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Angle-resolved photoemission spectroscopy (ARPES) has revealed peculiar properties of mobile dopants in
correlated antiferromagnets (AFMs). But, describing them theoretically, even in simplified toy models, remains
a challenge. Here, we study ARPES spectra of a single mobile hole in the t-J model. Recent progress in
the microscopic description of mobile dopants allows us to use a geometric decoupling of spin and charge
fluctuations at strong couplings, from which we conjecture a one-to-one relation of the one-dopant spectral
function and the spectrum of a constituting spinon in the undoped parent AFM. We thoroughly test this
hypothesis for a single hole doped into a two-dimensional Heisenberg AFM by comparing our semianalytical
predictions to previous quantum Monte Carlo results and our large-scale time-dependent matrix product state
calculations of the spectral function. Our conclusion is supported by a microscopic trial wave function describing
spinon-chargon bound states, which captures the momentum and t/J dependence of the quasiparticle residue.
From our conjecture we speculate that ARPES measurements in the pseudogap phase of cuprates may directly
reveal the Dirac-fermion nature of the constituting spinons. Specifically, we demonstrate that our trial wave
function provides a microscopic explanation for the sudden drop of spectral weight around the nodal point
associated with the formation of Fermi arcs, assuming that additional frustration suppresses long-range AFM
ordering. We benchmark our results by studying the crossover from two to one dimension, where spinons and
chargons are confined and deconfined, respectively.
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I. INTRODUCTION

The angle-resolved photoemission spectroscopy (ARPES)
[1] spectra of doped antiferromagnets (AFMs) have attracted
considerable attention. In quasi-one-dimensional (quasi-1D)
settings, they have revealed spin-charge separation: Instead
of discrete delta-function peaks, a broad continuum signifies
the existence of separate branches of a spinless holon and
a charge-neutral spinon [2–11]. The situation is strikingly
different in the two-dimensional (2D) Heisenberg AFM, the
parent compound of high-Tc cuprate superconductors [12].
There, a discrete quasiparticle peak is found in the one-
hole ARPES spectrum [13–15], corresponding to a long-lived
magnetic polaron [16–35]. For reconciling the experimental
observations with numerical calculations in the clean t-J or
Hubbard models, inclusion of electron-phonon interactions
has been an important issue [36,37]. At finite doping, but
before the system becomes superconducting, a pseudogap is
observed [38]. Instead of a closed Fermi surface, as might
be expected from a Fermi-liquid state, Fermi arcs have been
found at low energies around the nodal points (±π/2,±π/2)
[39] (we use units where the lattice constant a = 1 and h̄ = 1).

*Corresponding author: annabelle.bohrdt@tum.de

These arcs of high spectral weight appear like a part of a
small Fermi surface, but the backside of the putative Fermi
surface is invisible. The microscopic origin of Fermi arcs in
the pseudogap phase of cuprates is not understood today, but
their existence has been argued to imply exotic underlying
physics and topological order [40–43].

Theoretically predicting ARPES spectra of real solids is
challenging. Microscopic models are hard to solve because
they involve nontrivial band structures, and electron-phonon
and electron-electron interactions; moreover, model parame-
ters are not exactly known. This has led to a long-standing de-
bate about the explanation of ARPES spectra in the undoped
AFM insulator and the origin of Fermi arcs.

Here we focus on ARPES spectra in clean toy models
for doped AFMs. Even in such idealized scenarios, the the-
oretical challenges are significant enough that many open
questions remain and a universally accepted understanding
is lacking. Our work contributes two significant advances: (i)
we improve state-of-the-art numerical simulations of ARPES
spectra and (ii) we combine our results with recent insights
into the microscopic structure of charge carriers in doped
AFMs [46,47] obtained from cold-atom experiments with
quantum gas microscopes. As a result, we reach a detailed
understanding of one-hole ARPES spectra in the paradigmatic
t-J model.

2469-9950/2020/102(3)/035139(23) 035139-1 ©2020 American Physical Society

https://orcid.org/0000-0002-7093-9502
https://orcid.org/0000-0003-3531-8089
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.035139&domain=pdf&date_stamp=2020-07-21
https://doi.org/10.1103/PhysRevB.102.035139


ANNABELLE BOHRDT et al. PHYSICAL REVIEW B 102, 035139 (2020)

Our findings have important consequences, both theoret-
ically and experimentally. Ultracold-atom experiments en-
able clean studies of the Fermi-Hubbard model with tun-
able parameters [34,47–52], in 1D or 2D. One can also
study continuous dimensional crossovers which are relevant
to solids well [53,54]. ARPES spectra can be accessed in
optical lattices [55–60], allowing to experimentally test our
theoretical predictions in the near future. On the theoretical
side, our work verifies that one-hole ARPES spectra in the
AFM can be understood from more fundamental constituents
(partons), whose properties we can describe on a quantitative
and microscopic level. Moreover, this leads to new insights to
the current puzzles of cuprates, in particular the microscopic
origin of Fermi arcs.

We perform microscopic numerical calculations and study
spectral properties of magnetic polarons in the 2D t-J model.
On the one hand, we use unbiased time-dependent ma-
trix product state (td-MPS) simulations [61–63] to calculate
the one-hole ARPES spectrum on four-leg cylinders [see
Fig. 1(a)]. Our work builds upon recent progress in the
calculation of dynamical response functions using td-MPSs
[64,65]. On the other hand, we use an analytic trial wave
function [35] and show that it provides a complete physical
picture of the observed low-energy features in the spectrum
[see Figs. 1(b) and 1(c) for a summary].

The main results of our paper are as follows. First, we
argue that state-of-the-art numerical calculations of the spec-
tral function conclusively demonstrate that magnetic polarons
in the clean t-J model are composed of partons: they form
mesonlike bound states of spinons and chargons. Second, and
in contrast to general wisdom, the spin-charge correlations
present in this model at strong coupling can be efficiently de-
scribed by a Born-Oppenheimer product wave function, if one
works in the so-called geometric string basis [35,66]. As an
important consequence of this second result, we demonstrate
that all characteristic low-energy features in the spectrum at
strong coupling can be attributed to either spinon or chargon
properties. Third, we have a simple analytic understanding of
the microscopic chargon properties. This leads us to the main
conjecture of our work, namely, that a one-to-one relation
exists, valid at strong coupling, between the observed one-hole
spectral function and the spectrum of a constituting spinon in
the undoped parent AFM. This result has consequences well
beyond this work, suggesting ARPES spectroscopy at strong
coupling as the most direct tool yet to probe the properties of
constituting spinons in quantum AFMs. Possible applications
include studies of quantum spin liquids.

Our paper is organized as follows. In the remainder of the
Introduction, we provide an overview of the main spectral
features considered later. We introduce the model Hamilto-
nian and explain how our results relate to earlier studies. In
the following section, we derive the parton theory of ARPES
spectra in the geometric string basis. Then, we present our
td-MPS results, which contain evidence for the parton nature
of magnetic polarons. After establishing the known chargon
features in the spectrum, we discuss the rich momentum de-
pendence of the quasiparticle residue Z (k) observed at strong
couplings. We explain our observations by relating them to
spinon properties, which, in turn, we predict by an analytical
trial wave function. We close by discussing how our findings

FIG. 1. Magnetic polaron spectra and their unified description.
(a) We perform td-MPS simulations of single-hole spectra in the
t-J model on 4 × 40 cylinders of different geometry. At strong
couplings t � J , here t = 3J , a strong suppression of spectral weight
is observed at (π, π ) at low-to-intermediate energies. Details of the
td-MPS calculations are provided in Appendix A. The spectrum is
obtained along cuts in the Brillouin zone, calculated for different cov-
erings of the cylinder by MPSs (both indicated in the top row). The
dashed lines indicate the dispersion relations of the lowest two peaks
(determined as local maxima of the spectrum), which we interpret as
the ground and first vibrational states of the magnetic polaron. (b) At
strong couplings, magnetic polarons can be understood as mesonlike
spinon-chargon pairs connected by geometric strings. The spectral
function A(ω, k) of a hole can be approximated by a convolution
of the spinon and chargon contributions As(ω, k) and Ac(ω), respec-
tively, where the center-of-mass momentum of the meson is carried
by the heavy spinon. (c) The optimized slave-particle mean-field
theory of fermionic spinons [44,45] yields the correct shape of the
magnetic polaron dispersion ωs(k), with a minimum at the nodal
point (π/2, π/2) and low-energy states along the edge ∂MBZ of
the magnetic Brillouin zone. The contribution to the spectral weight
ZMF

s (k) predicted by the mean-field spinon ansatz is indicated by the
color plot at the bottom. It features a sharp drop at the nodal point
(π/2, π/2), which may be the root of the missing spectral weight on
the backside of the Fermi arcs observed in cuprates [39].

may be related to Fermi arcs observed in cuprates, and how
related types of experiments on quantum spin liquids can be
analyzed in a similar way.

A. Model

In the following we will consider the 2D t-J model, defined
by the Hamiltonian Ĥ = ∑

μ=x,y Ĥ
μ
t + Ĥμ

J . It is believed to
capture the essential low-energy physics of the anisotropic 2D
Fermi-Hubbard model with onsite interaction U and tunnel-
ings tμ in μ = x and y directions [67]. The individual terms
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are of tunneling type,

Ĥμ
t = −tμ

∑
j

∑
σ

P̂GW
(
ĉ†

j+eμ,σ ĉ j,σ + H.c.
)
P̂GW, (1)

and AFM spin-exchange terms of strength Jμ = 4t2
μ/U ,

Ĥμ
J = Jμ

∑
j

(
Ŝ j+eμ

· Ŝ j − n̂ j+eμ
n̂ j

4

)
. (2)

Here, ĉ†
j,σ creates a fermion with spin σ on site j, eμ denotes

a unit vector along μ = x, y, and P̂GW is the Gutzwiller
projector on a subspace with zero or one fermion per lattice
site (i.e., the density n̂ j = ∑

σ ĉ†
j,σ ĉ j,σ has eigenvalues 0 and

1 only). We mostly focus on the case with exactly one hole,∑
j n̂ j = LxLy − 1, with Lx,y the linear system size along x

and y directions, respectively. If μ is not specified, t and J
refer to the isotropic case t = tx = ty and J = Jx = Jy.

Throughout this paper we work in the strong coupling
regime, where t > J , but before the Nagaoka polaron regime
[68] is reached: (t/J ) < (t/J )Nagaoka. Using large-scale den-
sity matrix renormalization group (DMRG) [69] simulations,
White and Affleck [30] have determined the critical value
above which the Nagaoka polaron with a ferromagnetic core is
realized, as (t/J )Nagaoka = 40 ± 10. Note that the motivation
for referring to the case t > J as the strong coupling regime
is the connection of the t-J model, Eqs. (1) and (2), to
the Hubbard model with strong onsite interactions U : since
the superexchange energy is determined by J = 4t2/U , the
Hubbard model’s strong coupling regime U � t corresponds
to t > J .

B. Overview and relation to previous works

The magnetic polaron problem of a single hole moving
in an AFM background is often considered to be essentially
solved. Various semianalytical and numerical techniques have
been applied, and many of the key properties of magnetic
polarons have been numerically established [16–33]. Never-
theless, there is no agreement on the correct physical inter-
pretation of the obtained results. Partly, this can be attributed
to conflicting numerical findings, and disconnected theoretical
interpretations of the different features, as we explain next.

In the following, we summarize the main spectral features
of a single hole in the 2D t-J model, assuming t > J . We
focus on low energies, no more than ≈2t above the one-hole
ground state.

(i) At the lowest energies, a dispersive quasiparticle peak,
the magnetic polaron, is observed. Its bandwidth is on the
order of the superexchange coupling J , rather than hole
tunneling t , and the shape of the dispersion relation differs
significantly from that of a free hole.

(ii) The quasiparticle residue Z(π/2,π/2) around the disper-
sion minimum at the nodal point depends strongly on t/J . All
numerical methods have conclusively shown that Z(π/2,π/2) >

0, despite conflicting theoretical proposals [70].
(iii) Above the magnetic polaron ground state, at exci-

tation energies �E < t , a second peak has been observed.
The most reliable signatures were obtained by Monte Carlo
calculations [28,29], while large-scale exact diagonalization
studies yielded conflicting results for increasing system sizes

[20,26]. Like the ground-state energy E0 itself, the energy
of the first peak E0 has been shown to be consistent with a
scaling of the form En = −2

√
3t + cnt1/3J2/3, asymptotically

for t � J .
(iv) The quasiparticle residue Z (k) has strong and non-

monotonic momentum dependence.
Our td-MPS studies confirm (i) and (ii); The resolution

afforded by our method allows us to improve the predictions
for the position of the first excited peak in (iii) and to study the
dependence of Z (k) in (iv) for larger values of t/J; moreover,
we numerically establish the following additional features see
[Fig. 1(a)]:

(v) Around k = (π, π ) the spectral weight is suppressed
in a wide window up to energies of order O(2t ) above the
ground state.

(vi) The first excited peak [see (iii)] can be observed for
all momenta, provided the ground-state residue Z (k) is non-
negligible. The dispersion relation of the first excited peak is
qualitatively identical to the ground state, i.e., the excitation
gap �k has only weak k dependence.

Previously, the following theoretical scenarios have been
discussed:

(a) String picture. Early on, it has been proposed that
strings of overturned spins are attached to mobile dopants
in a Néel state [32,71–77]. This explains (iii), the scaling of
the ground-state energy E0 � −2

√
3t + c0t1/3J2/3 of a single

hole at t � J . The string picture also predicts the existence
of vibrationally excited states, whose energies should scale as
En = −2

√
3t + cnt1/3J2/3, in accordance with numerical ob-

servations [28,29]. Recent ultracold-atom experiments mea-
sured spin-spin [46,47] and spin-charge [34] (see also [35])
correlation functions, which also support the string picture.
Feature (ii) is also expected from the string picture, owing
to the finite length of the strings. Features (i) and (iv)–(vi)
require explanations beyond the string picture.

(b) Parton picture. Based on phenomenological grounds
and numerical evidence, Béran et al. [78] proposed the
parton picture, in which mobile dopants are described by
fractionalized spinons and chargons. In a subsequent work
[79], Laughlin drew an analogy with the 1D Fermi-Hubbard
model and suggested that the low-energy ARPES spectrum in
cuprates can also be interpreted in terms of pointlike spinons
and chargons, possibly interacting through a weakly attractive
force. The parton picture explains (i): the dispersion relation
of the one-hole ground state is determined by the spinon
dispersion, which must have a bandwidth Ws = O(J ) domi-
nated by spin exchange. The conjectured chargon dispersion,
with bandwidth Wc = O(t ), is expected to lead to additional
features at higher energies in the spectrum. Features (ii) and
(iii) are only consistent with the parton picture, if spinons and
chargons form a bound state (they could be confined, or form
a molecular bound state in a deconfined fractionalized Fermi
liquid [80,81]). Scenarios with spin-charge separation as envi-
sioned by Anderson [82], with Z = 0 and as found in 1D, can
be ruled out numerically [29] at infinitesimal doping. To make
quantitative predictions and fully explain features (ii)–(vi),
detailed knowledge about the parton dispersions and their
microscopic interactions is required; this is typically beyond
the scope of phenomenological descriptions. An experimental
work [15] has also led to an interpretation of the pronounced
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high-energy features in the spectrum as signatures of spinon
and chargon branches.

(c) Polaron picture. The most widely used microscopic
picture so far has been the polaron scenario [16–18,21–25]. As
the mobile dopant moves through the AFM, one assumes that
it interacts with collective magnon excitations. This picture
should not be considered to be separate from (a) and (b):
for example, strong interactions with magnons can describe
strings of overturned spins attached to the dopant. Spin-wave
calculations of the spectral function [21,23] have revealed
several vibrational peaks with the expected scaling �t1/3J2/3

of their energies [23], thus explaining (iii). The strong renor-
malization of the bandwidth of the dopant (i), from O(t ) to the
observed O(J ) is also predicted, although without identifying
a clear physical mechanism. This is a general disadvantage
of the polaron picture: when t > J the system is so strongly
coupled that all predictions require advanced numerics or
uncontrolled approximations. While the polaron picture per
se is certainly correct, it is of little help in the identification of
simpler constituents of these polarons.

