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Topology of many-body edge and extended quantum states in an open spin chain:
1/3 plateau, Kosterlitz-Thouless transition, and Luttinger liquid
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Quantum many-body edge and extended magnon excitations from the 1/3 plateau of the anisotropic
Heisenberg model on an open AB2 chain in a magnetic field h are unveiled using the density matrix renormal-
ization group and exact diagonalization. By tuning both the anisotropy and h in the rich phase diagram, the edge
states penetrate in the bulk, whose gap closes in a symmetry-protected topological Kosterlitz-Thouless transition.
Also, we witness the squeezed chain effect, the breaking of the edge state degeneracy, and a topological change
of the excitations from gapped magnons with quadratic long-wavelength dispersion to a linear spinon dispersion
in the Luttinger liquid gapless phase as the anisotropy λ approaches the critical point from the λ > 0 side of the
phase diagram.
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I. INTRODUCTION

Recently, increasing experimental and theoretical attention
was given to topological aspects of condensed matter physics
[1]. In one-dimensional (1D) systems, an early essential role
of topology was provided by the so-called Haldane conjecture
[2,3]: the ground state of integer (half-integer) spin chains is
gapped (gapless). In fact, the conjecture was experimentally
verified in spin-1 chains [4]; further, density matrix renormal-
ization group (DMRG) studies confirmed that the bulk gapped
ground state displays spin-1/2 fractionalized edge states in
open chains [5]. Topological insulators [6] share with these
systems some general aspects [7]: an insulating bulk and a
conducting surface (edge states) are intrinsically connected,
a phenomenon known as bulk-boundary correspondence. The
Su-Schrieffer-Heeger (SSH) dimerized model [8], and trimer
models [9], including a diamond chain [10], are examples
of models that manifest the bulk-boundary correspondence
in regions of their parameter space. In addition, the phonon
structures arising from mechanical isostatic [11] and Maxwell
[12] lattices can be understood from the similar framework
of topological band theory of electronic systems, including
the bulk-boundary correspondence. Also, chiral magnonic
edge states in ferromagnetic skyrmion crystals controlled by
magnetic fields were reported [13]. In addition, we mention
that the association of a two-dimensional Chern number with
a one-dimensional system was also suggested for photonic
quasicrystals [14] and fermionic systems in quasiperiodic
optical superlattices [9,15].

Gapped ground states of spin chains, either with spin-
1 or more complex unit cells with spin-1/2 sites, imply
plateaus in the magnetization (m) curves as a function of the
magnetic field (h): m(h). This is a topological quantization
of the magnetization due to the presence of h, analogously
to the quantum Hall effect [16]. Recently, this issue was

investigated in modulated spin chains [17], with particular
attention to the edge states of open systems. On the other hand,
a magnetization plateau at 1/3 of the saturation magnetization
(1/3 plateau) has been observed in several model systems.
The isotropic AB2 chain exhibits a ferrimagnetic ground state
[18–21] and the 1/3 plateau in m(h) [22,23]. The topological
nature of the ground state manifests in topological Wess-
Zumino terms of the nonlinear sigma model [21] or through
its representation on a valence-bond state basis [24]. Likewise,
the spin-(1/2,1) and spin-(1/2,5/2) alternating spin chains
also exhibits a ferrimagnetic ground state, together with the
1/3 plateau [20,25–27] and the 2/3 plateau [28], respectively.
In addition, we mention the 1/3 plateau state of the quantum
spin-1/2 XX diamond chain in a magnetic field [29]. Further,
in the phase diagram of anisotropic spin models, the 1/3
plateau closes in a transition of the Kosterlitz-Thouless (KT)
type [30] as the anisotropy changes [31,32]. The KT transition
is also observed in anisotropic ferrimagnetic branched chains
[33,34]. On the experimental side, the 1/3 plateau was ob-
served in materials with three spin-1/2 sites per unit cell (di-
amond chain): the mineral azurite Cu3(CO3)2(OH)2 [35], and
the compounds copper hydroxydiphosphate Cu3(P2O6OH)2

[36] and alumoklyuchevskite K3Cu3AlO2(SO4)4 [37]. Also,
the 2/3 plateau was observed in a new mixed spin-(1/2,5/2)
chain in a charge-transfer salt (4-Br-o-MePy-V)FeCl4 [38].

In this work, DMRG and exact diagonalization (ED) re-
sults for open and closed anisotropic Heisenberg-AB2 chains,
respectively, unveil a very rich phase diagram and related
notable features. In particular, in open chains we identify a
secondary plateau associated with edge and extended magnon
excitations from the 1/3 plateau. We stress that the edge
magnon states that emerge from this plateau are many-body
quantum states. As one approaches the symmetry-protected
[translational and U (1) symmetries] topological quantum KT
transition, the bulk penetration of the edge states is enhanced,
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their degeneracy is broken, and the squeezed chain effect
is observed. Further, at the KT transition and beyond, the
bulk magnon gap closes, while the edge states mix with the
continuum, and the Luttinger liquid (LL) excitations dominate
the scenario.

