuit, the physics are most directly described via
Kirchhoff’s law, which can be put into a matrix form:

Ia(ω) =
∑

b

Jab(ω)Vb(ω), (9)

where Ia(ω) and Vb(ω) are the frequency-space net input
current and electrical potential at nodes a and b, respectively.
Jab(ω) is the circuit Laplacian that captures the circuit behav-
ior. For our purposes, Jab(ω) will replace the Hamiltonian,
such that the DOS and energy spectrum now refer to those
of the Laplacian.

To realize our brick lattice [Eq. (1)] with a Laplacian, one
simply substitutes each coupling by a capacitor proportional
to its value, such that a coupling Hjk = −p, p > 0, becomes
the admittance contributions Jj j (ω) = Jkk (ω) = −iωp and
Jjk (ω) = Jk j (ω) = iωp, with ω being the AC frequency. To
independently control the on-site couplings, we also con-
nect grounded inductors Le or L f to each site, such that
they acquire on-site admittance contributions of (iωLe)−1 or
(iωL f )−1. Made out of capacitors of capacitances a, p, t1, t3
and the grounding inductors described below, the brick circuit
possesses a Laplacian of the form

J (k1, k2; ω) = −iω

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

e′ a 0 p eik1 0 t1 + t3ei(k1+k2 )

a f ′ a 0 p ei(k1+k2 ) 0
0 a e′ t1 + t3ei(k1+k2 ) 0 p eik2

p e−ik1 0 t1 + t3e−i(k1+k2 ) e′ a 0
0 p e−i(k1+k2 ) 0 a f ′ a

t1 + t3e−i(k1+k2) 0 p e−ik2 0 a e′

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (10)

with e′ = 1
ω2Le

− a − p − t1 − t3 and f ′ = 1
ω2L f

− 2a − p. By
tweaking Le and L f , one can easily make them equal, such
that the on-site admittances become a constant shift of the
Laplacian eigenvalues, analogous to the chemical potential.

To detect the corner modes, one measures the impedance
[61]

Zab(ω) = Va − Vb

I0

=
∑

n

|φn(a) − φn(b)|2
jn(ω)

(11)

between two nodes a and b with respect to a current I0

entering from a and leaving from b. The second line is
defined via Jab(ω) = ∑

n jn(ω)|φn(a)〉〈φn(b)|, the expansion
of the Laplacian into its eigenmodes. Most salient from

this key expression is that zero modes jn(ω) ≈ 0 give rise
to large divergences, which are also known as topolectrical
resonances. By measuring the impedance between two points
near a corner, corner zero modes can be easily identified as
large impedances or resonances.

VII. CONCLUSION

Compared to well-known higher-order lattices like the
square corner mode lattice, our brick lattice is fundamentally
different in two ways: Its corner zero modes requires nonsym-
morphic symmetry in addition to two mirror symmetries, and
it has an odd number of occupied bands, which necessitates a
different definition of the Z2 × Z2 topological invariant. In
addition to trivial gapped and gapless phases, we also un-
covered two distinct topological phases: (μ, ν) = (0.5, 0.5),
with distinct corner modes, and (μ, ν) = (0.5, 0), hosting
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continuum boundary modes and adiabatically connected to
weakly coupled SSH ladders. We conclude our work by
describing how brick lattice corner modes can be realized and
easily detected in a circuit setup, a platform that has proved
to be experimentally accessible and amenable to interesting
nonlinear, non-Hermitian, or Floquet generalizations [59,64–
67].
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APPENDIX A: THE WILSON LOOP

1. Wilson loop over occupied energy bands

In the main text, we have alluded to using the Wilson loop
to compute the Wannier center evolution of a given Hamilto-
nian. Here we show a detailed description of the procedure,
mainly following [52,53] and the supplement of [19]. Fixing
k2 such that the system is effectively one-dimensional, the
projection operator P̂(k2) of the occupied bands (from n = 1
to n = NF ) is

P̂(k2) =
∑

k1

NF∑
n=1

|�n(k)〉〈�n(k)| =
∑

k1

|k〉〈k| ⊗ P̂(k), (A1)

where P̂(k) = ∑NF
n=1 |un(k)〉〈un(k)|. We next write down the

unitary periodic position operator of the occupied bands,
defined as

X̂P(k2) = P̂(k2)X̂ P̂(k2), (A2)

where δk = 2π/Nx and X̂ = eiδk1 x̂. Using 〈�n′ (k′)|X̂ |�n(k)〉 =
δk+δk ,k′ 〈un′ (k + δk )|un(k)〉 and substituting the above defini-
tion of P̂(k2), we get

X̂P(k2) =
∑

k1

NF∑
n′,n=1

〈un′ (k + δk )|un(k)〉 · |�n′ (k + δk)〉〈�n(k)|.