The goal of this paper is to establish a unifying physical
picture, which is able to explain the rich phenomenology
(i)–(vi) of the strong coupling ARPES spectrum. We com-
bine the parton and string pictures of magnetic polarons by
arguing that the latter are composed of spinons and chargons
connected by universal (geometric) strings [see Fig. 1(b)].
Importantly, we provide quantitative descriptions of both in-
gredients, including a microscopic trial wave function [35,83].
Moreover, we explain why, at strong coupling, any feature
of the spectrum is determined by either the spinon or the
chargon/string properties: essentially, a Born-Oppenheimer
product ansatz in the geometric string basis [35,66] allows us
to factorize spinon and chargon contributions.

As summarized above, the string picture explains features
(ii) and (iii). Since we assume that t � J , we can first neglect
the effects of spinon dynamics and describe strings inde-
pendently. We will demonstrate that the observed strong t/J
dependence of the quasiparticle weight (ii) and the excitation
energies (iii) can be explained, even quantitatively, by a simple
and universal semianalytical calculation. This detailed under-
standing of the chargon, or equivalently string, properties sets
the stage for closer analysis of the spinon properties.

As mentioned above, feature (i) naturally emerges in a par-
ton description of magnetic polarons. Feature (vi) is a direct
consequence of the product state nature of the spinon-chargon
wave function: the first excited state is a string excitation
but shares the same spinon properties as the ground state,
including its dispersion relation.

Here, we go beyond earlier phenomenological studies of
partons and demonstrate that quantitative predictions of the
spinon properties are possible. Our starting point is a parton
theory of the undoped Heisenberg AFM. Specifically, we
focus on fermionic U(1) Dirac spinons: These have previously
led to accurate variational predictions [44,45] (building upon
Anderson’s resonating valence bond paradigm [82,84]), and
they have recently been proposed to provide a universal
description of a larger class of quantum AFMs [85]. For
example, the shape of the magnetic polaron dispersion, with
its minimum at the nodal point, is inherited from the optimized
spinon mean-field state of the Heisenberg AFM [35]. Similar

observations were made in Refs. [86,87], but without includ-
ing geometric strings which are necessary to describe, e.g.,
features (ii) and (iii).

The mean-field theory we use to describe spinons naturally
predicts a strongly momentum-dependent contribution Zs(k)
to the quasiparticle weight [see Fig. 1(c)]. Already on the
mean-field level, a strong suppression of spectral weight
around (π, π ) is predicted. Since the low-energy excited
states of the magnetic polaron correspond to string excitations,
sharing the same spinon contribution Zs(k) to the quasiparticle
weight as the ground state, the suppression of spectral weight
around (π, π ) over a wide energy window is thus explained
[feature (v)]. In this work we go beyond the mean-field
theory by including a Gutzwiller projection in our trial wave
function. As a result, we find nonmonotonic k dependence
of Z (k) for t � J , explaining feature (iv), and in excellent
agreement with unbiased numerical results.

On the mean-field level, the spinon contribution to the
quasiparticle weight Zs(k) exhibits a sudden drop diagonally
across the nodal point. This is a direct manifestation of the
spinon Dirac cone and reminiscent of the phenomenology
of Fermi arcs. In this paper we show that if the system has
long-range Néel order and the SU(2) symmetry is sponta-
neously broken, as in the optimized trial wave function [44,45]
we use, the Gutzwiller projection in our magnetic polaron
wave function widens the drop of Zs(k) around the nodal
point. However, we also show that a sharp drop survives the
Gutzwiller projection, if SU(2) invariance is restored in the
trial state. This result goes beyond the scope of mean-field
parton theories. It may become relevant at finite doping in
the t-J model, when frustration restores the SU(2) symme-
try. In this regime we thus establish a possible microscopic
mechanism for the appearance of Fermi arcs, with strongly
suppressed spectral weight on the backside of the Fermi
pocket. Our microscopic results favor theoretical scenarios
in which fermionic spinons and bosonic chargons are the
effective constituents of the doped t-J model.

II. RESULTS

A. Parton theory of ARPES spectra

We start by describing the general features of the ARPES
spectrum expected from a parton theory of dopants in the
2D t-J model. To simplify the single-occupancy condition
built into Eq. (1) we work with the parton, or slave-particle,
representation originally introduced in Refs. [88–92]:

ĉ j,σ = ĥ†
j f̂ j,σ . (3)

Here, ĥ j is a chargon operator and f̂ j,σ denotes a S = 1
2 spinon

operator. The physical Hilbert space is defined by all states
satisfying

∑
σ f̂ †

j,σ f̂ j,σ + ĥ†
j ĥ j = 1 for all j. Notably, we do

not yet have to specify the statistics of f̂ and ĥ, respectively, at
this point: both combinations (fermionic spinons and bosonic
chargons/bosonic spinons and fermionic chargons) are
allowed.

1. Spinon-chargon bound states at strong coupling

We focus on the strong coupling limit t � J of the
isotropic model, where the fast motion of the hole can
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be approximately factorized in the geometric string basis
[35,47,66]. We start from the state | js〉|0〉 = ∑

σ ĉ js,σ |�0〉
where a hole is created by removing a fermion on site js from
the ground state |�0〉 of the undoped system. This state can
be interpreted as a tightly bound state of the spinon and the
chargon, both occupying the same site js. Next, we include
fast chargon fluctuations. If we properly account for the
modified locations of the surrounding spins along the chargon
trajectory, the backaction on the spins by the chargon can be
neglected if t � J . This so-called frozen-spin approximation
(FSA) [34,47,83] has been shown to be very accurate if the
undoped spin system has strong local AFM correlations.

Concretely, we introduce an overcomplete set of ba-
sis states [35] | js〉|�〉 = Ĝ� ( js)| js〉|0〉, where the operator
Ĝ� ( js) starts at site js and translates the chargon and spins
along the geometric string �( js):

Ĝ� ( js) =
∏

〈i, j〉∈�( js )

⎛
⎝ĥ†

i ĥ j

∑
τ=↑,↓

f̂ †
j,τ f̂i,τ

⎞
⎠. (4)

At strong coupling t � J , spinon-chargon bound states
with center-of-mass momentum k can approximately be
described by

∣∣�FSA
sc (k)

〉 = 1

L

∑
js

eik· js ∑
�

ψFSA
� | js〉|�〉. (5)

The FSA string wave function ψFSA
� ascribes complex am-

plitudes ψFSA
� ∈ C to all string configurations �. The latter

are independent of momentum k and can be calculated from
an effective hopping model on the Bethe lattice, with an ap-
proximately linear string potential emanating from the spinon
position js; see Refs. [35,66] for details. The state in Eq. (5)
describes a heavy spinon carrying momentum k. The latter
binds to itself the light chargon, which is delocalized over a
large number of string configurations when t � J .

Now, we will draw some general conclusions about the
ARPES spectrum, assuming that it consists of spinon-chargon
eigenstates described by the strong coupling meson wave
function in Eq. (5). As a further approximation, valid when
the parent state |�0〉 has strong local AFM correlations, we
assume that the basis states | js〉|�〉 are mutually orthonormal:
〈 js′| js〉〈�′|�〉 ≈ δ js ′, jsδ�′,� . Otherwise, the following results
do not depend on any specific parameters in Eq. (5).

To calculate the spectrum A(ω, k) = Re 1
π

∫ ∞
0 dt eiωt ×

〈�0|eiĤt (
∑

σ ĉ†
k,σ

)e−iĤt (
∑

σ ĉk,σ )|�0〉, we note that the ini-
tial state on the right-hand side is (

∑
σ ĉk,σ )|�0〉=|ks〉|�=0〉,

where |ks〉 = L−1 ∑
js eiks· js | js〉 is a plane-wave spinon state.

On the left-hand side, 〈�0|eiĤt = eiω0t 〈�0| reduces to a phase
factor.

Because of the assumption that spinon-chargon states
(5) are eigenstates, we can approximate e−iĤt |ks〉|0〉 ≈
e−iĤst |ks〉e−iĤ� t |0〉, where Ĥs and Ĥ� denote effective
Hamiltonians of the spinon and string (chargon), respectively.
We expect Ĥs ∝ J and Ĥ� ∝ t since these terms are dom-
inated by spin-exchange and tunnel couplings, respectively.
Explicit forms of Ĥs and Ĥ� have been derived [34,35,66],
and it has been demonstrated that they capture far-from-

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

FIG. 2. Scaling of the first vibrational excitation. At strong cou-
pling t > J , we analyze the energy �E between the lowest two
pronounced peaks in the spectrum. Our td-MPS results (red) on
4 × Lx cylinders are compared to quantum Monte Carlo calculations
by Mishchenko et al. (blue, data extracted from Ref. [29]) and the
effective geometric string approach (gray). A fit �E/t = a(J/t )2/3 +
b to our td-MPS data yields a = 2.51 and b = 2 × 10−3. All data
are for the ground state at the nodal point k = (π/2, π/2). See
Appendix A for a discussion how the peaks are extracted from
our numerically obtained spectra. Finite-size effects in our td-MPS
calculations are expected to be weak, but quantitative estimates of
their size are difficult.

equilibrium dynamics of a single hole on a remarkable quan-
titative level [66,93] (see also Ref. [94]).

As a result of the factorization of the eigenstates into
spinon-chargon bound states, the spectral function becomes
a convolution,

A(ω, k)|bound =
∫

dν As(ω − ν, k)Ac(ν). (6)

The spinon contribution As(ω, ks) = Re 1
π

∫ ∞
0 dt eiωt ×

〈ks|e−iĤst |ks〉 depends on the momentum ks of the
spinon. In contrast, the chargon contribution Ac(ν) =
Re 1

π

∫ ∞
0 dt eiνt 〈� = 0|e−iĤ� t |� = 0〉 is defined in the effec-

tive Hilbert space of geometric string states and has no k
dependence.

Since t � J , we can derive the main features of Ac(ν) from
a Born-Oppenheimer ansatz where the spinon is assumed to be
static. The approximately linear string tension [66] leads to a
discrete set of vibrational [71] and rotational [66] states in the
spectrum. Because rotational excitations have a node in the
center, |ψ�=0|2 = 0, they do not contribute in the expression
for Ac(ν) and are invisible in ARPES. Indications for the
lowest vibrational state have been found in various numerical
studies [20,28,29]; we provide further evidence in Figs. 1
and 2. At higher energies, the number of string states per
unit of energy grows exponentially. In this regime, self-
interactions of the string can lead to hybridization and the
formation of a broad continuum, which may explain the
absence of higher vibrational peaks in the spectrum.

Because the energy gap to the first vibrational string ex-
citation scales as �c � t1/3J2/3 [28,29,71] (see Fig. 2), the
low-frequency regime in Eq. (6) is dominated by the spinon
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spectrum of width �J � �c:

A(ω, k) = As(ω − νc, k)Zc for ω � �c. (7)

Here, νc is the ground-state energy of the chargon, and Zc

denotes the chargon contribution to the quasiparticle weight.
Using the Lehmann representation of Ac(ν) defined below
Eq. (6), we see that Zc is related to the ground-state string
wave function by

Zc = |ψ�=0|2. (8)

It describes the probability for finding geometric strings of
length zero: � = 0. This chargon contribution Zc depends
strongly on the ratio t/J: to see this, we first note that the
linear string tension dE/d
 ∝ J , proportional to J , causes
the binding of the spinon to the chargon. For dE/d
 = 0 the
probability for finding strings of length 
 = 0 vanishes, Zc =
0; for dE/d
 > 0, this probability increases. Within the FSA
and in the considered regime t � J , the factor Zc contains the
only t dependence of the parton spectrum.

The most important consequence of Eq. (7) is that the
entire momentum dependence of the spectrum is captured by
the spinon contribution As(ω, k) at strong coupling. We expect
that the latter exhibits a quasiparticle structure

As(ω, k) = Zs(k)δ(ω − ωs(k)), (9)

where Zs(k) denotes the spinon contribution to the quasiparti-
cle residue and ωs(k) is the spinon dispersion. Combining the
last results, we expect the following structure of the ARPES
spectrum at low energies:

A(ω, k) = ZcZs(k) δ(ω − νc − ωs(k)), ω � �c. (10)

In contrast to the chargon properties Zc and νc, which are
universally determined by the geometric strings, the spinon
properties Zs(k) and ωs(k) depend on specific properties of the
parton model. Hence, one-hole ARPES spectra at strong cou-
plings t � J in systems with strong local AFM correlations
provide direct information about the properties of constituting
spinons in the underlying spin model. Such information is
usually extracted from studies of the dynamical spin structure
factor [45,65,95], although in that case only pairs of (interact-
ing) spinons can be excited. In the remainder of this paper, we
will discuss a microscopic theory constituting spinons in the
2D square-lattice Heisenberg model.

A comment is in order about our notion of constituting
spinons. If the spin system is in a confining phase, as in
the case of the 2D Heisenberg AFM with long-range order,
isolated spinon excitations cannot exist: there is no spin-
charge fractionalization. The strong coupling parton theory
above explicitly assumes, however, that the spinon is bound
to the chargon. Such mesonic bound states can exist even
in a confining phase. In this case the ARPES spectrum is
expected to reveal the properties of the constituting spinon,
without the strong renormalization effects present, e.g., in the
spin structure factor due to spinon-spinon interactions. In a
possible deconfined phase, free-spinon excitations can exist:
the constituting spinons are identical to the free spinons in this
case. At strong couplings we still expect that spinon-chargon
bound states, as described above, will form at low energies.
This scenario is realized, e.g., in fractionalized Fermi liquids
[80,81], and in this case the ARPES spectrum of the form

in Eq. (10) is expected to directly reveal the properties of
free spinons.

2. Imperfections

Our parton description of ARPES spectra above was based
on the FSA ansatz and assumed strong coupling t � J . Cor-
rections beyond this idealized scenario are expected: For the
2D t-Jz model it has been shown explicitly that the overcom-
pleteness of the string basis leads to weak renormalization of
the spinon properties by the chargon [66] through Trugman
loop processes [73]. Similar renormalization is expected to be
present in any spin model, but the effect is generically small
compared to the string tension [66]. In most models, the latter
is of the same order as the spinon bandwidth. We also expect
that the dressing of the spinon with the fluctuating geomet-
ric string leads to an overall renormalization of the spinon
bandwidth ωs(k) → ω∗

s (k). Importantly, at strong couplings
such renormalization is independent of the spinon momentum
ω∗

s (k) = νFC ωs(k) [35]; νFC denotes a k-independent Franck-
Condon factor.

When t and J become comparable, the strong coupling
ansatz (5) needs to be modified by including additional corre-
lations. In this case, the center-of-mass momentum k is shared
by the partons, and scattering of the chargon on the spinon
is expected to renormalize the bound-state dispersion in a
k-dependent way. Moreover, the overall scale of the dispersion
is strongly suppressed compared to the bare dispersion of the
constituting spinon, by a Franck-Condon factor νFC � 1 [35].

Finally, magnon corrections are expected to contribute to
the ARPES spectrum. While the initial state (

∑
σ ĉk,σ )|�0〉

is expected to have a large overlap with the one-spinon state
considered above, it can also contain spinon-plus-magnon
(or three-spinon) contributions. The geometric string intro-
duces couplings of the mesonlike bound state to collective
spin-wave, or magnon, excitations in the system. Together
these effects lead to polaronic dressing of the spinon-chargon
pair, which is expected to reduce the quasiparticle residue
ZcZs(k) → ZcZs(k)Zm(k) and add an incoherent magnon con-
tribution Am(ω, k) to the idealized spectral function (10).
These two effects are related by the sum rule Zm(k) +∫

dω Am(ω, k) = 1 for all k, which yields an estimate how
strongly magnon dressing modifies the parton result.

3. Unbound spinon-chargon pairs

Spin systems in a deconfined phase can also support un-
bound spinon-chargon pairs. In this case the spectral function
also becomes a convolution of a spinon and a chargon (or
holon) part. Because the center-of-mass momentum can be
distributed arbitrarily between the two partons, the convolu-
tion includes both frequency and momentum integrals

A(ω, k)|unbound =
∫

dν dκ As(ω − ν, k − κ)Ac(ν, κ). (11)

In the absence of a bound state, the quasiparticle residue Z =
0 vanishes, a hallmark of spin-charge separation [96].