In Sec. II, we discuss the topology and phase diagram of
the anisotropic Heisenberg-AB2, and a precise determination
of the KT transition point. The edge states associated with
the 1/3 plateau are considered in Sec. III, while gapped and
gapless excitations around the topological KT transition are
discussed in Sec. IV. The boundary scattering length for the
1/3 plateau and the magnon-magnon scattering length for the
fully polarized (FP) plateau magnons are reported in Sec. V.
A summary and conclusions are found in Sec. VI.

II. TOPOLOGY AND PHASE DIAGRAM

The anisotropic Heisenberg model on the AB2 chain in an
applied magnetic field h reads

H =
Nc∑

i=1

[
Sx

A,i

(
Sx

B,i + Sx
B,i−1

) + Sy
A,i

(
Sy

B,i + Sy
B,i−1

)

+ λSz
A,i

(
Sz

B,i + Sz
B,i−1

)] − hSz, (1)

where Sx,y,z
B,i = Sx,y,z

B1,i
+ Sx,y,z

B2,i
, Nc is the number of unit cells of

the system, the exchange couplings in the xy plane define the
unit of energy, λ is the exchange coupling in the z-direction,
and Sz = ∑Nc

i=1(Sz
A,i + Sz

B1,i
+ Sz

B2,i
) is the z component of the

total spin of the system, as illustrated in Fig. 1(a). We use
DMRG to study open chains of Nc unit cells, with one A site at
each boundary, retaining 243 states per block and performing
12 sweeps in each calculation, such that the higher discarded
weight was of order 10−9. We also study closed systems with
Nc = 10 and 12 through ED. The magnetization curves are
obtained from the lowest energy in each total spin Sz sector
and h = 0: E (Sz ), since the Zeeman term in the Hamiltonian
(1) implies Eh(Sz ) = E (Sz ) − hSz for h �= 0. In a finite-size
system, the m(h) curve is composed of finite-size steps of
width �h(Sz ) at total spin Sz. Considering hSz+ and hSz− as
the extreme points of these steps, such that �h(Sz ) = hSz+ −
hSz−, we thus have hSz± = ±[E (Sz ± 1) − E (Sz )]. If Sz is
not at a thermodynamic-limit magnetization plateau state,
we have �h(Sz ) → 0 as Nc → ∞, otherwise �h(Sz ) �= 0 as
Nc → ∞.

In Fig. 1(b) we present DMRG results (Nc = 121) for m(h)
and the anisotropy in the interval −0.9 � λ � 1. The m(h)
curves display the FP plateau at the thermodynamic-limit
(bulk) saturation magnetization ms = 3/2, a plateau slightly
below the bulk 1/3 plateau at ms/3 = 1/2, and a secondary
plateau, as shown in the inset for λ = 1.0. The fields h−, h0,
and h+ define the width of the plateaus: the secondary one is
associated with edge and extended magnon excitations from
the 1/3 plateau. Here, these excitations will be examined in
detail around the KT transition, in which case LL excitations
also take place. In fact, in Fig. 1(c), a rich h-λ phase diagram
exhibits the various phases that play a significant role in our
analysis.

In bulk, without broken translational symmetry, the pos-
sible occurrence of a plateau in m(h) must satisfy the

FIG. 1. (a) Schematic representation of the anisotropic Heisen-
berg Hamiltonian on the AB2 spin-1/2 chain, under a magnetic field
h. DMRG results for the open AB2 chain with Nc = 121 unit cells:
(b) Magnetization per unit cell m(h) for 1 � λ � 0.1 (left panel) and
0.0 � λ � −0.9 (right panel), in steps of �λ = 0.1. Inset of the left
panel: m(h) for λ = 1.0 in the vicinity of the 1/3 plateau bounded by
h− = 0 and h+ = 1.76, with a step at h0 = 1.28; (c) phase diagram:
the color code refers to the m values in (b). The exact critical line
hs bounds the FP plateau, while h−, h0, and h+ are related to the
1/3 plateau. The gapped phases, with dynamical exponent z = 2,
are separated by the gapless Luttinger liquid (LL) phase with z = 1.
The 1/3 plateau closes at a Kosterlitz-Thouless (KT) transition:
λKT = −0.419 ± 0.004 and hKT = 0.290 ± 0.002.

topological criterion [16]:

