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Enhanced higher harmonic generation from nodal topology

Ching Hua Lee ,2,* Han Hoe Yap,2,3 Tommy Tai ,4 Gang Xu,5 Xiao Zhang,1,† and Jiangbin Gong2,‡

1School of Physics, Sun Yat-sen University, Guangzhou 510275, China
2Department of Physics, National University of Singapore, Singapore, 117542

3NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Republic of Singapore
4Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, Cambridge, United Kingdom

5Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China

(Received 16 September 2019; accepted 6 July 2020; published 21 July 2020)

Among topological materials, nodal loop semimetals are arguably the most topologically sophisticated, with
their valence and conduction bands intersecting along arbitrarily intertwined nodes. But unlike the well-known
topological band insulators with quantized edge conductivities, nodal loop materials possess topologically
nontrivial Fermi surfaces, not bands. Hence an important question arises: Are there also directly measurable
or even technologically useful physical properties characterizing nontrivial nodal loop topology? In this paper,
we provide an affirmative answer by showing that nodal linkages protect the higher harmonic generation (HHG)
of electromagnetic signals. Specifically, nodal linkages enforce nonmonotonicity in the intraband semiclassical
response of nodal materials, which will be robust against perturbations preserving the nodal topology. These
nonlinearities distort incident radiation and produce higher frequency peaks in the teraHertz (THz) regime, as
we quantitatively demonstrate for a few known nodal materials. Since THz sources are not yet ubiquitous, our
new mechanism for HHG will greatly aid applications like material characterization and nonionizing imaging of
object interiors.
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About a decade ago, topological materials were born when
signatures of quantum spin Hall states were detected in HgTe
quantum wells [1]. Since then, intensive search has returned
various alternative topological material candidates [2,3] with
promise in applications like dissipationless wire interconnects
[4–7]. More recently, the scope of topological materials has
expanded to also include gapless 3D nodal systems like Weyl
and nodal line semimetals, where the Fermi surface itself is
topologically nontrivial [8–12]. In particular, nodal lines have
been experimentally observed in PbTaSe2 [13], BiTeI [14],
ZrSiTe, ZrSiSe [15], the centrosymmetric superconductor
SnTaS2 [16], and, in the form of nodal chains, TiB2 [17].

Compared to conventional topological insulators which fall
into Z2 or Z topological classes [18,19], nodal loop semimet-
als (NLSMs) possess far richer topology, with their nodal
loops knotted or linked in unlimited topologically distinct
ways [20–22]. A NLSM consists of valence and conduction
bands intersecting along so-called nodal lines in 3D momen-
tum space. When these band intersections occur at approxi-
mately constant energy, a small chemical potential will result
in Fermi regions in the shape thin “tubes” along the nodal
lines, even if a small gap prevents perfect band degeneracy.
Depending on the crystal symmetry, these Fermi tubes can
close to form nodal loops (NLs) that touch to form nodal
chains, or link/entangle among themselves to form nodal
links/knots (Fig. 4), as proposed in ABC-stacked graphdiyne
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[12] and Co2MnGa [23]. Even with only one NL, the possible
topologies are already uncountably infinite: The loop can
cross itself from above or below any number of times, with
each permutation leading to a multitude of other knotted con-
figurations. With three or more loops, the nodal structure can
even be nontrivially linked despite having no pairwise linkage,
as in a Borromean-ring configuration characterized by the
Milnor topological invariant [24–26]. Such is the richness
of nodal topologies that no single topological invariant can
unambiguously distinguish between all topologically distinct
configurations.

While quantized Hall conductivity is the hallmark of non-
trivial band topology in topological insulators, it is so far
unclear what distinct experimental signature corresponds to
nontrivial NL topology [27]. The existence of a NL and its sur-
face states is known to give rise to weak antilocalization [28]
and spin-resolved transport [29] signatures, respectively, but
these properties cannot resolve the topology of nodal linkages.
Progress has been made through Berry phase interference
measurements around nodal structures, which yield homotopy
data that can be used to map out the nodal topology [30,31].
However, such experiments involve intricately specified paths
whose very design require a priori knowledge of the nodal
structure. Furthermore, they are impractical except in nodal
cold-atom systems, for which probing techniques like Bloch
state tomography and center-of-mass response measurements
are applicable and mature [30]. For characterizing actual
NLSM materials, the only experimental recourse so far had
been ARPES measurements [13,23], although they are ar-
guably indirect approaches involving extensive data recon-
struction. Only with a more definitive experimental signature
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can the mathematical appeal of nodal topology be elevated to
phenomenological significance.

In this paper, we show that this sought-after topological
signature can be found in the enhancement of higher harmonic
generation (HHG) in NLSMs. Although HHG is a generic
feature of nonlinear response and has been reported in various
3D materials [32–34] including nodal materials like Cd3As2

and TaAs [35–37], it has not been discussed how this HHG
can be enhanced by nontrivial nodal topology. Specifically,
we demonstrate that NL linkages impose lower bounds on
the nonlinearity of their intraband optical response, hence
ensuring robust HHG as long as the nodal topology remains
undisturbed. While nodal points and lines are already known
to exhibit interesting HHG and magneto-optical responses due
to their peculiar density of states [38,39], no existing works
have shown how these properties can possibly be protected
or at least enhanced by topology. Indeed, existing studies
have typically been perturbative, unable to access the non-
perturbative regime where the incident field impulse is large
enough to probe the nodal linkage. Through a semiclassical
Boltzmann approach, we shall explore the effects of arbitrarily
strong fields and demonstrate generic significant enhance-
ment of HHG by nodal topology. For a few experimentally
relevant (slightly gapped) NLSMs, namely, Ti3Al, YH3, and
Co2MnGa, we shall also provide quantitative estimates of this
enhancement contribution in the THz regime, which is sought
after in technological applications like nonionizing imaging
and materials characterization [40,41].

I. NONLINEAR SEMICLASSICAL RESPONSE

We first describe the semiclassical Boltzmann approach,
from which the response curves of a 3D electronic material
can be determined from the shape of its Fermi region. Sim-
ilar semiclassical approaches have been highly successful in
explaining phenomena such as Hall effects and quantum os-
cillations in diverse settings [42], as well as Bloch oscillations
and Berry curvature effects in the context of HHG [43–45].
Subject to an external E field, the response current is given by
[46]

J =
∑

n

∫
d3k g(εn(k))〈n, k|J|n, k〉, (1)

where g(εn(k)) is the nonequilibrium occupation function that
depends explicitly on the energy dispersion εn(k) of the nth
occupied band, and implicitly on E through g. The semiclas-
sical assumption is that the collective effect of a multitude of
possible many-body processes can be simply encapsulated by
the behavior of g(ε(k)) and 〈k|J|k〉, which holds as long as the
electrons are well-described by a Fermi liquid [47]. Under the
constant relaxation time approximation (RTA), the electronic
occupation function g satisfies the Boltzmann’s equation,

dg

dt
= ∂g

∂t
+ k̇ · ∂g

∂k
= f − g

τ
, (2)

such that it “relaxes” to the local equilibrium (Fermi-Dirac)
distribution f = F (ε(k)) = (1 + eβε(k) )−1 at a rate inversely
proportional to the relaxation time τ , which can be computed
from a microscopic model for the scattering processes [48].
Physically, d

dt = ∂
∂t + k̇ · ∂

∂k is the phase-space convective

derivative, which when acted on g gives the correction ( f −
g)/τ to the continuity equation due to scattering. We have
omitted spatial dependencies ∂g

∂r since we are not considering
thermal or chemical gradients.