The deconfined scenario is realized for example in the 1D
t-J model at strong coupling [3,6,9,11]. There, a similar wave
function as in Eq. (5) can be used to describe the eigen-
states of a single hole [4,97], but the string wave functions
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are extended: ψFSA
� (kc) = e−ikc�/

√
L where � ∈ Z denotes

linear string configurations of length 
� = |�| and kc is the
chargon momentum. The spinon wave function in 1D can be
accurately modeled by a slave-particle mean-field ansatz for
spinons forming a Fermi sea [6,59]. Magnon corrections in
1D have also been calculated and shown to be small [59].

B. Numerical results: td-MPS and DMRG

We use a td-MPS method [61] to calculate the ARPES
spectrum in the 2D t-J model on a four-leg cylinder (see Ap-
pendix A and Ref. [93] for details). In Fig. 1(a) the spectrum
is shown for t/J = 3, well within the strong coupling regime
but before the Nagaoka effect plays a role [30]. Results for
other values of t/J , still in the same regime, are qualitatively
similar (see Fig. 9 in Appendix A).

1. Ground state and first vibrational excitation

Consistent with earlier spin-wave [23], exact diagonaliza-
tion [20,26], truncated basis [32], cluster-perturbation [98],
and quantum Monte Carlo calculations [28,29], we find a
well-defined quasiparticle peak at low energies. The first
vibrational peak above the ground state at the nodal point
(π/2, π/2) is also clearly visible [see Fig. 1(a)]. This peak has
been found in earlier quantum Monte Carlo studies, which use
analytical continuation to obtain the spectral function [28,29],
but the td-MPS method has improved the resolution of
the data.

In Fig. 2 we show how the excitation energy �E from
ground to the first vibrational state depends on the ratio t/J . A
linear fit to our MPS data confirms the scaling �E ∝ t1/3J2/3

at strong coupling with remarkable precision. A parameter-
free calculation of the excitation gap using the FSA [35]
ansatz (as described Appendix B) is in excellent quantitative
agreement with our numerical results.

Owing to the improved resolution of our data, the first
vibrational peak is clearly visible in the spectrum for all
momenta in Fig. 1(a) where the ground-state quasiparticle
weight takes appreciable values. Its energy gap �E (k) to
the ground state is approximately the same for all k. The
dispersion relation of both peaks follows the expected spinon
dispersion [35].

2. Ground-state quasiparticle weight

The residue Z (k) of the ground-state quasiparticle peak has
a strong momentum dependence, which we attribute to the
spinon properties in the parton theory. We find that the spectral
weight is strongly suppressed around (π, π ), all the way up to
large energies �2t above the ground-state energy. Above this
scale, a pronounced dispersive feature is revealed. Outside the
magnetic Brillouin zone (MBZ, defined by |kx| + |ky| � π )
we observe a drop of the quasiparticle residue. Later in this
paper we will argue that this is a direct signature for fermionic
spinon statistics.

Around (0,0) we also find a suppressed quasiparticle
weight Z (0, 0) < Z (π/2, π/2), but compared to the situation
at (π, π ) the effect is less pronounced. More significantly, we
find spectral weight in a broad continuum starting slightly
above the ground state at (0,0). This should be contrasted

FIG. 3. Ground-state quasiparticle weight and parton contribu-
tions. (a) The quasiparticle weight Z (π/2, π/2) at the nodal point is
shown as a function of J/t . We find that earlier numerical Monte
Carlo studies by Brunner et al. [28] and Mishchenko et al. [29]
predict values close to the bare chargon, or string, contribution Zc =
|ψFSA

�=0|2 expected from the geometric string approach (solid gray
line). This is confirmed by our DMRG simulations on cylinders with
Lr legs: we used bond dimensions χ = 500 (χ = 600) for Lr = 4
(Lr = 6). (b) We plot Z(π/2,π/2)/Zc as a function of J/t . The data
show only weak dependence on J/t , indicating that Zc(J/t ) captures
the main J/t dependence of the quasiparticle weight; note that for
J/t � 0.2 (t/J � 5) finite-size effects start to become more sizable
in the DMRG. The insets show the same data plotted over t/J .

with the complete suppression of spectral weight over a wide
energy range at (π, π ). In addition, the pronounced high-
energy feature at (π, π ) is completely absent at (0,0). These
findings indicate that different mechanisms are responsible for
the reduction of spectral weight around (0,0) and (π, π ). This
finding is further supported by the observation of different t/J
dependence at (0,0) and (π, π ) (see Fig. 9 in Appendix A).

In Fig. 3 we show how the ground-state quasiparticle
weight Z(π/2,π/2)(J/t ) at the nodal point depends on the ratio
J/t . We compare our DMRG results to earlier quantum Monte
Carlo calculations [28,29]. Using DMRG [69] we calcu-
late this quantity from the ground-state wavefunction (see
Appendix A). From the parton theory, we expect that Z ≈
ZcZs factorizes into chargon, or string, and spinon contribu-
tions, Zc and Zs respectively [see Eq. (10)]. We also argued
that, at strong couplings t � J , only Zc depends on the ratio

035139-7



ANNABELLE BOHRDT et al. PHYSICAL REVIEW B 102, 035139 (2020)

J/t while Zs(k) only depends on momentum. Now we check
this prediction of the parton theory.

In Fig. 3(a) we compare the numerical results directly
to Zc(J/t ) = |ψFSA

�=0(J/t )|2 which we calculate from the FSA
[see Eq. (8)]. Without any free fit parameters, we find that
the FSA approach captures correctly the observed J/t de-
pendence, even on a quantitative level (within the observed
variations between different theoretical results). This indicates
Zs(π/2, π/2) ≈ 1 and additional magnon corrections can be
ignored at the nodal point. In Fig. 3(b) this observation
is confirmed by plotting Z(π/2,π/2)/Zc as a function of J/t ,
noting that finite-size effects play an increasing role at smaller
values of J/t for the DMRG. We find that the behavior of
Z(π/2,π/2)/Zc is consistent with approaching 1 when t � J .
The dependence of Zc(J/t ) on J/t is discussed in Appendix B.

Except for the features at very high energy �2t above the
ground state, we conclude that the ARPES spectrum at strong
coupling can be understood from the general parton theory.
In the following, we will focus on the quasiparticle weight
Z (k) of the magnetic polaron ground state. We will describe
a microscopic theory of spinons, chargons, and geometric
strings and show that it captures the main features of Z (k)
observed numerically.

C. Trial wave function

The parton approach can be put on a more solid footing
by considering a microscopic trial wave function describing
spinon-chargon pairs in the 2D t-J model. We will demon-
strate below that its qualitative predictions are in excellent
agreement with the numerical results. Some quasiparticle
properties predicted by the trial state are rather sensitive to
the variational parameters in the wave function, however (see
Appendix C), which complicates quantitative predictions for
Z (k) or the variationally optimal average string length [35].

At quasimomentum k, the trial wave function we use de-
scribes magnetic polarons with fermionic constituting spinons
(slave-boson approach [88–91]) as

|�sc(k)〉 =
∑

js

(
u( js )

k,σ,−
)∗

eik· js

L/
√

2
×

∑
�

ψ�Ĝ�P̂GW f̂ js,σ

∣∣�SF+N
MF

〉
.

(12)

We dropped ĥ†
j because the state of the single chargon is fully

determined by the Gutzwiller projection; u( js )
k,σ,− denotes the

cell-periodic part of a Bloch wave function. This ansatz is
based on a mean-field model of the Heisenberg AFM with
constituting fermionic U(1) Dirac spinons f̂ js,σ , which has
attracted renewed interest recently [85]. The mean-field state

∣∣�SF+N
MF

〉 =
∏

k∈MBZ

∏
σ

f̂ †
k,σ,−|0〉 (13)

is a fermionic band insulator [84], where f̂ †
k,σ,ν

creates a
spinon with band index ν = ±. The mean-field spinon dis-
persion ωs(k) has been determined variationally [44,45] to be
well described by a model with staggered Peierls flux ±� per
plaquette and a staggered Zeeman field ±Bst/2 breaking the

FIG. 4. Momentum dependence of the quasiparticle weight. We
calculate the quasiparticle residue Z (k), normalized by Zmax =
maxk Z (k), from the trial wave function (12) along a cut (0, 0) −
(π, 0) − (π, π ) − (0, 0) in a periodic 12 × 12 system. Parame-
ters are t = 3J and we used the optimized mean-field parameters
Bst/Jeff = 0.44 and � = 0.4π . The solid green line is a guide to the
eye. We compare our results to the bare mean-field prediction (solid
blue line) and results from our td-MPS calculations (red dots). See
Appendix A for how Z (k) is numerically extracted from td-MPS.

SU(2) symmetry [99]

Ĥ f ,MF = −Jeff

∑
〈i, j〉,σ

(
eiθ�

i, j f̂ †
j,σ f̂i,σ + H.c.

)

+ Bst

2

∑
j,σ

(−1) jx+ jy f̂ †
j,σ (−1)σ f̂ j,σ . (14)

A trial state related to Eq. (12), but without the geometric
strings, has been proposed in Ref. [86].

For the square-lattice Heisenberg AFM with nearest-
neighbor (NN) couplings, the optimized variational param-
eters are Bopt

st /Jeff = 0.44 and �opt = 0.4π [45]. In the t-Jz

model [100], Bopt
st /Jeff → ∞ and the trial wave function is

highly accurate [66]. In the latter case, the Gutzwiller pro-
jection becomes obsolete in Eq. (12) because the mean-field
state localizes each spin species on a separate sublattice at
half-filling.

The k-dependent physical properties of the trial wave
function can be calculated using variational Monte Carlo
sampling [101]. Here, we apply this method to calculate the
quasiparticle weight [recall that we dropped ĥ j in Eq. (12)
above]

Z (k) =
∑

σ

∣∣〈�sc(k)| f̂k,σ P̂GW

∣∣�SF+N
MF

〉∣∣2∣∣〈�SF+N
MF

∣∣P̂GW

∣∣�SF+N
MF

〉〈�sc(k)|�sc(k)〉∣∣ , (15)

where the denominator guarantees proper normalization. Our
Monte Carlo procedure for sampling (15) is explained in
Appendix C.

Results

In Fig. 4 we plot the k dependence of the quasiparticle
weight Z of the trial wave function. We set t = 3J , in the
strong coupling regime, and used the string wave function
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FIG. 5. Dependence on t/J . Using the trial wave function (12)
with ψ� = ψFSA

� we calculate the quasiparticle weight Z (k) along
the diagonal cut (0, 0) − (π, π ) for different values of t/J . We set
Bst/Jeff = 0.44 and � = 0.4π in a 12 × 12 system; solid lines are
guides to the eye.

ψ� = ψFSA
� obtained from the FSA in Eq. (12). We checked

that no significant dependence on system size remains (see
Appendix C).

The comparison with our numerical td-MPS results shows
that the trial wave function correctly predicts the qualitative
features: in the center of the MBZ, around (0,0), we observe
a dip of the spectral weight. The maximum is found at the
edge of the MBZ, including at the high-symmetry points
(π, 0) and (π/2, π/2). Outside the MBZ, the Z factor is
strongly suppressed: at (π, π ) we calculate that it drops below
10−2. Overall we observe a strong momentum dependence
of the Z factor, which is qualitatively captured by the trial
wave function. The latter includes strong k dependence as a
consequence of the Fermi statistics that determine the spinon
properties in the trial state.

In Fig. 5 we study the dependence of the quasiparticle
weight Z (k) on t/J , along the diagonal cut (0, 0) − (π, π ).
Here, t/J controls the length distribution of the geometric
strings � which we use in the FSA string wave function
ψ� = ψFSA

� in Eq. (12). Overall, the spectral weight decreases
when t/J is increased, as expected from Eqs. (7) and (8) on
general grounds. In addition, a nontrivial momentum depen-
dence develops as t/J is increased: for small t/J the spectral
weight around (0,0) is enhanced, but it is suppressed for large
t/J . The same qualitative behavior is observed in our td-MPS
simulations (see Fig. 9 in Appendix A).

The J/t dependence of Z observed in Fig. 5 at the nodal
point (π/2, π/2) is also significant. As expected, we observe
a decrease in Z(π/2,π/2) as t/J increases. In comparison with
the data shown in Fig. 3, the overall magnitude of the quasi-
particle weight in the trial wave function is too small by a
factor of about 2. We note, however, that the quasiparticle
residue depends much more sensitively on the parameters in
the trial wave function than, for example, the corresponding
variational energy [35]. As discussed in more detail in Ap-
pendix C, the quasiparticle weight is sensitive to the staggered
field Bst/Jeff and the string tension used to calculate ψ� in

Eq. (12). We believe this is the main reason for the observed
deviations.

D. Mean-field approximation

A mean-field description of the constituting spinons is
obtained by dropping the Gutzwiller projection in Eqs. (12)
and (15) and working directly with the mean-field Hamilto-
nian from Eq. (14). In principle, bosonic [92] or fermionic
[88–91] spinons can both be considered. However, the bosonic
theory would require strong interactions to explain the ob-
served spinon quasiparticle weight Zs(k) ≈ Z (k)/Zc. We will
argue that noninteracting fermionic spinons readily predict the
qualitative features of Zs(k).

1. Fermionic spinons

We calculate ZMF(k) by applying the FSA and mean-field
approximations in Eq. (15). First, we note that k is an arbitrary
vector from the full Brillouin zone (BZ); spinon operators
f̂k,σ are defined in the BZ, whereas for spinons f̂k,σ,ν with
band indices ν the cases k ∈ MBZ and k /∈ MBZ have to be
distinguished.

In the FSA we assume that only the trivial string state
� = 0 contributes since nontrivial string states are approxi-
mately orthogonal to the background AFM. Then, dropping
the Gutzwiller projections yields

ZMF(k) = Zc

∑
σ

∣∣〈�SF+N
MF

∣∣ f̂ †
k,σ,− f̂k,σ

∣∣�SF+N
MF

〉∣∣2
. (16)

This expression is of the general form expected from the
parton theory [see Eq. (10)]. The spinon contribution on the
right-hand side of Eq. (16) is related to the mean-field Bloch
wave function u(A,B)

k,σ,− for sites j from the A and B sublattice,
respectively (see Appendix D):

ZMF
s (k) = 1

2

∑
σ

{∣∣u(A)
k,σ,− + u(B)

k,σ,−
∣∣2

, k ∈ MBZ∣∣u(A)
k,σ,− − u(B)

k,σ,−
∣∣2

, else.
(17)

One important conclusion is that ZMF
s (k) generally reflects

the k dependence of the Bloch wave functions, which is
determined by the parameters Bst/Jeff and � in the mean-
field Hamiltonian (14). Moreover, momenta within the MBZ
and outside of it are treated separately, causing constructive
and destructive interference of the Bloch wave functions
respectively.

In the following limiting cases the mean-field spinon con-
tribution ZMF

s (k) shows interesting behavior. In a classical
Néel state, when Bst/Jeff → ∞, it holds (u(A)

k,σ,−, u(B)
k,σ,−) =

(1, 0) or (0,1). This leads to a featureless spinon spectrum
ZMF

s (k) = 1 everywhere [see Fig. 6(a)]. For the uniform
resonating valence bond state � = 0 and Bst = 0, it holds
u(A)

k,σ,− = u(B)
k,σ,− = 1/

√
2. The constituting spinons form a

Fermi sea occupying the MBZ, which is directly reflected by
the strongly asymmetric spectral weight: ZMF

s (k) = 2 for k
within MBZ, and ZMF

s = 0 otherwise [see Fig. 6(b)]. When
Bst = 0 but the staggered magnetic flux � �= 0, the mean-
field dispersion has a Dirac cone around the nodal point
k = (π/2, π/2). This leads to a shard drop of spectral weight
along the diagonal from (0,0) to (π, π ) crossing the Dirac
point [see Fig. 6(c)].
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FIG. 6. Mean-field spinon contribution to the quasiparticle
residue. ZMF

s (k) from Eq. (17) is shown in the following limiting
cases: (a) Bst/Jeff → ∞, (b) Bst = � = 0, (c) Bst = 0 and � = 0.4π .
The color bar is indicated on the right.