Sc − m = integer, (2)

where Sc is the maximum spin of a unit cell. In our model,
Sc = 3/2, m = 1/2 for the 1/3 plateau, and m = 3/2 for the
FP plateau. Also, this topological criterion can be related [17]
to a Chern number Cm defined in the two-dimensional pa-
rameter space of an associated periodically modulated closed
system under a twisted boundary condition. Indeed, an m-
plateau obeys the relation

Cm = −(Sc − m) (3)

for m � 0, with Cm = −C−m for m < 0, i.e., h < 0 not shown
in Fig. 1. Thus, the FP plateau has a Chern number C3/2 = 0
and is a trivial insulating state, while the 1/3 plateau is a
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topological insulator with C1/2 = −1. In Sec. V B, we present
a detailed discussion of the trivial insulating FP plateau state.

In our open finite-size chain, a remarkable feature is the
presence of edge states, leading to the splitting of the 1/3
plateau into two plateaus. Consider, for example, the isotropic
case shown in the inset of Fig. 1(b). The bulk 1/3 plateau
has extreme points at h− = 0 and h+ = 1.76 [for both spin-
(1/2,1) [39] and AB2 [22] chains]. However, in the open
finite-size system and h0 � h < h+, the magnon excitations
occupy edge states inside the gap between the lower and upper
bulk band states and give rise to the two plateaus in m(h). The
transition between these two plateaus occurs at h0 = 1.28 for
λ = 1.

The phase diagram of the AB2-chain with Nc = 121 unit
cells is shown in Fig. 1(c). The extreme lines of the bulk
plateaus, h−(λ), h+(λ), and hs(λ), are quantum critical lines
separating a gapped insulating phase from the gapless LL
phase, with dynamic critical exponent z = 2 and 1, respec-
tively. The FP plateau is bounded by hs(λ) = 3λ

2 + 1
2

√
8 + λ2,

since the energy of the exact Goldstone mode (a �Sz =
−1 magnon) associated with this line reads εFP(k) = − 3λ

2 −
1
2

√
λ2 + 8 cos2(k/2) + h. Therefore, for h close to hs(λ), a

high-dilute regime of magnons is verified, with the following
low-lying excitation energy:

ε(k) = −μ + v2k2

2hs
, (4)

where μ = hs − h and the spin-wave velocity is

v = 1√
2
(
1 − 3λ

2hs

) . (5)

In addition, the 1/3 plateau is bounded by the critical lines
h−(λ) and h+(λ), with a width �(λ) = h+(λ) − h−(λ). The
plateau width �(λ) is the bulk gap that separates the two
regions of the gapless LL phase: one with m < 1/2 and the
other with m > 1/2, for the same value of λ. On the other
hand, the low-energy theory of magnons in a gapped system
under a magnetic field is that of a Lieb-Liniger [40] Bose
fluid with δ-function interactions [41]. In addition, in the
high dilute regime of magnons, the theory is equivalent to a
Tonks-Girardeau [42] Bose system with a hard-core repulsion
[41] or a fermionic system [28,41,43,44]. Thereby, in the
high-dilute regime h → h− or h+, the low-energy magnon
excitations from the 1/3 plateau have dispersion relations as in
Eq. (4), with μ = ±(h − h±). For h � h−, the magnons carry
spin �Sz = −1, while for h � h+, the excitations carry spin
�Sz = +1. The �Sz = −1 excitations can thus be understood
as holes, in the reciprocal q-space, in a filled band of �Sz =
+1 hard-core magnons, and the bulk gap �(λ) is the particle-
hole gap. The plateau closes at the KT quantum critical point:
λKT = −0.419 ± 0.004 and hKT = 0.290 ± 0.002, estimated
through the procedure described below.

A. Kosterlitz-Thouless transition point: λKT and hKT

In the LL gapless phase shown in Fig. 1(c), the trans-
verse spin correlation function should obey the asymptotic

power-law behavior given by [45]

�(r) ∼ 1

r
1

2K

, (6)

where r is the distance between spins and K is the Luttinger
liquid parameter K , which depends on h (or m) and λ. In the
Kosterlitz-Thouless transition, the magnetization has the fixed
value m = 1/2 and the transition is induced by changing λ. In
this case, K = 2 at the critical point λ = λKT.

We estimate the value of λKT through a method success-
fully used to estimate the KT transition points in a one-
dimensional Bose-Hubbard model in Ref. [46]. In our case,
the procedure consists in identifying the values of λ at which
K = 2 for m = 1/2 in finite size systems, and extrapolating
the results to Nc → ∞. We calculate the transverse spin
correlation functions as

�(r) ≡ 〈〈S+(l )S−(l + r)〉〉l , (7)

where the 〈〈· · · 〉〉l indicate the quantum expectation value and
an average of the correlation over all pairs of cells with a
distance l between then, in order to minimize the effects of
the open boundaries of the chain.