The effect of an external field E enters the semiclassical
equations of motion (EOMs) for electronic wave packets,
which take a manifestly symmetric form when expressed in
units where electronic mass, charge, and h̄ are all set to unity:

ṙ = v + k̇ × �, (3a)

k̇ = E + ṙ × B. (3b)

Here, (r, k) are the center-of-mass phase space coordinates
of an electron wave packet. In this work, we shall not consider
the effects of a magnetic field, and set B = 0. The wave-packet
group velocity v = ∇kε(k) and Berry curvature � = �(k) it
feels are both explicit functions of the wave-packet momen-
tum k. Due to translation invariance implied by Eq. (2), g is
only affected by the Lorentz force k̇, and not ṙ.

To derive the explicit response dependence on the nodal
structure, we shall focus on the ballistic regime where τ

dominates all other timescales, such that closed form solutions
exist for g and hence the response current J. In particular, this
requires that �τ � 1, where E(t ) ∼ E(0)ei�t , a reasonable
constraint in the THz regime (� ∼ 20 − 100 THz) where �τ

can be estimated to lie between 10 to 50 for known nodal
materials [45]. In this ballistic regime, scattering processes
cannot catch up with the much shorter oscillation timescales
[44,49], and we do not expect g to be close to the local
equilibrium f at all; instead, g obeys the very intuitively
attractive solution

g(k, t ) = F

(
ε

(
k −

∫ t

−∞
E(t ′)dt ′

))
= F (ε(k − A(t ))),

(4)
which can be easily verified viz. Eq. 3(b), which gives dg

dt =
dF
dε

v · (k̇ − E(t )) = 0. Equation (4) elegantly expresses the
nonequilibrium electronic distribution function g as the usual
Fermi-Dirac distribution with momentum shifted (minimally
coupled) by an arbitrarily large impulse [50]: k → k − A(t ),
where A(t ) = ∫ t

−∞ E(t ′)dt ′. With this, and assuming that only
one occupied band exists from now on, the current is simply
given by

J[A(t )] =
∫

d3k g(k, t ) ṙ

=
∫

d3k F (ε(k − A(t )))[v − � × E(t )]

= n[e〈v〉E + E(t ) × 〈�〉E], (5)

where n = ∫
g(k, t )d3k is the electronic density and 〈v〉E =∫

g(k, t ) v d3k/n, 〈�〉E = ∫
g(k, t ) � d3k/n are the inte-

grated electron velocity and Berry curvature over the Fermi
region, i.e., region in the Brillouin zone (BZ) where g(k, t )
is nonzero (The factor of e2

h̄ in front of the second term has
been set to one in our choice of units.). For small chemical
potentials such that the occupied states remain close to the
NLs, the Fermi region takes the shape of the nodal tubes, but
is shifted by an electromagnetic impulse

∫ t E(t ′)dt ′ [Eq. (4)].
Equation (5) is the main result from our semiclassical

approach and forms the starting point of our analysis [51].
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FIG. 1. Unprotected nonlinear response of a topologically trivial single NL. (a) Illustrative energy dispersion in the kz = 0 slice defined
by Eq. (6) with μ = 0.03, r = 2.6, and T = 10K. (b) Resultant current response from both contributions, which is monotonic despite being
nonlinear. The Berry curvature contribution is typically subdominant for illustrative parameters drawn from realistic nodal ring materials.
(c) Elaboration of the 〈vx〉E contribution, in arbitrary units, to the longitudinal response from interferences in velocity vector field. The partial
cancellation of v = ∇kε(k) at electromagnetic vector potential Ax ∼ Ex/� comparable to the NL radius (center) suppresses the increase of
Jx (Ax ), but not sufficiently strong to create a response kink (red curve). (d) Transverse 〈�y〉E contribution to the response from interferences in
Berry flux field, shown for r = 2.9. Since the Berry curvature is strongly concentrated around the NL, the response peaks only when the Fermi
tube overlaps considerably with the NL. The smaller peak at Ax ≈ 0.1 is, however, partially suppressed by opposite contributions from both
sides of the NL.

It expresses the response current in terms of 〈v〉E and 〈�〉E,
which themselves depend on E in a manner prescribed by the
shape of the Fermi region. Note that both 〈v〉E and 〈�〉E can
both contain longitudinal and Hall components, and depend
strongly on the relative signs of v and � contributions within
the nodal tube. Although we have derived Eq. (5) for only the
intraband contributions in the ballistic regime, our following
main results, which are ultimately concerned with topological
properties, should still remain valid in the presence of weak
scattering.

II. NONLINEAR RESPONSE ENHANCED BY
NONTRIVIAL NODAL TOPOLOGY

To illustrate how topological nodal linkages enforce non-
linearity in the current response, we first review the origin of
unprotected nonlinear response in a single NL without any
linkage, and next demonstrate how this nonlinearity can be
protected when a nodal linkage (Hopf link) is introduced.

A. Single nodal loop without topological linkage

As with other nodal systems like graphene and Weyl
semimetals [38,52,53], a single NL exhibits unconventional
[54] (though nontopological) nonlinear response behavior.
With its non-topological origins, the actual extent of nonlin-
earity differs greatly among NLs with different dispersion and
occupancy details. Consider a minimal NL Hamiltonian,

HNL(k)=(
cos kx + cos ky + cos kz − r

)
σx + sin kzσy + Mσz,

(6)
where σx, σy are the Pauli matrices, 1 < r < 3 and M is an
extremely small gap introduced so the Berry curvature is well-

defined. To emphasize the generality of our follow arguments,
we shall not fix the physical parameters till we discuss the
material candidates later. That HNL(k) describes a NL can be
seen from its energy dispersion,

εNL(k) = ±
√

M2 + sin2 kz + (
cos kx + cos ky + cos kz − r

)2
,

(7)
which is minimally gapped along the cos kx + cos ky = r − 1
loop in the kz = 0 plane. At small chemical potential μ >

M and temperature β−1, the occupied states are approxi-
mately contained in a tube of radius μ − M around this NL
[Fig. 1(a)].