For the mean-field parameters Bst/Jeff and � optimized for
the half-filled Heisenberg AFM [45] the mean-field spinon
spectral weight is plotted in Fig. 1(c) (color scale) and in
Fig. 4. We observe a sharp drop of ZMF

s (k) around the nodal
point, although the weak staggered field leads to some broad-
ening. Around (0, π ) and (π, 0), the decrease of the spectral
weight is smoother, which we attribute to the larger distance
in k space from the Dirac cone found at the nodal point for
Bst = 0.

Overall, the k dependence of the quasiparticle weight from
the mean-field parton theory ZMF(k) = ZcZMF

s (k) captures the
numerical observations. In particular, it explains the strong
suppression of spectral weight around (π, π ), extending up
to high energies, as a direct signature of fermionic spinon
statistics. Other features observed numerically, such as the
more pronounced broadening of spectral weight around the
edge of the MBZ and the suppressed quasiparticle residue at
(0,0) can be attributed to the Gutzwiller projection and effects
beyond FSA. As shown above, these features are correctly
predicted by the trial wave function (12).

2. Bosonic spinons

So far, we only described the case where the constituting
spinons have fermionic statistics. However, using Schwinger
bosons, the Heisenberg AFM can also be described by bosonic
constituting spinons (see, e.g., Ref. [67]). As described in
Appendix D, the trial wave function from Eq. (12) can be
adapted to the bosonic case. On the mean-field level one
finds that the spinon contribution to the quasiparticle residue
contains two delta-function peaks of equal weight around
k = (0, 0) and (π, π ). This observation is inconsistent with
unbiased numerical results, where Z (k) is strongly suppressed
around k = (π, π ). Thus, our results favor parton theories
with fermionic constituting spinons, although it is difficult to
rule out scenarios with bosonic spinons and strong interaction
effects suppressing Z(π,π ).

E. Dimensional crossover

Now, we subject the parton theory to another test and
study ARPES spectra in the dimensional crossover. We tune
the ratio

α = ty/tx (18)

of tunneling amplitudes along x and y directions, which
leads to spin-exchange couplings Jy = α2Jx. In ultracold-
atom experiments with optical lattices, the value of α can be
easily tuned.

Our main motivation for considering the dimensional
crossover is that the parton theory with fermionic spinons
correctly describes the ARPES spectrum in the 1D t-J model
[6,59]. For nonzero α > 0 we expect a nonvanishing string
tension ∝αJx which should lead to spinon-chargon binding.
At α = 1 we have established above that the parton theory
can explain the numerically observed spectra.

In the 1D case, spinons and chargons are deconfined and
unbound for t � J . Because the spectrum is a convolution
of spinon and chargon contributions both in momentum and
frequency domains [see Eq. (11)], a coherent quasiparticle
peak is absent. Nevertheless, the integrated spectral weight
Zω(k) = ∫ �ω

0 dν A[ν0(k) + ν, k] in a low-energy region of
width �ω = O(J ) around the ground state at ν0(k) reveals
the structure of the spinon Fermi sea. Because t � J , only
chargon states from a narrow range of momenta �kc around
the minimum at kc = 0 of the chargon dispersion νc(kc) =
−2t cos(kc) contribute to Zω(k) [102]. In one dimension, the
mean-field parton theory for the optimized parameter Bst = 0
in Eq. (14) predicts a step function [see Eq. (17)]

ZMF
s (k) =

{
2, |k| � π/2
0, else (19)

which directly reflects the Fermi-Dirac distribution of spinons
in the ground state [6,59].

In 1D, the above argument predicts a strong suppression
of spectral weight up to energies of order O(2t ) � J around
k = π , which has been observed numerically [5,9,59]. As
discussed earlier, we find the same phenomenology around
k = (π, π ) in two dimensions, where we also attributed the
effect to the underlying fermionic spinon statistics in the
mean-field parton theory. To further support our argument that
the 1D and 2D cases are due to the same physical principle,
now we demonstrate that they continuously evolve into each
other in a dimensional crossover.

In Fig. 7(a) we show our numerical td-MPS results for
values of α = 1

3 , 2
3 , and 1. We consider three cuts along

diagonals ky = kx + k(0)
y with k(0)

y = π, π/2 and 0. For α = 1
3

the spectrum still closely resembles the 1D case, and only
a weak dependence on ky is observed: The minima of the
ground-state dispersion in the second cut, corresponding to
k(0)

y = π/2, are slightly displaced to the left of kx = ±π/2,
as expected from the mean-field spinon dispersion shown in
Fig. 7(b). While some spectral weight appears at k = (π, 0)
(first cut with k(0)

y = π ), it remains absent over a broad energy
range at k = (π, π ) (third cut with k(0)

y = 0). In general, the
high-energy features can still be understood from a theory of
quasifree spinons and chargons as in 1D.

For α = 2
3 a well-defined quasiparticle peak is visible at

low energies. This is expected from the parton theory, which
predicts the formation of a spinon-chargon bound state as soon
as the string tension ∝Jy becomes sizable. Around k = (π, π )
we still observe a strong suppression of spectral weight over a
wide energy range of order O(2tx ). The dispersive features at
high energies, reminiscent of a free chargon branch, become
increasingly less pronounced as α approaches 1.

In Fig. 7(b) we plot the mean-field spinon dispersion
expected for the dimensional crossover. While the overall
scale is difficult to predict, the shape of the spinon dispersion
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FIG. 7. One-hole spectral function in the dimensional crossover. (a) For varying anisotropy α = ty/tx (indicated in top row) of the hopping
elements, and α2 = Jy/Jx of the superexchange couplings, we use td-MPS to calculate the spectral function. We consider cylinders of length
Lx = 40 along x, with circumference Ly = 4 along the periodic y direction; tx/Jx = 3 is fixed. The MPS is wrapped around the cylinder along
diagonals, which allows us to calculate diagonal cuts: ky = kx + k(0)

y with k(0)
y = π , π/2, 0 (cuts 1,2,3, see inset below left panel). (b) Predictions

for the spinon contribution Zs to the spectral weight (color map) and dispersion from fermionic mean-field theory of spinons, as described in
the text. Mean-field parameters are taken from Ref. [83]. The delta-function peaks are represented by broadened lines with integrated weight
equal to Zs(k). In (a) and (b) the locations of dispersion minima in the low-energy region (blue boxes) are indicated by gray arrows.

resembles the numerically observed quasiparticle dispersion
[the low-energy onset of the spectrum in Fig. 7(a)] for all
considered values of α. The variational mean-field parame-
ters Bst (α) and �(α) have been taken from Ref. [83]. The
color scale in Fig. 7(b) indicates the spinon quasiparticle
weight ZMF

s (k). Around the nodal point k = (π/2, π/2) the
numerically obtained spectrum, as a function of momen-
tum, evolves significantly more smoothly than expected from
the mean-field theory. We attribute this to the effect of the
Gutzwiller projection neglected in the mean-field calculation,
as discussed earlier for the 2D case. Around k = (π, π ) the
mean-field theory correctly predicts the strongly suppressed
quasiparticle weight at all values of α. We conclude that
the parton theory correctly predicts the observed qualitative
features of the ARPES spectrum in the dimensional crossover.

F. Frustrated magnetism: Dirac spin-liquid scenario

The main signature of fermionic spinon statistics we re-
ported so far was indirect and based on the suppression of
spectral weight around k = (π, π ). Now, we use our trial
wave function and discuss a case where direct signatures for

the formation of fermionic Dirac spinons can be observed.
These considerations are relevant to doped quantum magnets
with additional frustration. Which spin liquid is relevant de-
pends on the type of frustration, and in many cases this is
subject of debate. Here, we restrict ourselves to the Dirac
spin-liquid case captured by our trial wave function, while
different signatures can be expected for other quantum spin
liquids [103–105].

On the level of the mean-field theory in Eq. (14), the
spin liquid without Néel order is realized when Bst = 0 and
a nonvanishing staggered flux � �= 0 is considered. This
leads to the formation of Dirac cones at the nodal point k =
(π/2, π/2), across which the mean-field approach predicts a
sudden drop of the spinon quasiparticle weight [see Fig. 6(c)].
Now, we will go beyond the mean-field approximation and
demonstrate that the trial wave function (12), including the
Gutzwiller projection, exhibits the same features.

So far, we studied spinon-chargon pairs in a background
with long-range Néel order, characterized by Bst �= 0 in the
trial wave function. Even in the strong coupling regime,
where t � J , we found that the spectral weight Z (k) decays
smoothly along the diagonal from k = (π/2, π/2) to (π, π )
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FIG. 8. Quasiparticle weight Z (k) for a Dirac quantum spin-
liquid scenario, along the diagonal cut from (0,0) to (π, π ). (a) When
the long-range AFM order in the trial wave function, controlled by
Bst/Jeff , is reduced, a sudden drop develops around the edge of the
MBZ at (π/2, π/2). Such behavior can be expected if a Dirac quan-
tum spin liquid emerges upon frustrating spin-exchange interactions
in the t-J model. This scenario can be described qualitatively by
the mean-field theory of fermionic spinons. We used t/J = 3 and
� = 0.4π in our trial wave function; at each momentum data points
are slightly offset horizontally for better visibility. (b) For Bst = 0
and a large range of t/J we observe a sharp drop of spectral weight
around the nodal point. In (a) and (b) the solid lines are guides to the
eye only.

in 2D (see, e.g., Figs. 4 and 5). While a small amount of
broadening is expected even on the mean-field level when
Bst �= 0, most of the effect is due to the Gutzwiller projection
in the trial state.

In Fig. 8(a) we show how the quasiparticle weight Z (k) of
the trial wave function depends on the staggered field Bst. In
addition to an overall decrease in magnitude, the formation
of a sharp feature at the edge of the MBZ is observed when
Bst is decreased. For a hole moving in the SU(2)-invariant
U(1) Dirac spin liquid with Bst = 0 and � = 0.4π , we find
that Z (k) = 0 vanishes within error bars for momenta along
the diagonal beyond the nodal point, with |k| > π/

√
2. This

behavior can be understood from the mean-field theory as a
direct signature for (i) the formation of a Dirac cone at the
nodal point and (ii) fermionic spinon statistics. Importantly,

the behavior persists even though spinons and chargons in the
trial wave function remain bound.

The sudden drop of the quasiparticle weight around the
nodal point is reminiscent of the missing spectral weight on
the backside of the Fermi arcs observed in the pseudogap
phase of cuprates [39]. A similar effect has been observed
in a doped spin liquid on the kagome lattice, believed to
exhibit spin-charge separation [106]. Within our microscopic
approach, the strong suppression of the quasiparticle residue
in the vicinity of the nodal point, but outside the MBZ, is ex-
plained by the underlying structure of constituting fermionic
spinons. Our calculation demonstrates that the Gutzwiller
projection does not necessarily broaden the spectrum in k
space. As shown in Fig. 8(b), this phenomenology is not
necessarily related to the presence of strings in the trial state:
it can also be observed for shorter strings when t < J .

The situation described above, with a single hole moving
in an SU(2)-invariant spin background Bst = 0, is directly
relevant to the magnetic polaron problem in the J1-J2 model on
a square lattice. Upon increasing the frustrating diagonal next-
nearest-neighbor coupling J2, the staggered magnetization
in the undoped system approaches zero [95], corresponding
to the choice Bst → 0 in the variational wave function. We
expect that the spinon-chargon trial wave function can be
used to describe a single mobile hole in the frustrated J1-J2

background, as long as the tunneling rate dominates t � J1,2,
and strong local AFM correlations are present.

III. DISCUSSION AND OUTLOOK

In this paper, we discussed a microscopic parton theory of
ARPES spectra in 2D quantum AFMs. At strong couplings,
where the tunneling rate t dominates over spin-exchange
terms J , the geometric string approach [35,47,66] allows us
to approximate the spinon-chargon wave function as product
state of Born-Oppenheimer type. We showed that this results
in an ARPES spectrum which can be written as a convolution
of a spinon and a chargon (or string) contribution. When the
spinon and chargon form a bound state, the chargon contri-
bution provides a k-independent overall renormalization Zc,
whereas the spinon contribution Zs(k) is strongly k dependent
in general. Conversely, only Zc(t/J ) depends on the ratio t/J ,
reflecting the size of the spinon-chargon bound state, whereas
the spinon contribution Zs is independent of the tunneling
amplitude t .

We demonstrated that the ARPES spectrum of a single hole
in the 2D t-J model, characterizing the structure of magnetic
polarons, can be described by the parton theory. In particu-
lar, we established that the spinon part of the quasiparticle
weight Zs = Z/Zc becomes only weakly dependent on t/J in
the strong coupling limit t � J where our theory is valid;
Zc(t/J ) can be calculated from a semianalytical string-based
calculation. Using td-MPS simulations [61,93], we calculated
the momentum dependence of the spectral weight A(ω, k),
which is strongly suppressed over a wide energy range around
k = (π, π ). Using the parton theory, we argued that this
suppression can be understood as a signature of fermionic
spinon statistics. We supported this conclusion by showing
that all qualitative features of Z (k) can be reproduced by a
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spinon-chargon trial wave function based on fermionic
constituting spinons and including stringlike spin-charge
correlations [35].

We obtained even more direct signatures for the formation
of fermionic spinons for a doped Dirac spin liquid. Across
the location of the spinon Dirac cone in the Brillouin zone,
we predict a sharp drop of the quasiparticle weight using our
trial wave function. We explained this feature by a mean-
field theory based on constituting fermionic spinons, whose
quasiparticle residue changes abruptly across the Dirac cone
at the nodal point.

Our work establishes a possible link to the Fermi arcs ob-
served in the pseudogap phase of cuprates. We speculate that
our observation that the spectral weight is strongly suppressed
up to high energies around k = (π, π ) may be a precursor of
the missing spectral weight outside the MBZ in the context of
Fermi arcs. We identified two important ingredients required
for this phenomenology: (i) strong couplings t � J , leading
to extended geometric strings, and (ii) sufficient frustration,
leading to a small AFM order parameter. In the cuprate
compounds, typical values of t/J are around 3, well within
the strong coupling regime. Next, we will argue that the
required kind of frustration is naturally introduced by the
mobile dopants themselves in the pseudogap regime.

A. Parton theory at finite doping

The parton theory can be easily extended to finite but small
doping, if we assume that correlations between the chargons
can be neglected and they remain bound to individual spinons
by geometric strings. Experimental studies in ultracold-atom
systems suggest that these conditions may be justified up to
a maximum doping level of about 15% [46,47]. Beyond this
regime, magnetic polarons begin to overlap, and interactions
can modify our picture significantly. In the following, we
focus on the low-doping case.

As long as the geometric string picture can be applied, the
dispersion of magnetic polarons is dominated by the spinon
properties. The number of spinons Ns = L2(1 − nh ) decreases
with increasing hole doping nh, and on the mean-field level
the spinon Fermi sea, or band insulator for Bst �= 0, is below
half-filling. Hence, fewer states contribute to the ARPES
spectrum, and at the lowest energy we expect to see the spinon
Fermi surface.

The variational parameters Bst/Jeff and � of the mean-field
spinon Hamiltonian (14) are expected to depend on the doping
level nh. For nh = 0 the optimal parameters correspond to
the half-filled Heisenberg model [45], which we used in this
paper. At finite doping nh > 0, in contrast, the geometric
strings introduce effective next-nearest-neighbor (and further)
interactions J2(nh) in the spin background |�〉 used to define
the FSA product wave function (5): in a state |�〉 = Ĝ�|�〉,
the spins along the geometric string � are displaced by one
site. The instantaneous spin-exchange coupling ĤJ in state
|�〉 hence includes interactions between spins that used to be
next-nearest neighbors in the original state |�0〉. Averaging
over all string configurations � contributing to the spinon-
chargon bound states thus leads to the estimate

J2(nh) � Jnh
�, (20)

where 
� is the average length of geometric strings. By the
same argument, nearest-neighbor interactions J1 are effec-
tively reduced: J1(nh) = J (1 − nh
� ).