(A3)
The summation over k has Nx terms, so the above operator can
be expressed as an NF × Nx matrix. If we define matrix Gk

with component [Gk]mn = 〈un(k + δk)|um(k), it is not unitary
because Nx is finite. To facilitate the numerical computa-
tion, we can perform the singular-value decomposition G =
UDV †, where D is a diagonal matrix. If we define Fk = UV †,
we get a unitary matrix which equals Gk in the thermodynamic
limit, and we can write the operator X̂P in the thermodynamic
limit case, under the Nx × NF basis of |�n(k)〉:

X̂P(k2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · FkN

Fki 0 0 · · · 0
0 Fkii 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A4)

where ki = 0, kii = δk, . . . , kN = δk(Nx − 1). Each matrix F
is an NF × NF matrix. We write its eigenvector in terms of a
1 × NF block, namely,

X̂P

⎛
⎜⎜⎜⎜⎜⎜⎝

νki

νkii

νkiii

...
νkN

⎞
⎟⎟⎟⎟⎟⎟⎠

j

= E j

⎛
⎜⎜⎜⎜⎜⎜⎝

νki

νkii

νkiii

...
νkN

⎞
⎟⎟⎟⎟⎟⎟⎠

j

. (A5)

The Wilson loop operator is defined as

Wk+2π←k = Fk+2π−δkFk+2π−2δk · · · Fk+δkFk . (A6)

By recursively applying the above equations to the eigenvec-
tor, we can derive the eigenvalue equation

Wk1+2π←k1

∣∣ν j
x,k

〉 = (E j )Nx
∣∣ν j

x,k

〉
. (A7)

Here we write |ν j
k〉 as |ν j

x,k〉 to denote that the Wilson loop
is taken along x̂. It should be noticed that although the
eigenstates |ν j

k〉 are different for different k, their eigenvalues
are the same for a fixed k2. So if we care about only the
eigenvalue, we can choose any k1 to be the starting point of
the Wilson loop. If we have NF occupied bands, we can solve
Eq. (A7) to get NF different EN . Looking back at the definition
of X̂P in Eq. (A2), we can relate the phase of (E j )Nx to 〈x〉 as
in the main text.

Figure 4 of the main text plots the phase of (E j )Nx of
different k2. Since the Hamiltonian possesses pseudo-time-
reversal symmetry, we need to plot k2 from only zero to π ,
with the part from −π to zero related by symmetry.

2. Nested Wilson loop over Wannier sectors

We define the Wannier basis

∣∣ω j
x (k)

〉 =
NF∑

n=1

∣∣un
k

〉[
ν

j
x,k

]n
(A8)

as in the main text and use it to calculate the nested Wilson
loop W̃y,k1 in a way similar to the (first-order) Wilson loop:

W̃ j
y,k1

= W̃ j
k2+2π←k2

= F̃ j
k2+2π−δkF̃ j

k2+2π−2δk · · · F̃ j
k2+δkF̃ j

k2
,

(A9)
where [F̃ j

k2
]mn = 〈ω j,m

x (k1, k2 + δk)|ω j,n
x (k1, k2)〉, which is in-

dependent of x.

APPENDIX B: SYMMETRY OF THE HAMILTONIAN

1. Chiral symmetry

In the SSH model with two sublattice degrees of freedom,
the chiral symmetry is expressed as

σzH (k)σz = −H (k). (B1)
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Here we have six sublattices, so by analogy we can define a
new s′

z:

s′
z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (B2)

In fact, this is the only way to define s′
z, up to an overall minus.

The Hamiltonian has chiral symmetry when all the diagonal
terms are zero. To break the chiral symmetry, we can add on-
site energy terms, for example, by

diag
(
e f e e f e

)
. (B3)

We take other parameters to be p = −5, t1 = −1, t3 =
−0.1, a = −1.0, which is the parameter of phase A. By taking
e = 0.05, f = 0, we observe the two zero modes separate into
two energies E = ±0.05, but they are still well localized at the
corners. If we take e = 0, f = 0.02, although chiral symmetry
is broken, the two zero modes are still degenerate and at zero
energy. To sum up, chiral symmetry is needed for the two
corner modes to be degenerate and located at zero energy.

2. Spatial symmetry

Note that we make the substitution H0(kx, ky) =
H (kx cos θ + ky sin θ, kx cos θ − ky sin θ ).

Mirror symmetry my is

my =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (B4)

myH0(kx, ky)m†
y = H0(kx,−ky).

myH (k1, k2)m†
y = H (k2, k1).

(B5)

Mirror symmetry mx is

mx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B6)

mxH0(kx, ky)m†
x = H0(−kx, ky),

mxH (k1, k2)m†
x = H (−k2,−k1).

(B7)

Inversion symmetry I is

Iv =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B8)

IvH (kx, ky)I†
v = H (−kx,−ky),

IvH0(k1, k2)I†
v = H (−k1,−k2).

(B9)

Nonsymmorphic symmetry gy = {my|τx} is

gy = ei(kx cos θ+ky sin θ )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B10)

gyH (kx, ky)g†
y = H (kx,−ky ),

gyH (kx, ky)g†
y = H (ky, kx ).

(B11)
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