In the presence of an oscillatory electric field E(t ) =
E (t )x̂, Eq. (4) dictates that the Fermi tube of occupied states
is translated in the field direction according to the momentum
shift k → k − A(t ). Due to this shift, the expectation values
〈v〉E and 〈�〉E over the Fermi tube differs from their equilib-
rium values at E = 0, where 〈v〉E=0 always vanishes.

As given by Eq. (5), the nonlinear current response arises
from both the 〈v〉E and E × 〈�〉E contributions. Manifestly
from Fig. 1(c), the velocity field v = ∇pε(p) points radially
outward outside the NL, and radially inward inside the NL,
i.e., is always pointing toward higher energies. The Berry
curvature 〈�〉E, on the other hand, circulates clockwise, and
is concentrated along the circumference of the NL as given by

�NL(k) = M cos kz

2|εNL(k)|3

⎡
⎣ sin ky

− sin kx

0

⎤
⎦. (8)

As the applied field increases, the response behavior
transits between a few distinct regimes, as illustrated in
Figs. 1(c) and 1(d). In the linear regime of small A shifts, both
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FIG. 2. Response nonlinearity enhanced and protected by topological linkage. (a) Nodal structure of an illustrative Hopf linkage between
two NLs oriented perpendicular to êx and êz, as defined by Eq. (9) with μ = 0.1, r = 2.6, and T = 10 K. (b) Resultant current, which is highly
nonlinear due to the topological linkage. (c) Elaboration of the 〈vy〉E contribution to the longitudinal response, which exhibits much stronger
nonlinearity (with large kink) than that of the single NL of Fig. 1. The cancellation of its v = ∇kε(k) at intermediate values of Ax (center) is
reinforced by the singularity in v created by the other linked NL (small blue circular cross section). (d) 〈�x〉E contribution to the transverse
response, which is greatly enhanced when the other linked NL passes through the region of concentrated Berry flux without experiencing
destructive interference.

〈v〉E and 〈�〉E pick up slight imbalances from their respective
v and � contributions, and thus rapidly increase. In particular,
〈�〉E peaks when the clockwise/anticlockwise vectors from
� dominate. Generically, the response has to be nonlinear
due to the “destructive interference” of current contributions:
When A is comparable to the NL radius, the Fermi tube
straddles the interior and exterior of the NL and receives
simultaneously opposing contributions to both v and �. Due
to the more sharply concentrated Berry flux, the 〈�〉E con-
tribution contains more pronounced nonlinearities. Yet, for
parameters typical of nodal materials as described later, the
〈v〉E contribution dominates, resulting in a fairly nonlinear
overall current response [Fig. 1(b)].

It has to be emphasized, however, that the above-mentioned
response nonlinearity is not necessarily robust. In particular,
destructive interference in the dominant 〈v〉E contribution is
subject to details of the curvature in the dispersion, which
should not be dependent on the nodal structure. In fact, very
different response curves can result from different realizations
of the same NL, as shown in the Appendixes [45]. As evident
in Fig. 1, the response is indeed still monotonic without a
proper kink due to the “roundness” of the dispersion at the
center of the NL.

B. Nodal loops with topological linkage

To ensure pronounced nonlinearity in the current response
J[A(t )], significant destructive interference of 〈v〉E must be
guaranteed at certain values of the applied field A. We shall
see that this is assured if the NL is linked by another NL, such
that an unremovable singularity passes through it. Consider

a simplest nodal Hopf link Hamiltonian [55] possessing two
interlinked NLs (Fig. 2),

HHopf(k) = Re[ f (v,w)]σx + Im [ f (v,w)]σy + Mσz, (9)

where M is a small gap and f (v,w) = (v − w)(v +
w) with v = sin(kz − kx ) + i(2 cos kx cos kz + cos ky − r) and
w = sin(kx + kz ) + i sin ky. 1 < r < 3 controls the shape and
size of each loop as in the NL model, as well as their relative
separation. As shown in Fig. 2(a), it consists of two linked
NLs normal to x̂ and ẑ, with dispersion explicitly given by

εHopf(k) = ±
√

M2 + χ2 + 4(e1e2 − e3e4)2, (10)

where substitutions χ ≡ e2
1 − e2

2 − e2
3 + e2

4, e1 ≡ sin(kz − kx ),
e2 ≡ (cos(kx + kz ) + cos ky + cos(kz − kx ) − r), e3 ≡
sin(kx + kz ), and e4 ≡ sin ky have been defined for notational
brevity. As plotted in Fig. 2(b), it gives rise to a v = ∇kε(k)
field with sources or sinks within the NLs. These singularities
are the cross sections of the other topologically linked NLs,
which is analytically given by simultaneous solutions to
e2

1 + e2
4 = e2

2 + e2
3 and e1e2 = e3e4.

We next show that singularities of the v vector field can
indeed ensure significant nonlinearity in the current response
J(A) by studying the differential response of a thin NL
(derived in the Appendixes):

dJi

dAj
≈ 2

∑
α∈NLs

μ

ê j · vF

d2ε(kα + A)

dkidk j
. (11)

In the above, kα labels the trajectories of all the NLs in the BZ,
and ê j · vF is the component of the Fermi velocity of the αth
NL at momentum kα along the applied field. In particular, the
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longitudinal differential response is proportional to the sum
of the curvature of the dispersion along the A-displaced NLs.
When the curvatures conspire to form a highly fluctuating
sum, the current response contains large fluctuating gradients,
and becomes significantly nonlinear.

For concreteness, we analyze Eq. (11) with the sim-
plest possible in-plane dispersion hosting a nodal linkage:
ε0

link(kx, ky) = |
√

k2
x + k2

y − r|, which describes a circular NL
of energy ε = 0 and radius r in the kx-ky plane, which is
perpendicularly linked by another NL of energy ε = r at k =
0. To regularize the infinite dispersion curvature at its nodes,
we introduce small gaps [56] m0, mr at the perpendicular and
in-plane rings at |k| = 0 and r, such that the dispersion is
modified to

εlink(kx, ky) =
√

m2
r +

(√
k2

x + k2
y + m2

0 −
√

r2 + m2
0

)2

. (12)

Its second derivative d2εlink
d2k j

, j = x, y, almost vanishes except at

the nodes, where it diverges like ∼ − m−1
0 at the nodal linkage

through the origin, and like ∼m−1
r k2

j r
−2 on the k2

x + k2
y = r2

nodal ring. These divergences are exactly the large curvature
fluctuations necessary for a greatly fluctuating differential
longitudinal response dJj

dAj
[Eq. (11)]. When a (regularized)

nodal linkage is present, small gaps m0, mr and thus large
curvature fluctuations leading to response nonlinearity are
inevitable.