As discussed earlier, the presence of frustrating next-
nearest-neighbor (and further-range) couplings J2(nh) leads to
reduced AFM order Bst in the mean-field spinon Hamiltonian
[95]. Finite temperature is expected to have a similar effect.
Once Bst = 0, the trial wave function no longer breaks the
discrete translational symmetry of the square lattice. In this
case, the spinons can still form a small Fermi surface, and
we speculate that the spinon-chargon pairs could form a
fractionalized Fermi-liquid state [80,81]. From our insights
obtained for a single dopant, we expect that the backside of
the corresponding spinon Fermi surface would be invisible
in the spectral function, as a consequence of the formation
of gapless Dirac cones at the nodal points in the spinon
dispersion. The mean-field theory further predicts that the
spectral weight smoothly vanishes as one encircles the nodal
point [see Fig. 6(c)]. This phenomenology is in agreement
with the experimental findings [39].

Another interesting extension of our work in the context of
the dimensional crossover concerns the relation of the spinon-
chargon picture to antiholons observed in the supersymmetric
1D t-J model at J = 2t [107].

B. Probing frustrated quantum magnets

Beyond the t-J and, by extension, the Fermi-Hubbard
model, our results are also relevant to other strongly corre-
lated quantum spin systems. Our main assumptions within
the geometric string approach are (i) that we work in the
strong coupling regime, where the tunneling t dominates over
spin-exchange terms, and (ii) that the string basis used for the
formulation of the FSA wave function in Eq. (5) is valid. We
expect that (ii) can be satisfied, provided that the system has
sufficiently strong local AFM correlations.

Under these assumptions, our microscopic parton theory
describes general quantum AFMs. According to our results,
the corresponding ARPES spectrum should directly reveal
the properties of the constituting spinons, including the shape
of their dispersion relation and the distribution of spectral
weight. Such studies are similar to calculations of the dynam-
ical spin-structure factor (see, e.g., Refs. [64,65,95]), but as
a main advantage they involve one instead of two spinons.
This approach may prove to be particularly useful to reveal
the nature of quantum spin liquids with deconfined spinon
excitations. Concrete examples may include studies of the
frustrated Heisenberg model on a kagome lattice [108], where
it remains debated wether the ground state is gapped Z2 or a
gapless Dirac spin liquid, or the J1-J2 model on a triangular
lattice where new signatures of Dirac spin liquids have re-
cently been reported [109]. Exact diagonalization studies of
the one-hole ARPES spectra for small kagome systems have
already been performed [106]. Our studies are of particular
interest in light of the recent proposal that U(1) Dirac spin
liquids may provide a unified starting point for describing a
range of 2D quantum magnets on different lattices [85].

C. Experimental considerations

ARPES is a standard tool in solid state physics, and has
been used extensively to study strongly correlated quantum
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FIG. 9. One-hole spectral function. As in Fig. 1 of the main text, we use td-MPS methods to calculate the single-hole spectrum in the t-J
model on a 4 × 40 cylinder. In (a) we used t/J = 1 and in (b) we set t/J = 5.

matter such as the cuprate compounds [1]. The presence of
phonons makes a direct comparison of experimental ARPES
spectra and theoretical calculations for the simplified t-J
model challenging [36,37]. However, the rapid progress of
quantum simulation experiments with ultracold atoms has
recently enabled experiments in clean model systems with
tunable parameters, where ARPES measurements can also
be performed [55–60]. In particular, the 2D Fermi Hubbard
model can be studied and long-standing questions about
strongly correlated quantum matter can now be addressed.
Ultracold polar molecules allow for a direct implementation
of t-J models [110].

In optical lattices, the lowest temperatures have been
achieved in quantum gas microscopy setups so far [52], which
can also be used to measure the spectral function [59,60].
Experiments implementing triangular lattices are currently
under construction, paving the way for spectroscopic studies
of highly frustrated quantum magnets in the near future.
Other applications include systematic investigations of the
dimensional crossover, which we studied in this paper, or
studies of ARPES spectra in bilayer systems.
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APPENDIX A: td-MPS SIMULATIONS AND DMRG

In Fig. 9 we present more numerical results for the ARPES
spectrum for different values of t/J .

1. Calculating the spectral function

The spectral function is calculated as the Fourier transform
of the time-dependent correlation function

Ci,j(t ) =
∑

σ

〈ψ0|eiĤt ĉ†
j,σ e−iĤt ĉi,σ |ψ0〉. (A1)

Here, |ψ0〉 is the ground state of the t-J model without a hole,
i.e., the Heisenberg model, on a cylinder with four legs. The
time evolution of the ground state with the t-J Hamiltonian
eiĤt |ψ0〉 = eiE0t |ψ0〉. We thus calculate the following:

(i) the ground state without a hole |ψ0〉, using DMRG;
(ii) the time evolution of the ground state after a hole was

created in the origin |ψ (t )〉 = e−iĤt ĉ0,σ |ψ0〉;
(iii) the overlap of |ψ (t )〉 with the state where a hole was

created at a position j, |ψ1〉 = ĉj,σ |ψ0〉.
The time evolution of ĉ0,σ |ψ0〉 is performed using the

matrix product operator based time evolution introduced in
Ref. [61]; see also Refs. [62–65].

In Fig. 10 we compare the correlation function Ci,j(t )
for different bond dimensions χ at a time of t0 = 8 (1/J),
which is the maximal time used for our calculation of the
spectral function shown in the main text. While there are small
differences in the absolute numbers, the qualitative behavior
is captured correctly already at a bond dimension of χ =
600. For later times, the deviations between different bond
dimensions increase further.
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FIG. 10. Convergence of td-MPS data. We check the conver-
gence of our td-MPS calculations with the bond dimension χ in the
real time and space correlation function Ci,j(t ) for the latest time (8
in units of 1/J) considered for t/J = 3.

We perform a spatial Fourier transform to obtain

A(k, t ) =
∑

j

e−ik·jC0,j(t ). (A2)

As our time evolution is limited to times 0 � t � t0 = 8/J ,
we use linear prediction to increase the time window. Af-
terward, the data are multiplied with a Gaussian envelope
w(t ) = exp[−0.5(tσω )2], where σω = 2/t0 = 0.25J is chosen
in order to minimize the weight of the data generated by linear
prediction in the spectrum [65]. An example of a time trace
used for our calculation of the spectral function is shown in
Fig. 11. We confirmed that the results do not depend on the
details of this procedure. Fourier transforming in time yields
the spectral function

A(k, ω) = 1

2π

∫ ∞

−∞
dtA(k, t ). (A3)

FIG. 11. Linear prediction and Gaussian envelope. After the
spatial Fourier transform, we use linear prediction to enhance the
time window (orange dashed). Before Fourier transforming in time,
the time-dependent data are multiplied with a Gaussian envelope of
width σω = 0.25J (green dashed-dotted). Here, as an example, we
show the corresponding time traces for kx = 0, ky = π/2 at t/J = 3.

FIG. 12. First vibrational peak. We show the frequency cut of
the one-hole spectral function at the nodal point k = (π/2, π/2), for
the same parameters as in Fig. 1(a) of the main text. The extracted
positions of the ground state (first peak) and vibrationally excited
(second peak) magnetic polaron are indicated by dashed lines.

In this signal, the Gaussian envelopes introduced in the time
domain before lead to Gaussian broadening of the obtained
peaks, sufficiently small for our analysis.

The diagonal cut through the Brillouin zone from (0,0) to
(π, π ) is obtained by labeling the sites around the cylinder
in a zigzag fashion as indicated in the top row of Fig. 1(a).
One ring around the cylinder with this labeling contains 2Lr

instead of Lr sites, where Lr is the circumference of the cylin-
der. We calculate the ground state as well as the dynamics with
the couplings in the Hamiltonian according to this modified
lattice geometry used for representing the MPS. For each time
step, we obtain an array with Lx × 2Lr entries, where Lx is the
length of the cylinder. This array is reshaped into an 2Lx × Lr

array and then the Fourier transform is performed, yielding
A(k, t ). Due to the relabeling of the sites, the momenta are
transformed as

kx → kx,

ky → ky + kx.
(A4)

In particular, for ky = 0 we obtain the cut from (0,0) to (π, π )
shown in the rightmost panel of Fig. 1(a).

2. Extracting peak positions and quasiparticle weight

From cuts at fixed momenta k, the positions of the low
energy peaks visible in Fig. 1(a) can be extracted. Figure 12
shows the corresponding cut at momentum k = (π/2, π/2)
for t/J = 3.

It can be shown analytically that the ground-state quasi-
particle weight Z (π/2, π/2) shown in Fig. 3 in the main
text corresponds to the integral over the first peak in the
spectral function. However, Z (π/2, π/2) can be expressed
more conveniently as the overlap:

Z (π/2, π/2) =
∑

σ

∣∣〈ψ1h
0

∣∣ĉ(π/2,π/2),σ

∣∣ψ0h
0

〉∣∣2
. (A5)

We can thus obtain the quasiparticle weight directly from the
ground states of the t-J model without a hole, |ψ0h

0 〉, and with
a single hole, |ψ1h

0 〉, without the need to calculate any time
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FIG. 13. Dependence of DMRG data on parameters. We check
how our DMRG calculations of the ground-state quasiparticle weight
Z change when the bond dimension χ and the circumference Lr of
the cylinder are changed. The inset shows the difference Zgs(Lr, χ ) −
Zgs(Lr = 4, χ = 500); note the overall scale 10−3.

evolution. The ground state of a single hole in the t-J model
has momentum k = (π/2, π/2). In a translational-invariant
system, we can further simplify the calculation by writing

Z (π/2, π/2) =
∑

σ

∑
j

∣∣〈ψ1h
0

∣∣ĉ j,σ

∣∣ψ0h
0

〉∣∣2
. (A6)

Hence, we only need to calculate the overlap of the one-hole
ground state with a locally created hole at different positions
j: ĉ j,σ |ψ0h

0 〉. In Fig. 13 we show how this procedure changes
with the bond dimension χ and circumferences Lr = 4 and 6,
for different t/J .

A comment is in order concerning the use of Eq. (A6). To
employ it in our finite-size cylinders, we must assume that the
ground state |ψh

0 〉 does not spontaneously break the transla-
tional symmetry in the thermodynamic limit and can be well
approximated by a standing wave of nodal point momenta
±(π/2,±π/2) in the finite-size system. In Refs. [111,112]
Zhu et al. have shown in few-leg ladders with open boundary
conditions that the finite-size ground state |ψh

0 〉 can show man-
ifestations of a spontaneously broken translational symmetry
in the thermodynamic limit, as indicated by strong charge
modulations in the finite-size ground state. In our numerics
on four-leg cylinders, we find no indications for this scenario.

To extract Z (k) for k different from the nodal points, we
determine the height of the first peak and its full width at half-
maximum. We assume a Gaussian form and thus calculate
Z (k) as the corresponding integral over the Gaussian function.

APPENDIX B: FSA ANSATZ

We calculate the chargon, or string, contribution to the
quasiparticle weight Zc(J/t ) using the FSA ansatz from
Eq. (5) in the main text, assuming that geometric string
states are mutually orthogonal, 〈�|�′〉 ≈ δ�,�′ . In addition,
we simplify the effective string Hamiltonian [see Fig. 14(a)]

Ĥ� = −t
∑

〈�′,�〉
(|�′〉〈�| + H.c.) +

∑
�

Vpot (�)|�〉〈�| (B1)

FIG. 14. Spinon-chargon repulsion. (a) We consider a model
where the charge fluctuations are described by string states, cor-
responding to the sites of a Bethe lattice. (b) Assuming a central-
symmetric potential on the Bethe lattice, the one-particle hopping
problem on the Bethe lattice, describing the fluctuating string, can be
mapped to a semi-infinite one-dimensional chain with the indicated
hopping amplitudes and a linear potential along the chain. (c) The
problem in (b) can be related to an infinite one-dimensional problem
with a mirror symmetry around the origin and reduced hopping ma-
trix elements

√
2t to the central site, as compared to

√
3t elsewhere.

As described in the text, this inhomogeneous tunneling gives rise to
a strong (of order t) microscopic spinon-chargon repulsion.

by making the linear string approximation [35]

Vpot (�) ≈ VLST(
� ) = dE

d


� + g0δ
�,0 + μh. (B2)

Here, 
� denotes the length of string � and the linear string
tension is given by dE/d
 = 2J (C2 − C1), where C2 (C1)
is the diagonal next-nearest-neighbor (nearest-neighbor) spin
correlator 〈Ŝi · Ŝ j〉 in the undoped Heisenberg AFM. The ad-
ditional pointlike spinon-chargon attraction is given by g0 =
−J (C3 − C1) with C3 the next-next-nearest neighbor correla-
tor. The zero-point energy μh = J (1 + C3 − 5C1) provides an
overall energy offset; see Ref. [35] for more details.

Equation (B1) describes a hopping problem on a Bethe lat-
tice in the presence of a central-symmetric potential. Making
use of all discrete rotational symmetries at the branches of the
Bethe lattice, the problem can be reduced to a single particle in
an effective semi-infinite one-dimensional lattice [66,71] [see
Fig. 14(b)]:

Ĥeff =
[
−2t |1〉〈0| −

√
3t

∞∑

=1

|
 + 1〉〈
| + H.c.

]

+
∞∑


=0

VLST(
)|
〉〈
|, (B3)

which can be solved exactly numerically. From the solution
|ψ�〉 = ∑∞


=0 ψ
|
〉, we obtain the chargon contribution to the
quasiparticle weight as Zc = |ψ
=0|2. This result is plotted in
Fig. 3 of the main text. By diagonalization of Eq. (B3) the
excitation energy of the first vibrational state is also obtained,
which we plot in Fig. 2 as a function of t/J .

Now, we discuss how Zc(J/t ) depends on J/t , focusing in
particular on the asymptotic behavior when J/t → 0. A naive
mapping of Eq. (B3) to the continuum limit 
 ∈ R>0 yields
the Schrödinger equation [71][

−
√

3t ∂2

 + dE

d


 − E

]
ψ (
) = 0. (B4)
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FIG. 15. Chargon contribution the quasiparticle weight. Zc(J/t )
is calculated from the model in Eq. (B3), based on the frozen spin
approximation (FSA), and shown in a double-logarithmic plot. In the
strong coupling regime J � t the asymptotic power law Zc(J/t ) ∝
J/t is obtained as a result of spinon-chargon repulsion.

It is well known that the competition of the kinetic energy ∝t
and the linear string tension dE/d
 ∝ J leads to an emergent
average string length L� ∝ (t/J )1/3 [71]. Hence, one would
naively expect Zc = |ψ
=0|2 � L−1

� = (J/t )1/3. When J � t
are comparable in magnitude, such behavior is indeed ob-
served [26]. For most values shown in Fig. 3 the residue of the
magnetic polaron Z (J/t ) � (J/t )α can be approximated by a
power law, and for t � J the exponent α < 1 is significantly
below one. This is consistent with the naive expectations
above.

In Fig. 15 we calculate Zc(J/t ) from the model in Eq. (B3)
and show the result in a log-log plot. For J � t , in the strong
coupling regime, our result demonstrates that Zc(J/t ) � J/t ,
i.e. asymptotically the exponent of the power law approaches
α = 1. This indicates that additional spinon-chargon repulsion
must be present in the effective continuum model (B4), which
enhances the exponent from α = 1

3 to 1 at strong couplings.
The origin of additional spinon-chargon repulsion can be

understood by mapping the semi-infinite one-dimensional
problem (B3) to the even-parity sector of the following infinite
problem [see Fig. 14(c)}:

Ĥ′
eff = −

√
3t

∞∑

=−∞

[(1 − δ
,0 − δ
,−1)|
 + 1〉〈
| + H.c.]

−
√

2t[|1〉〈0| + |0〉〈−1| + H.c.] +
∞∑


=−∞
VLST(
)|
〉〈
|.

(B5)

One can confirm that every even-parity eigenstate φ−
 = φ
 of
Ĥ′

eff corresponds to an eigenstate of Ĥeff given by ψ
 = √
2φ


for 
 > 0 and ψ
=0 = φ
=0, with the same eigenenergy.
Equation (B5) describes a single particle hopping in an

infinite chain in the presence of a central-symmetric confining
potential. Around the origin, the tunneling amplitudes are
reduced from

√
3t in the bulk to

√
2t . This reduces the zero-

point kinetic energy from −2
√

3t in the bulk to −2
√

2t in
the origin, corresponding to a localized repulsive potential
with a strength of the order 2(

√
3 − √

2)t = 0.64t . At strong
couplings this repulsion overcomes the spinon-chargon attrac-

tion ∝g0∝ J included in VLST(
) [see Eq. (B2)], and leads to
the formation of a node at 
 = 0 in the string wave function
when J � t . This effect is not included in the naive continuum
theory (B4), and explains why we observe Zc(J/t ) ∝ J/t
asymptotically when J/t → 0.

The effective local spinon-chargon repulsion ∝t is de-
termined by the connectivity of the Bethe lattice defining
the string basis. For chargons moving only along one di-
mension, as realized for example in the mixed-dimensional
t-J model [83], this additional repulsion is absent. In such
settings, a different power law is reached asymptotically at
strong couplings.

APPENDIX C: SPINON-CHARGON TRIAL WAVE
FUNCTION

We use the trial wave function from Eq. (12) to calculate
the quasiparticle weight Z (k) [see Eq. (15)]. To evaluate the
expression in Eq. (15) we use Metropolis Monte Carlo.

1. Sampling

We sample Fock configurations |α〉 of the fermionic
spinons f̂ j,σ , and two sets of string configurations � and �′
from the following positive-definite distribution:

ρJ (α,�,�′) = |ψ�||ψ�′ ||〈�MF(k, σ )|α�〉|
× |〈�MF(k, σ )|α�′ 〉|. (C1)

Here, |�MF(k, σ )〉 = f̂k,σ,−|�SF+N
MF 〉 is the mean-field state

with one extra spinon excitation of momentum k in the lower
spinon band (μ = −). We further introduced the squeezed-
space Fock configurations

|α�〉 = Ĝ†
�|α〉, (C2)

where the operator Ĝ� also appears in the definition of the
trial wave function (12) and creates a state with a geometric
string � starting at the position of the hole in the Fock state to
its right; see Eq. (4).

To calculate Z (k) we introduce a completeness relation of
one-hole Fock states

∑
α |α〉〈α| = 1̂1h, and use momentum

conservation. This leads to

Z (k) = 1√
N0N1

∑
σ

∑
j

eik· j

L

∑
�

ψ∗
�

∑
α

× 〈�MF(k, σ )|P̂GW|α�〉〈α| f̂ j,σ P̂GW

∣∣�SF+N
MF

〉
, (C3)

with the normalizations

N0 = 〈�sc(k)|�sc(k)〉, (C4)

N1 = 〈
�SF+N

MF (k)
∣∣P̂GW

∣∣�SF+N
MF (k)

〉
. (C5)

Note that for the trial wave function it holds |�sc(k)〉 ≡
|�sc(k + K )〉 for reciprocal lattice vectors K.

The first Gutzwiller projection in Eq. (C3) can be dropped
since it acts on a Fock configuration to the right. The sec-
ond Gutzwiller projection can be handled in a similar way,
by writing

1

L

∑
j

e−ik· jP̂GW f̂ †
j,σ |α〉 = L2/2

L
e−ik· jh

α |α̃〉, (C6)
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where L2/2|α̃〉 = P̂GW f̂ †
j,σ |α〉 and jh

α denotes the position
of the hole in the Fock configuration |α〉. The state |α̃〉 is
thus obtained from |α〉 by adding a fermion at site jh

α . The
extra factor L2/2 = Nσ is equal to the number of spins σ

in Fock state |α〉, and arises when relating the properly nor-
malized first (|α̃〉) and second (P̂GW f̂ †

j,σ |α〉) quantized many-
body states.

Combining the results above, we can write Z (k) as

Z (k) =
∑

σ

∑
�,�′

∑
α

ρJ (α,�,�′)
δ�,�′ ψ∗

� 〈�MF(k, σ )|α�〉 eik· jh
α

〈
α̃
∣∣�SF+N

MF

〉
ρJ (α,�,�′)

√
2

N−1/2, (C7)

where

N =
[∑

�,�′

∑
α

ρJ (α,�,�′)
ψ∗

� ψ�′ 〈�MF(k, σ )|α�〉 〈α�′ |�MF(k, σ )〉
ρJ (α,�,�′)

][∑
�,�′

∑
α

ρJ (α,�,�′)
δ�,�′ |ψ�|2 ∣∣〈�SF+N

MF

∣∣α̃�

〉∣∣2

ρJ (α,�,�′)

]
.

(C8)

This is the expression we used to perform a Metropolis Monte
Carlo procedure, sampling from the distribution ρJ (α,�,�′).
Note that the required Fock-state overlaps can be straightfor-
wardly evaluated (see, e.g., [45,101]).

2. Parameter dependence

We worked with Eq. (C7) to check how the quasiparti-
cle residue of the trial wave function depends on various
parameters. In Fig. 16 we compare Z (k) along a diagonal
cut through the magnetic Brillouin zone for different system
sizes. While the smallest 4 × 4 torus shows strong finite-size
effects, already the results for 6 × 6 and 4 × 10 tori agree
within error bars. We show that the result does not change
significantly when increasing the system size further, up to
12 × 12 and 20 × 20, indicating that finite-size scaling of our
results obtained in 12 × 12 systems is not necessary.

In Fig. 17(a) we show how Z (k) depends on the linear
string tension, which determines how tightly the chargon is
bound to the spinon. We rescaled the FSA expression for

FIG. 16. Size dependence of the quasiparticle weight. Z (k) is
shown along the diagonal cut from (0,0) to (π, π ). We evaluated
the spinon-chargon trial wave function for different system sizes
(see legend). No significant finite-size dependence can be observed
beyond 6 × 6. We set t/J = 3, Bst/Jeff = 0.44, and � = 0.4π . Solid
lines are guides to the eye only. Some data points are slightly offset
horizontally for better visibility; for 6 × 6 only a selection of k points
are shown.

dE/d
, introduced below Eq. (B2), by a factor λdE/d
. The
data shown in the main text correspond to λdE/d
 = 1. Assum-
ing tighter spinon-chargon confinement leads to significantly
increased spectral weight. This may explain why the result by
the trial wave function in Fig. 3 of the main text showed too
small quasiparticle residues as compared to the numerically
obtained results starting from first principles. Note that similar
indications for tighter spinon-chargon confinement have been
obtained in studies of the variational energy [35].

In Fig. 17(b) we show how Z (k) depends on the staggered
field Bst/Jeff characterizing the undoped trial wave function.
In the limit Bst/Jeff → 0 different behavior is observed for
momenta k within and outside the magnetic Brillouin zone.
For larger values of Bst/Jeff , larger quasiparticle residues
are obtained. This may also play a role for explaining the
deviations observed in Fig. 3 of the main text between the
trial wave function and numerical approaches.

APPENDIX D: DISCUSSION OF FINITE-SIZE EFFECTS

In this Appendix, we summarize to which extent our td-
MPS and DMRG data on four- and six-leg cylinders can
be considered as reliable approximations of the genuine 2D
t-J model.

The first indicator we consider concerns the entire spec-
trum: Due to the fourfold discrete rotational symmetry of the
genuine 2D model, momenta (0, π ) and (π, 0) must have
identical ARPES spectra. This symmetry is broken on the
4 × 40 cylinders we consider, and indeed the spectra at (0, π )
and (π, 0) are not exactly identical in our Figs. 1 and 9
(note the actual cuts indicated on the top of all spectra).
However, we find perfect qualitative agreement of the spectra
at (0, π ) and (π, 0) as expected, and only relatively small
quantitative deviations, indicating that finite-size effects are
relatively weak at all energies and for different ratios t/J .

The second indicator we consider concerns only the ground
state, for which we compare the quasiparticle weights Z .
We start by the finite-size analysis based on our trial wave
function, at t/J = 3. Figure 16 shows that strong finite-size
effects persist for the 4 × 4 torus, in agreement with the
significant finite-size effects observed in 4 × 4 systems using
exact diagonalization [26]. Already for the 6 × 6 system, our
trial wave function predicts that finite-size corrections are
small; the result agrees within error bars with much larger
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FIG. 17. Dependence of the quasiparticle weight on string ten-
sion and staggered magnetic field. (a) We calculate the quasiparticle
residue Z (π/2, π/2) from the trial wave function for different string
length distributions. The latter are determined by the linear string
tension dE/d
 = λdE/d
2J (Cex+ey − Cex ) used in the FSA ansatz;
large λdE/d
 � 1 corresponds to short strings, and vice versa. We
use parameters Bst/Jeff = 0.44 and � = 0.4π in a 12 × 12 system.
For t/J = 3 the variational energy is minimized for λdE/d
 between
100 to 101 (see Ref. [35]). (b) The quasiparticle weight is calculated
for different values of the staggered magnetic field Bst/Jeff in the trial
wave function (12). For large staggered fields, the chargon, or string,
contribution Zc is approached. For weak staggered fields a strong
momentum dependence is observed. We set t = 3J , � = 0.4π , and
worked in a 12 × 12 system.

12 × 12 and 20 × 20 systems. Since our DMRG and td-MPS
studies are performed on multileg cylinders, we also consid-
ered an elongated 4 × 10 torus with our trial wave function.
We find that this system also features no discernible finite-size
corrections within the error bars. Taken together, these results
suggest weak systematic effects of the elongated cylinder ge-
ometry for t/J = 3, while including sufficiently many lattice
sites is important for obtaining a good approximation of the
ideal 2D ground state. For larger values of t/J > 3, generally
we expect finite-size effects to increase due to the growing
string length.

We have also compared the ground-state quasiparticle
weight Z obtained from DMRG for four- and six-leg cylinders
(see Fig. 13). Going from Lr = 4 legs to Lr = 6 legs, we
observe a slight reduction of the quasiparticle weight on the

1% level; see inset of Fig. 13 where the difference between the
two cases is plotted for clarity (note the overall scale ×10−3).
For the considered values of t/J , this observed finite-size
effect is well below the finite-size variations found by exact
diagonalization between systems with N = 16, 24, and 32
sites [26]. Moreover, in Fig. 3 we compare our DMRG results
to quantum Monte Carlo simulations by Brunner et al. [28] for
a 16 × 16 lattice and Mishchenko et al. [29] who considered
32 × 32 systems at a low inverse temperature of β = 40/J .
The very good agreement of our DMRG results with the
genuine 2D Monte Carlo data suggests that finite-size effects
owing to the elongated cylinder geometry are weak for the
considered values of t/J .

The third indicator we consider is the excitation gap to
the first vibrational peak, plotted in Fig. 2. This is a useful
quantity to consider since it goes beyond just the ground-
state physics. For small J/t , we find very good agreement
of our four-leg cylinder td-MPS results and 2D Monte Carlo
predictions, within the typical peak widths indicated by error
bars for the Monte Carlo calculations [29]. (Note that when
t � J becomes comparable, it becomes increasingly more
challenging within the given resolutions of DMRG and Monte
Carlo methods to distinguish the vibrational from the ground-
state peak in the spectrum. We believe this underlies the
observed discrepancies for t � J).

In summary, all finite-size scalings and benchmarks we
can currently perform hint to small and controlled finite-size
effects for the considered values of t/J � 5, caused by the
elongated cylinder geometry we use in td-MPS and DMRG
simulations. For larger values of t/J we observe that finite-
size effects increase, as can be seen in the inset of Fig. 13.
Such behavior is expected from the geometric string picture
since the average string length and the extent of the magnetic
polaron quickly increase with increasing t/J .

APPENDIX E: MEAN-FIELD APPROXIMATION AND
SPINON STATISTICS

In this Appendix, we describe the phenomenology of the
quasiparticle weight Zs(k) expected from two different mean-
field descriptions. Only the fermionic theory is consistent with
numerical results.

1. Fermionic spinons

In this approach, we assume that the constituting spinons
f̂ j,σ introduced in Eq. (3) obey fermionic statistics. In our
derivation of the mean-field expression ZMF

s (k) in Eq. (16)
of the main text, we first assume that only � = 0 leads to a
nonvanishing contribution:

〈�sc(k)| f̂k,σ P̂GW

∣∣�SF+N
MF

〉
≈ ψ∗

�=0

∑
js

u( js )
k,σ,−e−ik· js

L/
√

2

〈
�SF+N

MF

∣∣ f̂ †
js,σ

P̂GW f̂k,σ P̂GW

∣∣�SF+N
MF

〉

= ψ∗
�=0

〈
�SF+N

MF

∣∣ f̂ †
k,σ,−P̂GW f̂k,σ P̂GW

∣∣�SF+N
MF

〉
. (E1)
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In the second step, we used

f̂ †
k,σ,μ

=
∑

j

e−ik· j

L/
√

2
u( j)

k,σ,μ
f̂ †

j,σ . (E2)

Next, we drop the Gutzwiller projectors and approximate〈
�SF+N

MF

∣∣ f̂ †
k,σ,−P̂GW f̂k,σ P̂GW

∣∣�SF+N
MF

〉
≈ 〈

�SF+N
MF

∣∣ f̂ †
k,σ,− f̂k,σ

∣∣�SF+N
MF

〉
, (E3)

which yields the mean-field result (16) in the main text. Note
that f̂k+K,σ,− ≡ f̂k,σ,−, where K is the reciprocal lattice vector,
but f̂k+K,σ �= f̂k,σ .

We use the following identities:

f̂ †
k,σ

= λ+
k f̂ †

k,σ,+ + λ−
k f̂ †

k,σ,−, (E4)

f̂ †
k+K,σ

= λ+
k+K f̂ †

k,σ,+ + λ−
k+K f̂ †

k,σ,−,

(E5)

where k ∈ MBZ and the factors λ± are given by

λ
μ

k = 1√
2

(
u(A)

k,σ,μ
+ u(B)

k,σ,μ

)∗
, (E7)

λ
μ

k+K = 1√
2

(
u(A)

k,σ,μ
− u(B)

k,σ,μ

)∗
; (E8)

A and B denote sites j from the A and B sublattice, respec-
tively, and μ = ± is the band index. This leads to the result in
Eq. (17) in the main text.

2. Bosonic spinons

In this approach, we assume that the constituting spinons
f̂ j,σ introduced in Eq. (3) obey bosonic statistics. To avoid
confusion, we replace f̂ j,σ by Schwinger bosons â j,σ in
the following. First, we introduce the bosonic analog of the
trial wave function (12) in the main text. We start from
the usual Holstein-Primakoff expansion Ŝz

j = (−1) j (1/2 −
â†

j â j ), where (−1) j = (−1) jx+ jy . This corresponds to a
mean-field expansion around the condensates â jA,↑, â jB,↓ →
α jA,↑, α jB,↓ = 1. Here, jA,B denote lattice sites from the A and
B sublattices, respectively, and α j,σ denotes coherent state am-
plitudes. The operators â jA

= â jA,↓ and â jB
= â jB,↑ describe

spin flips of the antiferromagnet, giving rise to collective
spin-wave excitations which carry spin S = 1.

The fluctuations b̂ j,↑ = â jA,↑ for j = jA ≡ j↑ and b̂ j,↓ =
â jB,↓ for j = jB ≡ j↓ around the condensate describe va-
cancies in the classical Néel state around which we expand
in the Holstein-Primakoff approach. Hence, they correspond
to spin- 1

2 excitations, and we interpret them as bosonic
spinons. This leads us to the following form of spinon-chargon
trial states:

|�sc(k)〉 =
∑

js
σ

eik· js

L/
√

2

∑
�

ψ� Ĝ� P̂GW b̂ js,σ

∣∣�SB
MF

〉
(E9)

[cf. Eq. (12)]. Here,
∑

js
σ

denotes a sum over all sites from
sublattice A for σ =↑ and B for σ =↓. As in the fermionic
case, it holds |�sc(k + K )〉 = |�sc(k)〉 up to an overall phase
and for reciprocal lattice vectors K. The bosonic mean-field

description of the half-filled Heisenberg AFM is given by∣∣�SB
MF

〉 =
∏

j

(|α jA,↑ = 1〉|α jB,↓ = 1〉) ⊗ |�fluc〉, (E10)

where
∏

j is a product over all unit cells j, each consisting
of a site jA from the A and a site jB from the B sublattice.
|�fluc〉 denotes the bosonic Gaussian state of fluctuations in
the Hilbert space of â jA,↓ and â jB,↑ Schwinger bosons; |α j,σ 〉
denotes a coherent state of Schwinger bosons with complex
amplitude α j,σ .