We next analyze the response kinks corresponding to these
curvature fluctuations. At very small A j where the Fermi

tube is almost aligned with the NL, d2εlink(kα+A j )
d2k j

picks up

large positive contributions ∼m−1
r k2

j r
−2, giving rise to a large

differential response. But at A j ≈ r, d2εlink(kα+A j )
d2k j

picks up a

large negative contribution m−1
0 as it cuts the origin, and

hence produces a negative differential response. In fact, the
differential response of this model has to exhibit a reversal
due to the opposite signs of dominant curvature contributions,
thereby leading to a very nonmonotonic and hence highly
nonlinear current response containing kink/s, as shown in
Fig. 2(c). A qualitatively similar cancellation of oppositely
signed contributions also occurs for the Berry curvature [Fig.
2(d)]. In generic topologically linked NL systems, the link-
ages still enforce similar oppositely signed dispersion cur-
vature contributions, and it is in this sense that their 〈v〉E
response nonlinearity is protected. Strong nonlinearities also
analogously dominate the 〈�〉E contribution to the response,
but they typically play a subdominant role.

III. HIGHER HARMONIC GENERATION FROM
NONLINEAR RESPONSE

Consider a sinusoidal time-varying applied electric field
signal E(t ) = E0 cos �t , which corresponds to the vector po-
tential A(t ) = A sin �t , where A = E0

�
= p0a

h̄ , p0 the impulse
amplitude vector and a the lattice spacing of the nodal ma-
terial lattice. We have temporarily reintroduced the physical
units in preparation for later experimental discussion. The
greater the nonlinearity of the current response function J(A),
the larger the extent of HHG. The extent of signal distortion

FIG. 3. (a), (c) Response curves of the single NL and Hopf nodal
systems of Figs. 1 and 2, respectively, with (b), (d) demonstrating
how they distort sinusoidal signals of different amplitudes A (as
indicated by corresponding colored regions in the response curves).
Due to the nonmonotonic response in the topologically linked Hopf
system (c), signal oscillations traversing the kink acquire additional
fluctuations of higher frequency (d). The superior HHG by the
Hopf system is evident from its larger Fourier coefficient ratios cn

[Eq. (13)] in (e).

between chosen direction components i and j can be quan-
tified via Fourier coefficient ratios cn describing the higher
harmonics:

Jj (Ai(t )) = Jj (A sin �t )

∝ sin �t +
∑
n �=0

cn sin n�t . (13)

In Figs. 3(c) and 3(d), we see that the pronounced nonmono-
tonicity of the 〈v〉E part of the Hopf current response leads
to the creation of new higher frequency peaks. While higher
harmonics are also present in the the single NL response
[Figs. 3(a) and 3(b)], they are manifestly smaller, correspond-
ing only to gentle corrections to sinusoidal current output.
As summarized in Fig. 3(e), the Hopf linkage indeed possess
much larger cn for most amplitudes, especially when the
amplitude corresponds to the response kink where c3 and c5

are close to unity. In more generic NL configurations, i.e., a
Borromean ring with topological linkages in multiple planes,
the response function in the direction parallel to each plane
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(a) (b) (c) (d) (e)

FIG. 4. Occupied states (Fermi seas) of (a) Ti3Al, (b) YH3, and (c) Co2MnGa. (d) The current response of Ti3Al (green), YH3 (orange),
and Co2MnGa (blue) at 10 K with chemical potentials μ = 0.15 eV, 0.002 eV, and 0.130 eV, respectively. The left and right vertical axes
denote the numerical current in YH3/Co2MnGa and Ti3Al, arising from electromagnetic impulses E/�. (e) The higher harmonic ratios cn as
a function of the driving impulse amplitude p0, with Co2MnGa exhibiting by far the strongest HHG due to its multiple nodal linkages. For
clarity, the HHG ratios are also individually plotted out in the Appendixes.

will necessarily all exhibit large nonlinearity and hence strong
HHG.

IV. HHG IN NODAL MATERIAL CANDIDATES

We now present quantitative calculations of the HHG
induced by the nodal topology of three different known nodal
materials, arranged in order of increasing topological sophis-
tication. We shall be exclusively concerned with the 〈v〉E
response, since the Berry curvature contribution is typically
smaller and depends nonuniversally on the internal structure
of the eigenbands.

A. 1. Ti3Al—single nodal ring

One first nodal material is Ti3Al, which contains a single
almost “ideal” NL whose band crossing is almost dispersion-
less and very close to the Fermi level [57]. These properties
yield a well-defined nodal ring with almost uniform thickness
[Fig. 4(a)], qualitatively approximating our toy model from
Eq. (7). While its nodal structure has yet to be experimentally
verified, high-quality samples of Ti3Al already exist in both
alloy and nanoparticle form [58–60].

To compute its 〈v〉E current response, we employ its Den-
sity Functional Theory (DFT)-fitted energy dispersion from
Ref. [57], as described in the Appendixes [45]. Like the
single NL toy model, Ti3Al exhibits some nonlinearity in its
current response, although hardly large enough to exhibit non-
monotonicity [green curve in Fig. 4(d)]. Correspondingly, its
HHG ability is limited, with even the lowest n = 3 harmonic
generation ratio c3 being below 30% [Fig. 4(e)].

B. 2. YH3—three touching nodal rings

Next up in sophistication is the material YH3, which is
proposed to contain three orthogonal NLs that surround the

 point [61]. These NLs are protected by nonsymmorphic
symmetry present in itsP3̄c1 form, which is likely to be its
most stable crystal structure as seen from neutron-diffraction
experiments [62,63].

While its three NLs are isolated from other bands, they
intersect instead of linking each other [Fig. 4(b)]. To explore
whether the absence of linkages penalize HHG, we first con-
struct its tight-binding model according to a DFT-fitted ansatz

detailed in the Appendixes [45]. As evident in Figs. 4(d) and
4(e), the resultant 〈v〉E response nonlinearity and hence HHG
for the three touching NLs of YH3 is even weaker than that of
the single NL Ti3Al, even before spin-orbit coupling effects
gap out NLs into elogated Fermi tubes. The reason for the
poor HHG is that, in this case, the multiple NLs “smooth”
out the energy dispersion around the nodal touchings, thereby
reducing the total potential for destructive interference of
velocity velocities.

C. 3. Co2MnGa—intertwined nodal flower petals, rings, etc.

We now turn to our third and most topologically sophis-
ticated material, the magnetic Heusler compound Co2MnGa
which was theoretically predicted in 2017 [64] and soon
realized experimentally by various groups [23,65,66]. In
Ref. [23], the intricate nodal structure of Co2MnGa was
revealed to contain Hopf links, inner and outer chains at the
Fermi energy, as shown in Figs. 4(c) and 5. While Co2MnGa
contains even more nodal components than YH3, the crucial
difference is that many of its components are topologically
linked and not just touching each other.

As illustrated in Fig. 6, Co2MnGa contains six linked
NLs (red) which are shaped like flower petals [Fig. 6(a)].
They touch smaller, circular NLs (blue), dubbed outer chains,
as shown in Fig. 6(b). These blue loops are, in turn, in
contact with four smaller, also circular NLs (green), as in
Fig. 6(c), forming another set of outer chains. Finally, the
green rings touch the red flower petals, constituting an inner
chain [Fig. 6(d)]. All these features of Co2MnGa contribute
to a strongly nonlinear response curve with large HHG coeffi-
cients, as presented in Figs. 4(d) and 4(e). These results were
computed from a tight-binding model fitted to first-principles
calculation results [64].

The characteristically kink response curve of Co2MnGa
gives rise to much larger n = 3 and 5 harmonics than from
YH3 and Ti3Al and can be pedagogically explained via a
detailed breakdown of its various topological NL linkages. We
shall focus on the six red flower petals and the six blue rings,
which are the dominant current contributors [largest features
in Fig. 6(j)]. Their individual contributions can be isolated
through a two-band approximate model which is amenable to

035138-6



ENHANCED HIGHER HARMONIC GENERATION FROM … PHYSICAL REVIEW B 102, 035138 (2020)

(A)

(B)

(C)

(A)

(B)

(C)

FIG. 5. Decomposition of the current response of Co2MnGa into those of its constituent nodal features. (a) Top: Breakdown of its nodal
structure into dominant nodal Hopf flower petals and rings whose linkages are further detailed in Fig. 6. Bottom: Total current response
(orange, scaled down by a factor of four for clarity) from the sum of green/magenta/red/cyan and yellow/blue nodal structure responses,
which correspond to only two unique curves due to cubic symmetry.(b), (c) (A) response curves of the green/yellow Hopf flower petals in the
directions indicated by the impulse p0, as illustrated in the insets (B). The response curve shapes at various impulse strengths (i)–(vi) can be
understood through integrating the explicit electronic group velocity profiles within the petals, as illustrated in the corresponding upper and
lower panels. Legend colorbars (C) for the group velocities are given in units of ×105 ms−1.

FIG. 6. The assembly of all nodal features of CoMn2Ga into a linked nodal network. Mostly saliently, it involves Hopf links [Figs. 6(a) and
6(f)], inner chains [Figs. 6(d) and 6(i)] and outer chains [Figs. 6(b), 6(c), 6(g) and 6(g)]. Specifically, it consists of a (a) Hopf link between
red flower petals, (b) outer chain involving a blue loop and four smaller green loops, (c) outer chain formed by a blue loop and a flower petal,
(d) inner chain due to a flower petal and four green rings. These features form subnetworks of linkages: (f) network of Hopf links, (g) network
of outer chains formed from blue and green loops, (h) network of outer chains formed from blue loops and red flower petals, (i) network of
inner chains, which together form the full nodal network (j). Within it, the red flower petals and blue loops occupies the greatest volume and
hence dominate the response. As shown in (e), their Fermi surfaces are decently approximated by our two-band model (pink flower petal and
cyan loop). For graphical completeness, all nodal structures are displayed not in the first Brillouin zone (a truncated octahedron), but on a cube
twice its size.
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analytic decomposition as follows:

HCo2MnGa = Re[ f (k)]σ1 + Im [ f (k)]σ3, (14)

where f (k) = �6
n=1(un + ivn), which is a product of con-

stituent nodal structures described by

ueven = [cos3(kx/2) + cos3(ky/2) + cos3(kz/2) − m],

uodd = [cos3(kx/2) + cos3(ky/2) + cos3(kz/2) + m],
(15)

and v1,2 = sin(kx/2), v3,4 = sin(ky/2), v5,6 = sin(kz/2), the
parameter m = −0.5 chosen so the Fermi surface approx-
imates that of Co2MnGa. Remarkably, such a simple con-
struction yields a rather accurate reconstruction of the Fermi
surface of Co2MnGa, as illustrated by its cross section com-
parison in Fig. 6(e) and the 3D superimposition in Fig. 5(a).

Based on this approximate model, we can extract and com-
pare the response contributions of the individual dominant
NLs of CoMn2Ga, which are the six flower petals and rings
relabeled cyan, magenta, blue, yellow, red, and green in the
top panel of Fig. 5(a). Interestingly, for an applied driving
field along one of the rectangular coordinate axes, i.e., ŷ, all
these nodal structures obey only two possible response curves
(type I: yellow and blue; type II: magenta, green, red, cyan).
This follows from the cubic symmetry of Co2MnGa and
enables a transparent reconstruction of the overall response.
The two possible responses are presented in Figs. 5(b) and
5(c), where the green and yellow response curves correspond,
respectively, to the contributions of the representative green
and yellow nodal structures from Fig. 5(a). Curves from the
other structures are equivalent to one of these, and are omitted
for brevity. Together, both response curves exhibit large kinks,
with their contrasting behavior at larger fields interfering to
give rise to even more pronounced nonlinearity and hence
HHG properties, as detailed in the Appendixes. Their total
contribution, plotted in Fig. 5(a), indeed qualitatively agrees
with the full response curve from Fig. 4(d), despite consider-
able simplifications [67]. Its far larger nonlinearity compared
to that of YH3 attests to the fact that to yield strong HHG, NLs
must topologically link and not merely intersect each other.

V. DISCUSSION

In this paper, we uncovered a very physically measurable
consequence of topological nodal linkages, namely, that they
enhance and protect the HHG of optical radiation, which can
be useful for terahertz applications. As such, the sophisticated
topology of nodal knots and link networks are no longer mere
mathematical curiosities, but are in principle reconstructible
from nonlinear response data in various directions. By ven-
turing beyond the perturbative regime, we are able to access
the effect of field impulses comparable to the size of NLs and
unveil the key role of nontrivial nodal linkages in enhancing
the HHG already known to exist in simple nodal structures
[38,39].

Our results rigorously hold in the ballistic limit, which
corresponds to the terahertz regime for scattering times ex-
pected of high mobility samples of known nodal materials.
Due to the robustness of our HHG mechanism, the charac-
teristically superior HHG from nodal linkages is likely to

extend beyond the ballistic and semiclassical limits, at least
until hot phonon or interband scattering dominate. Despite our
semiclassical analysis, our results crucially rely on the Fermi
sea condensation of electrons, which is fundamentally due to
the quantum mechanical exclusion principle. As such, they are
distinct from signatures of nodal geometry proposed in purely
classical settings, such as slow light and anomalous refraction
in photonic crystals [68–74] or topolectrical resonances due
to nodal drumhead states [55,75–77].