In the calculation of the quasiparticle residue within the
mean-field theory we assume, as in the fermionic case, that
only the trivial string configuration � = 0 contributes. Drop-
ping the Gutzwiller projection leads to the following bosonic
mean-field expression:

ZMF,B(k) = Zc

∑
σ

∣∣〈�SB
MF

∣∣â†
k,ησ ,σ

âk,σ

∣∣�SB
MF

〉∣∣2
(E11)

[cf. Eq. (16)]. Here, we introduced

âk,μ,σ =
√

2

L

∑
jμ

eik· jμ â jμ,σ , (E12)

for μ = A, B and defined

ησ =
{

A, σ =↑
B, σ =↓ .

(E13)

Hence, â†
k,ησ ,σ

only involves the spinon operators b̂ j,σ but not
the spin-flip operators â j .

To calculate ZMF,B(k) in Eq. (E11) we note that the
Schwinger-boson mean-field state (E10) can be written∣∣�SB

MF

〉 = |αk=0,A,↑〉|αk=0,B,↓〉 ⊗ |�fluc〉, (E14)

with coherent amplitudes αk=0,A,↑ = αk=0,B,↓ = L/
√

2, i.e.,
the free spinons condense at k = 0 in the mean-field the-
ory. This condensate is the bosonic counterpart of the
Fermi sea formed by constituting spinons in the fermionic
mean-field theory.

The rest of the bosonic mean-field calculation is straight-
forward. Because âk,μ,σ = âk+K,μ,σ up to an overall phase for
the reciprocal lattice vector K = (π, π ), we find that

ZMF,B(k) = Zc
L2

2
(δ(k) + δ(k − K )). (E15)

This directly leads to

ZMF,B
s (k) ∝ (δ(k) + δ(k − π)), π = (π, π ). (E16)

Instead of the Fermi sea revealed in the fermionic mean-field
theory, we expect two delta distributions at k = (0, 0) and
k = (π, π ). Beyond the mean-field ansatz, the Gutzwiller
projection is expected to lead to substantial broadening of
these delta-function peaks. While this may explain some of
the numerical observations, it cannot explain the striking sup-
pression of spectral weight around k = (π, π ) observed nu-
merically. While it is difficult to rule out bosonic descriptions
of spinons completely, we conclude that strong interactions
between the bosons would be required to explain the observed
distribution of spectral weight across the Brillouin zone.

035139-20



PARTON THEORY OF ANGLE-RESOLVED PHOTOEMISSION … PHYSICAL REVIEW B 102, 035139 (2020)

[1] A. Damascelli, Z. Hussain, and Z.-X. Shen, Angle-resolved
photoemission studies of the cuprate superconductors, Rev.
Mod. Phys. 75, 473 (2003).

[2] J. M. Luttinger, An exactly soluble model of a many-fermion
system, J. Math. Phys. 4, 1154 (1963).

[3] E. H. Lieb and F. Y. Wu, Absence of Mott Transition in an
Exact Solution of the Short-Range, One-Band Model in One
Dimension, Phys. Rev. Lett. 20, 1445 (1968).

[4] M. Ogata and H. Shiba, Bethe-ansatz wave function, momen-
tum distribution, and spin correlation in the one-dimensional
strongly correlated hubbard model, Phys. Rev. B 41, 2326
(1990).

[5] K. J. von Szczepanski, P. Horsch, W. Stephan, and M.
Ziegler, Single-particle excitations in a quantum antiferromag-
net, Phys. Rev. B 41, 2017 (1990).

[6] Z. Y. Weng, D. N. Sheng, and C. S. Ting, Spin-charge separa-
tion in the t-J model: Magnetic and transport anomalies, Phys.
Rev. B 52, 637 (1995).

[7] C. Kim, A. Y. Matsuura, Z.-X. Shen, N. Motoyama, H. Eisaki,
S. Uchida, T. Tohyama, and S. Maekawa, Observation of Spin-
Charge Separation in One-Dimensional SrCuO2, Phys. Rev.
Lett. 77, 4054 (1996).

[8] C. Kim, Z.-X. Shen, N. Motoyama, H. Eisaki, S. Uchida, T.
Tohyama, and S. Maekawa, Separation of spin and charge
excitations in one-dimensional SrCuO2, Phys. Rev. B 56,
15589 (1997).

[9] R. N. Bannister and N. d’Ambrumenil, Spectral functions of
half-filled one-dimensional hubbard rings with varying bound-
ary conditions, Phys. Rev. B 61, 4651 (2000).

[10] M. Sing, U. Schwingenschlögl, R. Claessen, P. Blaha, J. M. P.
Carmelo, L. M. Martelo, P. D. Sacramento, M. Dressel,
and C. S. Jacobsen, Electronic structure of the quasi-one-
dimensional organic conductor TTF-TCNQ, Phys. Rev. B 68,
125111 (2003).

[11] T. Giamarchi, Quantum Physics in One Dimension (Oxford
University Press, Oxford, 2003).

[12] P. A. Lee, N. Nagaosa, and X.-G. Wen, Doping a mott insula-
tor: Physics of high-temperature superconductivity, Rev. Mod.
Phys. 78, 17 (2006).

[13] B. O. Wells, Z. X. Shen, A. Matsuura, D. M. King, M. A.
Kastner, M. Greven, and R. J. Birgeneau, e versus k Relations
and Many Body Effects in the Model Insulating Copper Oxide
Sr2CuO2Cl2, Phys. Rev. Lett. 74, 964 (1995).

[14] F. Ronning, K. M. Shen, N. P. Armitage, A. Damascelli, D. H.
Lu, Z.-X. Shen, L. L. Miller, and C. Kim, Anomalous high-
energy dispersion in angle-resolved photoemission spectra
from the insulating cuprate Ca2CuO2Cl2, Phys. Rev. B 71,
094518 (2005).

[15] J. Graf, G.-H. Gweon, K. McElroy, S. Y. Zhou, C. Jozwiak,
E. Rotenberg, A. Bill, T. Sasagawa, H. Eisaki, S. Uchida,
H. Takagi, D.-H. Lee, and A. Lanzara, Universal High En-
ergy Anomaly in the Angle-Resolved Photoemission Spectra
of High Temperature Superconductors: Possible Evidence of
Spinon and Holon Branches, Phys. Rev. Lett. 98, 067004
(2007).

[16] S. Schmitt-Rink, C. M. Varma, and A. E. Ruckenstein, Spec-
tral Function of Holes in a Quantum Antiferromagnet, Phys.
Rev. Lett. 60, 2793 (1988).

[17] C. L. Kane, P. A. Lee, and N. Read, Motion of a single hole in
a quantum antiferromagnet, Phys. Rev. B 39, 6880 (1989).

[18] S. Sachdev, Hole motion in a quantum néel state, Phys. Rev. B
39, 12232 (1989).

[19] V. Elser, D. A. Huse, B. I. Shraiman, and E. D. Siggia, Ground
state of a mobile vacancy in a quantum antiferromagnet:
Small-cluster study, Phys. Rev. B 41, 6715 (1990).

[20] E. Dagotto, R. Joynt, A. Moreo, S. Bacci, and E. Gagliano,
Strongly correlated electronic systems with one hole: Dynam-
ical properties, Phys. Rev. B 41, 9049 (1990).

[21] G. Martinez and P. Horsch, Spin polarons in the t-J model,
Phys. Rev. B 44, 317 (1991).

[22] A. Auerbach and B. E. Larson, Small-Polaron Theory of
Doped Antiferromagnets, Phys. Rev. Lett. 66, 2262 (1991).

[23] Z. Liu and E. Manousakis, Dynamical properties of a hole in a
heisenberg antiferromagnet, Phys. Rev. B 45, 2425 (1992).

[24] M. Boninsegni and E. Manousakis, Green’s-function monte
carlo study of the t-J model, Phys. Rev. B 46, 560 (1992).

[25] M. Boninsegni and E. Manousakis, Variational description of a
quasihole excitation in a quantum antiferromagnet, Phys. Rev.
B 45, 4877 (1992).

[26] P. W. Leung and R. J. Gooding, Dynamical properties of the
single-hole t-J model on a 32-site square lattice, Phys. Rev. B
52, R15711 (1995).

[27] O. A. Starykh, O. F. de Alcantara Bonfim, and G. F. Reiter,
Self-consistent born approximation for the hole motion in the
three-band model: A comparison with photoemission experi-
ments, Phys. Rev. B 52, 12534 (1995).

[28] M. Brunner, F. F. Assaad, and A. Muramatsu, Single-hole
dynamics in the t − J model on a square lattice, Phys. Rev.
B 62, 15480 (2000).

[29] A. S. Mishchenko, N. V. Prokof’ev, and B. V. Svistunov,
Single-hole spectral function and spin-charge separation in the
t − J model, Phys. Rev. B 64, 033101 (2001).

[30] S. R. White and I. Affleck, Density matrix renormalization
group analysis of the nagaoka polaron in the two-dimensional
t − J model, Phys. Rev. B 64, 024411 (2001).

[31] G. Sangiovanni, A. Toschi, E. Koch, K. Held, M. Capone, C.
Castellani, O. Gunnarsson, S.-K. Mo, J. W. Allen, H.-D. Kim,
A. Sekiyama, A. Yamasaki, S. Suga, and P. Metcalf, Static
versus dynamical mean-field theory of mott antiferromagnets,
Phys. Rev. B 73, 205121 (2006).

[32] E. Manousakis, String excitations of a hole in a quantum
antiferromagnet and photoelectron spectroscopy, Phys. Rev. B
75, 035106 (2007).

[33] F. Mezzacapo, Variational study of a mobile hole in a
two-dimensional quantum antiferromagnet using entangled-
plaquette states, Phys. Rev. B 83, 115111 (2011).

[34] J. Koepsell, J. Vijayan, P. Sompet, F. Grusdt, T. A. Hilker,
E. Demler, G. Salomon, I. Bloch, and C. Gross, Imaging
magnetic polarons in the doped fermi-hubbard model, Nature
(London) 572, 358 (2019).

[35] F. Grusdt, A. Bohrdt, and E. Demler, Microscopic spinon-
chargon theory of magnetic polarons in the t- j model, Phys.
Rev. B 99, 224422 (2019).

[36] T. Cuk, D. H. Lu, X. J. Zhou, Z.-X. Shen, T. P. Devereaux,
and N. Nagaosa, A review of electron-phonon coupling seen in
the high-tc superconductors by angle-resolved photoemission
studies (arpes), Phys. Status Solidi B 242, 11 (2005).

[37] S. Kar and E. Manousakis, Finite-temperature spectral func-
tion of a hole in a quantum antiferromagnet and the role of
phonons, Phys. Rev. B 78, 064508 (2008).

035139-21

https://doi.org/10.1103/RevModPhys.75.473
https://doi.org/10.1063/1.1704046
https://doi.org/10.1103/PhysRevLett.20.1445
https://doi.org/10.1103/PhysRevB.41.2326
https://doi.org/10.1103/PhysRevB.41.2017
https://doi.org/10.1103/PhysRevB.52.637
https://doi.org/10.1103/PhysRevLett.77.4054
https://doi.org/10.1103/PhysRevB.56.15589
https://doi.org/10.1103/PhysRevB.61.4651
https://doi.org/10.1103/PhysRevB.68.125111
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/PhysRevLett.74.964
https://doi.org/10.1103/PhysRevB.71.094518
https://doi.org/10.1103/PhysRevLett.98.067004
https://doi.org/10.1103/PhysRevLett.60.2793
https://doi.org/10.1103/PhysRevB.39.6880
https://doi.org/10.1103/PhysRevB.39.12232
https://doi.org/10.1103/PhysRevB.41.6715
https://doi.org/10.1103/PhysRevB.41.9049
https://doi.org/10.1103/PhysRevB.44.317
https://doi.org/10.1103/PhysRevLett.66.2262
https://doi.org/10.1103/PhysRevB.45.2425
https://doi.org/10.1103/PhysRevB.46.560
https://doi.org/10.1103/PhysRevB.45.4877
https://doi.org/10.1103/PhysRevB.52.R15711
https://doi.org/10.1103/PhysRevB.52.12534
https://doi.org/10.1103/PhysRevB.62.15480
https://doi.org/10.1103/PhysRevB.64.033101
https://doi.org/10.1103/PhysRevB.64.024411
https://doi.org/10.1103/PhysRevB.73.205121
https://doi.org/10.1103/PhysRevB.75.035106
https://doi.org/10.1103/PhysRevB.83.115111
https://doi.org/10.1038/s41586-019-1463-1
https://doi.org/10.1103/PhysRevB.99.224422
https://doi.org/10.1002/pssb.200404959
https://doi.org/10.1103/PhysRevB.78.064508


ANNABELLE BOHRDT et al. PHYSICAL REVIEW B 102, 035139 (2020)

[38] P. A. Lee, From high temperature superconductivity to quan-
tum spin liquid: Progress in strong correlation physics, Rep.
Prog. Phys. 71, 012501 (2008).

[39] K. M. Shen, F. Ronning, D. H. Lu, F. Baumberger, N. J. C.
Ingle, W. S. Lee, W. Meevasana, Y. Kohsaka, M. Azuma, M.
Takano, H. Takagi, and Z.-X. Shen, Nodal quasiparticles and
antinodal charge ordering in Ca2−xNaxCuO2Cl2, Science 307,
901 (2005).

[40] J. M. Luttinger, Fermi surface and some simple equilibrium
properties of a system of interacting fermions, Phys. Rev. 119,
1153 (1960).

[41] M. Oshikawa, Topological Approach to Luttinger’s Theorem
and the Fermi Surface of a Kondo Lattice, Phys. Rev. Lett. 84,
3370 (2000).

[42] D. Chowdhury and S. Sachdev, The enigma of the pseudogap
phase of the cuprate superconductors, Quantum Criticality
in Condensed Matter (World Scientific, Singapore, 2015),
pp. 1–43.

[43] S. Sachdev and D. Chowdhury, The novel metallic states of the
cuprates: Topological fermi liquids and strange metals, Prog.
Theor. Exp. Phys. 2016, 12C102 (2016).

[44] T. K. Lee and S. Feng, Doping dependence of antifer-
romagnetism in La2CuO4: A numerical study based on
a resonating-valence-bond state, Phys. Rev. B 38, 11809
(1988).

[45] B. Dalla Piazza, M. Mourigal, N. B. Christensen, G. J.
Nilsen, P. Tregenna-Piggott, T. G. Perring, M. Enderle, D. F.
McMorrow, D. A. Ivanov, and H. M. Ronnow, Fractional
excitations in the square-lattice quantum antiferromagnet, Nat.
Phys. 11, 62 (2015).

[46] A. Bohrdt, C. S. Chiu, G. Ji, M. Xu, D. Greif, M. Greiner, E.
Demler, F. Grusdt, and M. Knap, Classifying snapshots of the
doped hubbard model with machine learning, Nat. Phys. 15,
921 (2019).

[47] C. S. Chiu, G. Ji, A. Bohrdt, M. Xu, M. Knap, E. Demler, F.
Grusdt, M. Greiner, and D. Greif, String patterns in the doped
hubbard model, Science 365, 251 (2019).

[48] R. A. Hart, P. M. Duarte, T.-L. Yang, X. Liu, T. Paiva, E.
Khatami, R. T. Scalettar, N. Trivedi, D. A. Huse, and R. G.
Hulet, Observation of antiferromagnetic correlations in the
hubbard model with ultracold atoms, Nature (London) 519,
211 (2015).

[49] D. Greif, T. Uehlinger, G. Jotzu, L. Tarruell, and T. Esslinger,
Short-range quantum magnetism of ultracold fermions in an
optical lattice, Science 340, 1307 (2013).