Reassuringly, the HHG enhancement by nodal linkages is
also in consonance with quantitative response computations
of three known representative nodal materials Ti3Al, YH3,
and Co2MnGa. In particular, the essential role of nodal link-
ages cannot be more evident from the comparison between
Co2MnGa and YH3: Co2MnGa, which contains multiple
nodal linkages, exhibits far stronger HHG than YH3, which
contains multiple nodal intersections.
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APPENDIX A: VALIDITY OF THE BALLISTIC
APPROXIMATION

To justify that the ballistic regime �τ � 1, what we
assumed indeed corresponds to the terahertz regime in rea-
sonably clean samples of known nodal materials; we discuss
below how the scattering time τ can be estimated. Since
experimental data on τ is rare, especially for nodal materials
which are relatively novel, we shall content ourselves with the
following estimation approach. First, consider a representative
single NL (e.g., Ca3P2 [79]). For a small loop radius, one can
work with a continuum model and hence in toroidal coor-
dinates. Consider Coulomb impurities as the dominant scat-
terers, and take the scatterer concentration to be ∼1024 m−3,
i.e., of the same order as that of Weyl semimetals such as
Cd3As2 [80]. For screening, we take the long-wavelength limit

to obtain a Thomas-Fermi dielectric function ε(q) = 1 + q2
s

q2 ,

where q2
s = e2ν(EF )/ε0 is the square of the inverse screening

length, with ν the density of states, ε0 the vacuum permittivity,
and e the elementary charge. To obtain a rough estimate for
the relaxation time, one can proceed by assuming that the
relaxation time depends only on the Fermi energy. Denoting it
as τk, it can can then be calculated [81] numerically by solving

1 =
∫

d3k′

(2π )3

2π

h̄
|〈k′|V̂ |k〉|2δ(εk − εk′ )

(
τ

(i)
k − v

(i)
k′

v
(i)
k

τ
(i)
k′

)

(A1)

for anisotropic band dispersion εk. In the above, V̂ is the
screened impurity potential, and the superscript (i) indicates
the direction of the applied field. The resulting relaxation time
depends on the Fermi energy, but its values can be placed
within the range τ ∼ 5 × 10−13 s, which is similar to that of
graphene as obtained via rf admittance measurements [82].
Then, with a terahertz driving field of frequency ∼100 THz,
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one has, roughly, �τ ∼ 50, validating the ballistic
approximation.

APPENDIX B: PROOF OF THE NONMONOTONICITY OF
THE RESPONSE OF A TOPOLOGICAL LINKAGE

To show that singularities of the v = ∇kε vector field can
indeed ensure significant nonlinearity in the current response
J(A), we approximate the Fermi-Dirac distribution F (ε) as a
step function [83] and rewrite the velocity current contribution
in a chosen ê direction as

Jê(A) =
∫

F (ε(k − A))
∂ε(k)

∂k‖
d3k

≈
∫

θ (μ − ε(k))

(
∂ε(k + A)

∂k‖
dk‖

)
dk⊥

=
∫ ∑

α

[
ε
(
kα + �kα

‖ + A
) − ε

(
kα − �kα

‖ + A
)]

dk⊥

=
∫ ∑

α∈nodes

�εα (kα
⊥ + A)dk⊥, (B1)

where k‖ = k‖ · ê = k · ê and k⊥ = k − k‖ are the compo-
nents of k parallel and perpendicular to ê. The BZ is sliced
into strips parallel to ê and indexed by k⊥, such that the thin
nodal Fermi tube is mathematically broken into thin cross
sections α in each k⊥ strip. Each α has a width of 2|�kα

‖ | that
is determined via ε(kα ± �kα

‖ ) = μ, where kα is the central
position of α. The current is thus proportional to the sum
of all energy differences �εα (kα

⊥) = ε(kα + �kα
‖ + A) −

ε(kα − �kα
‖ + A) between the two “sides” of the Fermi tube.

This rewriting of current response as shifted boundary terms
actually remains valid in arbitrarily high dimensions [84] and
can be elegantly expressed in terms of generalized Bianchi
identities [85].

Nonlinear response in Jê can be investigated through the
gradient

dJê

dAê

=
∑

α

d

dkα
‖

∫ [
ε
(
kα + �kα

‖ + A
) − ε

(
kα − �kα

‖ + A
)]

dk⊥

≈ 2
∫ ∑

α

�kα
‖

d2ε(kα
⊥ + A)

dk2
‖

dk⊥

= 2
∫ ∑

α

μ

ê · vF

d2ε(kα
⊥ + A)

dk2
‖

dk⊥, (B2)

where ê · vF is the component of the Fermi velocity of NL α

along the applied field. The nonlinear response of the Hopf
NL system is guaranteed by its curvature profile (Fig. 7).
More generically, the response tensor can be obtained by
replacing the second derivative by the Hessian and projecting
the Fermi velocity along the applied field. To summarize,
Eq. (B2) expresses the current response gradient as the sum
of the dispersion curvature over all occupied states, inversely
weighted by the Fermi velocity.

FIG. 7. Plot of the curvature d2ε

dk2
x

for the Hopf NL system
[Eq. (12)] in the plane of one of its loops, where kz = 0. There are
peaks of height ∼ 1

mr
around the “ears” surrounding the (unit) nodal

circumference of the loop, and a sharp trench of depth ∼ 1
m0

arising
from the other perpendicularly impinging loop.

APPENDIX C: ALTERNATIVE MODEL FOR THE SINGLE
NODAL LOOP

In the main text, we have mentioned that a single NL has a
response nonlinearity that is “unprotected.” This is because its
dispersion ε(k) can be deformed, without affecting its ring of
nodes, such that its velocity vector field v = ∇kε exhibits very
different cancellation extents. To illustrate this, we introduce
an alternative toy model for the single NL:

Halt = sin kxσx ⊗ 1 + sin kyσy ⊗ σy + sin kzσz ⊗ 1 + bσx ⊗ σx

=

⎡
⎢⎣

sin kz 0 sin kx b − sin ky

0 sin kz b + sin ky sin kx

sin kx b + sin ky − sin kz 0
b − sin ky sin kx 0 − sin kz

⎤
⎥⎦,

(C1)

where 0 < b < 1. This four-band model possesses energy
bands

ε1,2 = ±
√

sin2 kz + (
√

sin2 kx + sin2 ky − b)2, (C2)

ε3,4 = ±
√

sin2 kz + (
√

sin2 kx + sin2 ky + b)2. (C3)

The intersection of the bands ε1,2 of Eq. (C2) forms a single
NL in the kx-ky plane. But due do their proximity with bands
ε3,4, band intersections also exist at the origin, imitating the
effect of another node at the center of the NL in the kx-ky plane
despite the absence of another linked NL. A comparison with
the dispersion of the two-band single NL model is shown in
Fig. 8. That said, the v singularity at the center can be easily
deformed away from the plane of the NL, thereby reducing the
nonlinear response, unlike in the Hopf NL where the central
singularity is an unavoidable feature of the nodal linkage.
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FIG. 8. Conduction (blue) and valence (yellow) bands intersect
at a single NL (red) in the (a) two-band single NL model from the
main text and (b) the ε1,2 subspace of of the four-band single NL
model introduced above. The four-band model contains a divergent
curvature at the center of the ring, which gives rise to enhanced
though unprotected HHG.

APPENDIX D: FURTHER DETAILS ON THE NODAL
MATERIALS AND THEIR LATTICE MODELS

1. Ti3Al

The energy dispersion of Ti3Al is modeled by the expres-
sion [57]

εTi3Al(k) = 1

2

(
h1 + h2 +

√
(h1 − h2)2 + h2

)
, (D1)

where hi = Ai(k2
x + k2

y ) + Bik2
z + Mi and h = 2Ckz with pa-

rameter values A1 = −9.66 eV Å2, A2 = 11.37 eV Å2, B1 =
36.22 eV Å2, B2 = −25.71 eV Å2, M1 = 0.12 eV, M2 =
−0.52 eV, and C = 22.34 eV Å2.

To conveniently represent its cross section in the kz =
0 plane, it is also useful to use its piecewise polynomial
approximation,

εTi3Al|√k�0.16 ≈ c1 + c2k,

εTi3Al|√k>0.16 ≈ c3 + c4k + c5k2 + c6k3 + c7k4, (D2)

where k = k2
x + k2

y and c1 = 0.0911, c2 = −4.0615, c3 =
−0.2339, c4 = 9.715, c5 = −41.8543 c6 = 81.1788 and c7 =
−59.1387. Units of energy and momentum k are in eV
and Å−1, respectively. This approximation is a good fit to the
dispersion (Fig. 9)

(a) (b)

FIG. 9. (a) Comparison of actual dispersion data of Ti3Al (blue
and the best fit piecewise curve (red dashed) along the radial di-
rection in momementum space, i.e., k = √

k2
x + k2

y ; (b) A distinct
NL lies at the intersection of the ± εTi3Al(kx, ky, 0) bands, i.e.,
at ε(kx, ky, 0) = 0.

FIG. 10. (a), (b) Comparison of actual dispersion data of YH3

(blue) and the best fit curve (red dashed) along (a) either the kx or ky

direction, and (b) the kz direction; (c), (d) Fermi regions of the YH3

with μ = 0.015eV and T = 10K along (c) the kx-ky plane and (d) the
kx-kz plane. The color bar indicates the Fermi occupancy factor.

2. YH3

YH3 consists of three intersecting NLs along each orthog-
onal plane in the 3D BZ and can be modeled by the dispersion

εYH3 (k) =
√(

g2
1 + h2

1

)(
g2

2 + h2
2

)(
g2

3 + h2
3

)
, (D3)

where the factors g2
i + h2

i each yield an individual NL [86].
They are given by

g1 = sin(kz ), g2 = sin(kx ), g3 = sin(ky),

h1 = a1(r1(cos3 kx ) + s1 cos3 ky + t1 cos3 kz − m1),

h2 = a2(cos kx + cos ky + cos kz − m2),

h3 = a3(cos kx + cos ky + cos kz − m3),

where DFT-fitted parameters [61] are given by m1 =
2.99, a1 = 2, r1 = s1 = t1 = 1.032, n1 = 3, m2,3 = 2.96, and
a2,3 = 4. Units of energy and momentum k are eV and Å−1,
respectively. This ansatz is sufficient in taking into account the
slight anisotropy in the NLs (Fig. 10).

3. Co2MnGa

a Tight-binding model

We take the tight-binding model of Co2MnGa from
Ref. [64], which we copy here for ease of reading. It con-
sists of six bands: three d orbitals from Mn and three
p orbitals from Ga. In reciprocal space with the basis
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(dxz, dyz, dxy, px, py, pz ), it is given by

H (k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ξ d
1 0 0 ξ

d p
11 0 ξ

d p
13

0 ξ d
2 0 0 ξ

d p
22 ξ

d p
23

0 0 ξ d
3 ξ

d p
31 ξ

d p
32 0

ξ
d p
11 0 ξ

d p
31 ξ

p
1 ξ

p
12 ξ

p
31

0 ξ
d p
22 ξ

d p
32 ξ

p
12 ξ

p
2 ξ

p
23

ξ
d p
13 ξ

d p
23 0 ξ

p
31 ξ

p
23 ξ

p
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(k), (D4)

with

ξ d
1 (k) = 4t1 cos

kx

2
cos

kz

2
+ 2t2(cos kx + cos kz ) + 2t3 cos ky + εd , (D5a)

ξ d
2 (k) = 4t1 cos

ky

2
cos

kz

2
+ 2t2(cos ky + cos kz ) + 2t3 cos kx + εd , (D5b)

ξ d
3 (k) = 4t1 cos

kx

2
cos

ky

2
+ 2t2(cos kx + cos ky) + 2t3 cos kz + εd , (D5c)

ξ
p
1 (k) = 4t4 cos

ky

2
cos

kz

2
+ 2t5(cos ky + cos kz ) + 2t6 cos kx + εp, (D5d)

ξ
p
2 (k) = 4t4 cos

kx

2
cos

kz

2
+ 2t5(cos kx + cos kz ) + 2t6 cos ky + εp, (D5e)

ξ
p
3 (k) = 4t4 cos

kx

2
cos

ky

2
+ 2t5(cos kx + cos ky) + 2t6 cos kz + εp, (D5f)

ξ
p
12(k) = −4t7 sin

kx

2
sin

ky

2
, (D5g)

ξ
p
23(k) = −4t7 sin

ky

2
sin

kz

2
, (D5h)

ξ
p
31(k) = −4t7 sin

kx

2
sin

kz

2
, (D5i)

ξ
d p
11 (k) = ξ

d p
22 (k) = 2t8 sin

kz

2
, (D5j)

ξ
d p
13 (k) = ξ

d p
32 (k) = 2t8 sin

kx

2
, (D5k)

ξ
d p
23 (k) = ξ

d p
31 (k) = 2t8 sin

ky

2
, (D5l)

where the fitted tight-binding parameters are given (in units of
eV) by t1 = −0.31, t2 = −0.018, t3 = −0.01, t4 = 0.2, t5 =
−0.02, t6 = 0.04, t7 = 0.28, t8 = −0.34, εd = −0.6,

εp = 0.6.

b Velocity field in the nodal Co2MnGa network

The velocity field of Co2MnGa as illustrated in Fig. 11
is the basis of detailed analysis of the shape of its response
current. We consider the current contribution of the green and
yellow nodal structures in the top panel of Fig. 5(a) of the
main text. In Fig. 5(b)(A), we mark several points for the drift
p0, and study the resulting drifted Fermi surface, as well as
the change of the velocity occupied by it. The sharp increase

FIG. 11. (a) The density plot of vy, i.e., the y component of the
group velocity of the third band (ordered from high to low energies)
of the tight-binding model of Co2MnGa. The choice of the velocity
component is arbitrary owing to the cubic symmetry of Co2MnGa.
The planes labeled (c)–(e) correspond to the cross sections on which
we display vy below. (b) A rotated view of (a), overlaid by the Fermi
surface of Co2MnGa. (c) Density plot of vy restricted on the kz-kx

plane at ky = −2π/a. (d) Density plot of vy on the kz-ky plane at
kx = 2π/a. (e) Density plot of vy on the ky-kx plane at kz = 2π/a.
All color bars are expressed in units of ×105 ms−1.

from (i) to (ii) is a consequence of the rapidly varying velocity
field, as soon as the Fermi surface is driven even slightly
away from equilibrium. This sharp increase soon saturates
and begins to fall as the flower petal is shifted away from the
intense red patches situated near the touching points of the
inner and outer chains [(ii) to (iv)]. Going from (iv) to (v),
the current eventually changes signs because the intense blue
patches are now being sampled, The current slowly becomes
positive again [(v) to (vi)] when the flower petal is shifted to
the outer chain [Fig. 6(b)].