[50] L. W. Cheuk, M. A. Nichols, K. R. Lawrence, M. Okan, H.
Zhang, E. Khatami, N. Trivedi, T. Paiva, M. Rigol, and M. W.
Zwierlein, Observation of spatial charge and spin correlations
in the 2d fermi-hubbard model, Science 353, 1260 (2016).

[51] M. Boll, T. A. Hilker, G. Salomon, A. Omran, J. Nespolo, L.
Pollet, I. Bloch, and C. Gross, Spin- and density-resolved mi-
croscopy of antiferromagnetic correlations in fermi-hubbard
chains, Science 353, 1257 (2016).

[52] A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanasz-
Nagy, R. Schmidt, F. Grusdt, E. Demler, D. Greif, and M.
Greiner, A cold-atom fermi-hubbard antiferromagnet, Nature
(London) 545, 462 (2017).

[53] I. Affleck and B. I. Halperin, On a renormalization group
approach to dimensional crossover, J. Phys. A: Math. Gen. 29,
2627 (1996).

[54] F. Kagawa, K. Miyagawa, and K. Kanoda, Unconventional
critical behavior in a quasi-two-dimensional organic conduc-
tor, Nature (London) 436, 534 (2005).

[55] C. Kollath, M. Köhl, and T. Giamarchi, Scanning tunneling
microscopy for ultracold atoms, Phys. Rev. A 76, 063602
(2007).

[56] J. T. Stewart, J. P. Gaebler, and D. S. Jin, Using photoemission
spectroscopy to probe a strongly interacting fermi gas, Nature
(London) 454, 744 (2008).

[57] D. Greif, L. Tarruell, T. Uehlinger, R. Jördens, and T.
Esslinger, Probing Nearest-Neighbor Correlations of Ultra-
cold Fermions in an Optical Lattice, Phys. Rev. Lett. 106,
145302 (2011).

[58] P. Torma, Physics of ultracold fermi gases revealed by spec-
troscopies, Phys. Scr. 91, 043006 (2016).

[59] A. Bohrdt, D. Greif, E. Demler, M. Knap, and F. Grusdt,
Angle-resolved photoemission spectroscopy with quantum gas
microscopes, Phys. Rev. B 97, 125117 (2018).

[60] P. T. Brown, E. Guardado-Sanchez, B. M. Spar, E. W. Huang,
T. P. Devereaux, and W. S. Bakr, Angle-resolved photoemis-
sion spectroscopy of a fermi-hubbard system, Nat. Phys. 16,
26 (2020).

[61] M. P. Zaletel, R. S. K. Mong, C. Karrasch, J. E. Moore, and
F. Pollmann, Time-evolving a matrix product state with long-
ranged interactions, Phys. Rev. B 91, 165112 (2015).

[62] S. Paeckel, T. Köhler, A. Swoboda, S. R. Manmana, U.
Schollwöck, and C. Hubig, Time-evolution methods for
matrix-product states, Ann. Phys. (NY) 411, 167998 (2019).

[63] J. A. Kjäll, M. P. Zaletel, R. S. K. Mong, J. H. Bardarson,
and F. Pollmann, Phase diagram of the anisotropic spin-2 XXZ
model: Infinite-system density matrix renormalization group
study, Phys. Rev. B 87, 235106 (2013).

[64] M. Gohlke, R. Verresen, R. Moessner, and F. Pollmann, Dy-
namics of the Kitaev-Heisenberg Model, Phys. Rev. Lett. 119,
157203 (2017).

[65] R. Verresen, F. Pollmann, and R. Moessner, Quantum dynam-
ics of the square-lattice heisenberg model, Phys. Rev. B 98,
155102 (2018).

[66] F. Grusdt, M. Kánasz-Nagy, A. Bohrdt, C. S. Chiu, G. Ji, M.
Greiner, D. Greif, and E. Demler, Parton Theory of Magnetic
Polarons: Mesonic Resonances and Signatures in Dynamics,
Phys. Rev. X 8, 011046 (2018).

[67] A. Auerbach, Interacting Electrons and Quantum Magnetism
(Springer, Berlin, 1998).

[68] Y. Nagaoka, Ferromagnetism in a narrow, almost half-filled s
band, Phys. Rev. 147, 392 (1966).

[69] S. White, Density-matrix algorithms for quantum renormaliza-
tion groups, Phys. Rev. B 48, 10345 (1993).

[70] D. N. Sheng, Y. C. Chen, and Z. Y. Weng, Phase String
Effect in a Doped Antiferromagnet, Phys. Rev. Lett. 77, 5102
(1996).

[71] L. N. Bulaevskii, E. L. Nagaev, and D. I. Khomskii, A new
type of auto-localized state of a conduction electron in an
antiferromagnetic semiconductor, J. Exp. Theor. Phys. 27, 836
(1968) [Zh. Eksp. Teor. Fiz. 54, 1562 (1968)].

[72] W. F. Brinkman and T. M. Rice, Single-particle excitations in
magnetic insulators, Phys. Rev. B 2, 1324 (1970).

[73] S. A. Trugman, Interaction of holes in a hubbard antiferromag-
net and high-temperature superconductivity, Phys. Rev. B 37,
1597 (1988).

035139-22

https://doi.org/10.1088/0034-4885/71/1/012501
https://doi.org/10.1126/science.1103627
https://doi.org/10.1103/PhysRev.119.1153
https://doi.org/10.1103/PhysRevLett.84.3370
https://doi.org/10.1093/ptep/ptw110
https://doi.org/10.1103/PhysRevB.38.11809
https://doi.org/10.1038/nphys3172
https://doi.org/10.1038/s41567-019-0565-x
https://doi.org/10.1126/science.aav3587
https://doi.org/10.1038/nature14223
https://doi.org/10.1126/science.1236362
https://doi.org/10.1126/science.aag3349
https://doi.org/10.1126/science.aag1635
https://doi.org/10.1038/nature22362
https://doi.org/10.1088/0305-4470/29/11/003
https://doi.org/10.1038/nature03806
https://doi.org/10.1103/PhysRevA.76.063602
https://doi.org/10.1038/nature07172
https://doi.org/10.1103/PhysRevLett.106.145302
https://doi.org/10.1088/0031-8949/91/4/043006
https://doi.org/10.1103/PhysRevB.97.125117
https://doi.org/10.1038/s41567-019-0696-0
https://doi.org/10.1103/PhysRevB.91.165112
https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1103/PhysRevB.87.235106
https://doi.org/10.1103/PhysRevLett.119.157203
https://doi.org/10.1103/PhysRevB.98.155102
https://doi.org/10.1103/PhysRevX.8.011046
https://doi.org/10.1103/PhysRev.147.392
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/PhysRevLett.77.5102
https://doi.org/10.1103/PhysRevB.2.1324
https://doi.org/10.1103/PhysRevB.37.1597


PARTON THEORY OF ANGLE-RESOLVED PHOTOEMISSION … PHYSICAL REVIEW B 102, 035139 (2020)

[74] B. I. Shraiman and E. D. Siggia, Two-Particle Excitations in
Antiferromagnetic Insulators, Phys. Rev. Lett. 60, 740 (1988).

[75] O. A. Starykh and G. F. Reiter, Hole motion in the ising an-
tiferromagnet: An application of the recursion method, Phys.
Rev. B 53, 2517 (1996).

[76] D. Golez, J. Bonca, M. Mierzejewski, and L. Vidmar, Mecha-
nism of ultrafast relaxation of a photo-carrier in antiferromag-
netic spin background, Phys. Rev. B 89, 165118 (2014).

[77] K. Bieniasz, P. Wrzosek, A. M. Oles, and K. Wohlfeld, From
”weak” to ”strong” hole confinement in a mott insulator,
SciPost Phys. 7, 066 (2019).

[78] P. Beran, D. Poilblanc, and R. B. Laughlin, Evidence for
composite nature of quasiparticles in the 2d t-J model, Nucl.
Phys. B 473, 707 (1996).

[79] R. B. Laughlin, Evidence for Quasiparticle Decay in Photoe-
mission from Underdoped Cuprates, Phys. Rev. Lett. 79, 1726
(1997).

[80] T. Senthil, S. Sachdev, and M. Vojta, Fractionalized Fermi
Liquids, Phys. Rev. Lett. 90, 216403 (2003).

[81] M. Punk, A. Allais, and S. Sachdev, Quantum dimer model for
the pseudogap metal, Proc. Natl. Acad. Sci. U. S. A. 112, 9552
(2015).

[82] P. W. Anderson, The resonating valence bond state in La2CuO4

and superconductivity, Science 235, 1196 (1987).
[83] F. Grusdt, Z. Zhu, T. Shi, and E. Demler, Meson formation in

mixed-dimensional t-J models, SciPost Phys. 5, 057 (2018).
[84] G. Baskaran, Z. Zou, and P. W. Anderson, The resonating

valence bond state and high-tc superconductivity - A mean
field theory, Solid State Commun. 63, 973 (1987).

[85] X.-Y. Song, C. Wang, A. Vishwanath, and Y.-C. He, Unifying
description of competing orders in two-dimensional quantum
magnets, Nat. Commun. 10, 4254 (2019).

[86] T. Giamarchi and C. Lhuillier, Dispersion relation of a single
hole in the t-J model determined by a variational monte carlo
method, Phys. Rev. B 47, 2775 (1993).

[87] X.-G. Wen and P. A. Lee, Theory of Underdoped Cuprates,
Phys. Rev. Lett. 76, 503 (1996).

[88] N. Read and D. M. Newns, A new functional integral formal-
ism for the degenerate anderson model, J. Phys. C: Solid State
Phys. 16, 1055 (1983).

[89] P. Coleman, New approach to the mixed-valence problem,
Phys. Rev. B 29, 3035 (1984).

[90] P. Coleman, Mixed valence as an almost broken symmetry,
Phys. Rev. B 35, 5072 (1987).

[91] G. Kotliar and J. Liu, Superexchange mechanism and d-wave
superconductivity, Phys. Rev. B 38, 5142 (1988).

[92] D. Yoshioka, Slave-fermion mean field theory of the hubbard
model, J. Phys. Soc. Jpn. 58, 1516 (1989).

[93] A. Bohrdt, F. Grusdt, and M. Knap, Dynamical formation of
a magnetic polaron in a two-dimensional quantum antiferro-
magnet, arXiv:1907.08214.

[94] C. Hubig, A. Bohrdt, M. Knap, F. Grusdt, and J. Ignacio Cirac,
Evaluation of time-dependent correlators after a local quench
in ipeps: hole motion in the t-J model, SciPost Phys. 8, 021
(2020).

[95] F. Ferrari and F. Becca, Spectral signatures of fractionalization
in the frustrated heisenberg model on the square lattice, Phys.
Rev. B 98, 100405 (2018).

[96] Z. Y. Weng, D. N. Sheng, Y.-C. Chen, and C. S. Ting, Phase
string effect in the t-J model: General theory, Phys. Rev. B 55,
3894 (1997).

[97] H. V. Kruis, I. P. McCulloch, Z. Nussinov, and J. Zaanen,
Geometry and the hidden order of luttinger liquids: The
universality of squeezed space, Phys. Rev. B 70, 075109
(2004).

[98] Y. Wang, K. Wohlfeld, B. Moritz, C. J. Jia, M. van Veenendaal,
K. Wu, C.-C. Chen, and T. P. Devereaux, Origin of strong
dispersion in hubbard insulators, Phys. Rev. B 92, 075119
(2015).

[99] While the staggered magnetic field Bst improves the ground-
state energy for the half-filled Heisenberg AFM, it has
been shown in [45] to cause an unphysical gap in the
dynamical spin structure factor at momentum (π, π ). The
dynamical spin structure factor is a response involving a
pair of two constituting spinons, which requires the inclu-
sion of their mutual interactions. In this work we consider
the one-spinon sector, where spinon-spinon interactions play
no role. In our case, the staggered field does not lead to
inconsistencies.

[100] A. L. Chernyshev and P. W. Leung, Holes in the t −
Jz model: A diagrammatic study, Phys. Rev. B 60, 1592
(1999).

[101] C. Gros, Physics of projected wave functions, Ann. Phys. (NY)
189, 53 (1989).

[102] The chargon and spinon dispersions are only defined up to
an overall gauge choice shifting their momenta in opposite
directions.

[103] X.-G. Wen, Quantum Field Theory of Many-body Systems
(Oxford University Press, Oxford, 2004).

[104] L. Savary and L. Balents, Quantum spin liquids: A review,
Rep. Prog. Phys. 80, 016502 (2017).

[105] J. Knolle and R. Moessner, A field guide to spin liquids, Annu.
Rev. Condens. Matter Phys. 10, 451 (2019).

[106] A. Läuchli, and D. Poilblanc, Spin-Charge Separation in Two-
Dimensional Frustrated Quantum Magnets, Phys. Rev. Lett.
92, 236404 (2004).

[107] C. Lavalle, M. Arikawa, S. Capponi, F. F. Assaad, and
A. Muramatsu, Antiholons in One-Dimensional t-J Models,
Phys. Rev. Lett. 90, 216401 (2003).

[108] S. Depenbrock, I. P. McCulloch, and U. Schollwöck, Nature
of the Spin-Liquid Ground State of the s = 1/2 Heisenberg
Model on the Kagome Lattice, Phys. Rev. Lett. 109, 067201
(2012).

[109] S. Hu, W. Zhu, S. Eggert, and Y.-C. He, Dirac Spin Liquid on
the Spin-1/2 Triangular Heisenberg Antiferromagnet, Phys.
Rev. Lett. 123, 207203 (2019).

[110] A. V. Gorshkov, S. R. Manmana, G. Chen, J. Ye, E. Demler,
M. D. Lukin, and A. M. Rey, Tunable Superfluidity and
Quantum Magnetism with Ultracold Polar Molecules, Phys.
Rev. Lett. 107, 115301 (2011).

[111] Z. Zhu and Z.-Y. Weng, Quasiparticle collapsing in
an anisotropic t − J ladder, Phys. Rev. B 92, 235156
(2015).

[112] Z. Zhu, D. N. Sheng, and Z.-Y. Weng, Intrinsic translational
symmetry breaking in a doped mott insulator, Phys. Rev. B
98, 035129 (2018).

035139-23

https://doi.org/10.1103/PhysRevLett.60.740
https://doi.org/10.1103/PhysRevB.53.2517
https://doi.org/10.1103/PhysRevB.89.165118
https://doi.org/10.21468/SciPostPhys.7.5.066
https://doi.org/10.1016/0550-3213(96)00196-4
https://doi.org/10.1103/PhysRevLett.79.1726
https://doi.org/10.1103/PhysRevLett.90.216403
https://doi.org/10.1073/pnas.1512206112
https://doi.org/10.1126/science.235.4793.1196
https://doi.org/10.21468/SciPostPhys.5.6.057
https://doi.org/10.1016/0038-1098(87)90642-9
https://doi.org/10.1038/s41467-019-11727-3
https://doi.org/10.1103/PhysRevB.47.2775
https://doi.org/10.1103/PhysRevLett.76.503
https://doi.org/10.1088/0022-3719/16/29/007
https://doi.org/10.1103/PhysRevB.29.3035
https://doi.org/10.1103/PhysRevB.35.5072
https://doi.org/10.1103/PhysRevB.38.5142
https://doi.org/10.1143/JPSJ.58.1516
http://arxiv.org/abs/arXiv:1907.08214
https://doi.org/10.21468/SciPostPhys.8.2.021
https://doi.org/10.1103/PhysRevB.98.100405
https://doi.org/10.1103/PhysRevB.55.3894
https://doi.org/10.1103/PhysRevB.70.075109
https://doi.org/10.1103/PhysRevB.92.075119
https://doi.org/10.1103/PhysRevB.60.1592
https://doi.org/10.1016/0003-4916(89)90077-8
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1146/annurev-conmatphys-031218-013401
https://doi.org/10.1103/PhysRevLett.92.236404
https://doi.org/10.1103/PhysRevLett.90.216401
https://doi.org/10.1103/PhysRevLett.109.067201
https://doi.org/10.1103/PhysRevLett.123.207203
https://doi.org/10.1103/PhysRevLett.107.115301
https://doi.org/10.1103/PhysRevB.92.235156
https://doi.org/10.1103/PhysRevB.98.035129