In contrast to the current due to the green nodal structure
[Fig. 5(b)(A)], the gradient of the current is not as steep for
the yellow structure [Fig. 5(c)(A)]. Furthermore, the yellow
circular ring also contributes exclusively negative velocity
[Fig. 5(c)(i–vi)] within the drift considered here, unlike the
green one where the regions occupied by the ring vary in
sign [Fig. 5(b)(i)–(vi)]. These observations, together with
the evolution of the velocity field similar to that discussed
in the previous paragraph, can account for the current pattern
of the yellow nodal structure.

The above analysis demonstrates how the strong inhomo-
geneity of the velocity field, which results from the knotted
links and touching loops, gives rise to its characteristic re-
sponse. Indeed, on the two high symmetry planes displayed in
Figs. 11(d) and 11(e), the flower petals are clearly discernible
as contours of sign-changing points. As shown in Fig. 11(b),
the Fermi surface of Co2MnGa fits matchingly the void of
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FIG. 12. Response current of Co2MnGa for different values of
chemical potential μ. A qualitatively similar curve persists, even
though larger chemical potentials (thicker nodal regions) give rise
to larger currents in general.

the velocity field. By visualizing the velocity fields of simpler
artificial nodal links (not shown), we observe that the more
complicated a nodal network, the more often the velocity field
switches direction. Our analysis holds best for small chemical
potentials that result in thin NLs, even though the response
curve usually remains qualitatively preserved as the chemical
potential is increased (Fig. 12), unless the NLs become so
thick that they fuse and generate different nodal topologies.

4. Individual plots of the Fourier harmonics from HHG

In Fig. 13, we present more detailed data of the individual
higher harmonics generated from our selected nodal materials
in increasing level of complexity.

5. Comments on our theoretical approach

Here we comment on our approach and connect it to a few
experimental breakthroughs on HHG in solids. Throughout
this paper, we compute the electrical current by solving the
semiclassical EOMs to obtain the electronic velocity, which
is then integrated over the phase space, weighted by the
distribution function dictated by the Boltzmann equation.

From explaining the Wiedemann-Franz law to predicting
the Bloch oscillation, such an approach has been hugely

successful since the dawn of the quantum theory of solids
[87]. The semiclassical EOMs with “anomalous velocity”
corrections are not only conceptually appealing but also pre-
dictively powerful in explaining diverse phenomena such as
the various Hall effects and quantum oscillations [42]. As
for the Boltzmann equation, it is expected to work best for
weakly interacting systems which can be well described by
the Landau theory of Fermi liquid [47]. While the importance
of correlation effects in nodal systems is certainly material de-
pendent, the fact that DFT+ARPES calculations of Co2MnGa
match so nicely the experimental results [88] may hint that
a tight-binding description of quasiparticles, and hence the
application of the Boltzmann equation, should be a good
starting point.

In general, solving the Boltzmann equation is highly non-
trivial, complicated by the collision integral that assumes
different forms and requires various approximation schemes,
depending on the scattering mechanisms. Confronted with this
difficulty, progress can be made by working within the RTA,
where the collision integral is assumed to take the form (F −
f )/τ . This approximation is motivated by the consideration
that various types of scattering (electron-phonon, electron-
impurity, electron-electron) will relax the system to a distribu-
tion F (often chosen to be the Fermi-Dirac distribution) within
a timescale τ which can be computed if a microscopic model
for the scattering processes is given [48].

In our paper, the collision integral is completely neglected.
One way to justify this is as follows. Invoking the constant
RTA, one has (∂t + ṗ(t ) · ∂p) f = (F − f )/τ , where f is the
distribution function, p the momentum. In the presence of
a periodic electric field of frequency � [which enters the
equation via ṗ(t )], it is reasonable to assume a periodic steady
state, provided the driving force is not too weak and not
too slow compared to the dissipative relaxing term. Then, a
periodic average of the equation implies that the left-hand side
is of the order O(�τ ), and the right-hand side of order O(1),
so for �τ � 1, the collision term may be ignored altogether.
This conforms to the intuition that scattering is not so relevant
in presence of a fast driving field [44].

As with most physical sciences, theoretical descriptions of
HHG in solids admit a varying degree of sophistication. For
example, one may wish to examine the spatial distribution
of the harmonics by taking a Wannier representation for the

FIG. 13. Higher harmonic generation (normalized by the first harmonic) for different field strengths p0 in (a) single nodal loop Ti3Al,
(b) triple inner chain YH3, (c) nodal network Co2MnGa. Note that the harmonic amplitudes cn for different materials are plotted in different
scales across these figures; they are compared side by side in the same figure [Fig. 4(e)] in the main text.
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valence bands [89], or to study the contributions of interband
current by adding an interband polarization term [90], or to ac-
count for the Coulomb interaction via a dephasing term [91].
For the purpose of illustrating the HHG due to topologically
enforced nonlinearities in linked NLSMs, we considered only
the intraband current within a noninteracting picture. This
approach closely mirrors the theoretical model developed in
the groundbreaking observation of HHG in bulk ZnO [92].
There, a Peierl’s substitution of a continuous wave electric
field is performed on a single band of ZnO. The current is
computed by multiplying the velocity with the electron charge
and density. Simply by taking into account longer-range hop-
pings, qualitative features including the linear energy cutoff
of the experimental HHG can already be captured. In our
current expression, J[A(t )] = e

∫
BZ

d3 p
(2π h̄)3 f [ε(p − p(t ))]v(p),

upon a coordination transformation, the electric field p(t )
dependence turns up in the velocity, and the expression be-
comes similar to that in Ref. [92], with the exception that we
integrate over the BZ instead of evaluating it at a certain mo-
mentum. We note that similar semiclassical approaches have
subsequently been employed in Ref. [43] to discuss Bloch
oscillations in HHG, as well as in Ref. [44] to study the role
of Berry curvature in HHG of monolayer MoS2. With regard
to scattering and many-body effects, rather reassuringly, they
should play only minor roles in HHG experiments [44,49],
in accordance with the intuition that most scattering cannot
keep up with the fast driving field. Together with the fact that
interactions are mostly insignificant in symmetry-protected
topological materials, our theoretical approach may prove
sufficient to describe HHG in nodal-line semimetals.
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