In Fig. 2(a), we show �(r) between A spins for λ = −0.5
and Nc = 121, 181, and 241 at m = 1/2 − (1/2Nc). For each
system size, we fit the data in different intervals of r to the
asymptotic expression in Eq. (6). The following intervals were
considered for r: [1,8], [1,16], [1,60], [16,32], and [32,48] for
values of λ around the KT transition. In particular, in Fig. 2(b)
we show K as a function of the system size for λ = −0.5 and
the chosen r-intervals. We see that a straight line can be a
good scale function for K in all studied r-intervals. Hence, we
fit a linear function to the data of the two largest system sizes
in order to obtain a very confident extrapolated value of K ,
i.e., with very little dispersion. Indeed, for the case shown in
Fig. 2(b), λ = −0.5, the extrapolated value of K is in the range
2.218 ± 0.006. In Fig. 2(c), we show the extrapolated values
of K as a function of λ for each of the chosen r-intervals. The
KT critical value of λ,

λKT = −0.419 ± 0.004, (8)

is estimated by considering the minimum and maximum
values of λ at which K = 2, in all chosen r-intervals. The bulk
gap �(λ) nullifies following an essential singularity form

�(λ) = A exp
B√

λ − λKT
, (9)

where A and B are constants. In Fig. 2(d) we show a scale
analysis of the plateau width for some values of λ in the
gapped phase. In Fig. 2(e), we present the extrapolated values
of the bulk gap as a function of λ and the fitting of them to the
expression (9).

The value of the critical field hKT can be estimated by
a scaling analysis of the extreme fields h− and h+ of the
finite-size 1/3-plateau magnetization at m = 1/2 − (1/2Nc).
In Fig. 3, we present h− and h+ as a function of system size
for the minimum and maximum values of λKT: −0.415 and
−0.423. In both cases, an excellent linear scale function fits
the data for h− and h+. For λ = −0.415, the extrapolated
values of h− and h+ differ by 7 × 10−5, while for λ = −0.419
the difference is 5 × 10−5. We estimate the critical field of
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FIG. 2. Critical λ of the Kosterlitz-Thouless transition: λKT.
(a) Transverse spin correlation functions �(r) = 〈〈S+(l )S−(l + r)〉〉l

between A spins as a function of distance r for λ = −0.5 at the
magnetization (m) of the 1/3 plateau: m = (1/2) − (1/2Nc ) for the
number of unit cells indicated. For a given system size, �(r) is
calculated by averaging over all pairs of spins separated by the
distance r. (b) Luttinger liquid exponent K as a function of 1/Nc for
the three system sizes shown in (a) and λ = −0.5. The value of K is
determined by fitting �(r) to the expected long-distance power-law
behavior 1/r1/2K through the indicated intervals of r. Full lines are
linear extrapolations of K to Nc → ∞ by considering the two highest
system sizes. (c) Extrapolated value of K as a function of λ for each
fitting interval indicated in (b). The critical λ is estimated from the
minimum and maximum values of λ at which K = 2, within the set
of investigated fitting intervals. (d) 1/3 plateau width �(λ)Nc as a
function of 1/Nc for the indicated values of λ; dashed lines are fittings
to a polynomial expression. (e) (•) �(λ) from (d) as a function of λ.
The full line is the fitting of these data to the essential singularity
formula A exp (B/

√
λ − λKT).

the KT transition, hKT, as the range from the extrapolated
value of h− at λ = −0.423 to the extrapolated value of h+
at λ = −0.415, thus obtaining

hKT = 0.290 ± 0.002. (10)
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FIG. 3. Critical h of the KT transition: hKT. Extreme fields of
the finite-size 1/3 plateau magnetization: m = (1/2) − (1/2Nc ), as
a function of 1/Nc for λ = −0.415 and −0.423, which are the
estimated minimum and maximum values of λ at the KT transition.
For each value of λ, we use a linear extrapolation in 1/Nc to evaluate
the thermodynamic value of h for m = 1/2. The critical field is
estimated as the average of the extrapolated values.

The AB2 anisotropic chain is invariant under the exchange
of the two B sites of a unit cell, so the Hamiltonian does
not connect the singlet and triplet states of these pairs. The
localized singlet pairs appear in higher-energy states of the
system that are not activated by either the magnetic field
nor the anisotropy. Thus, the h versus λ phase diagram of
the AB2 anisotropic chain is the same as that of the alter-
nating spin-(1/2,1) anisotropic chain [31,32], and we can
compare the results for this chain with our estimates for λKT =
−0.419 ± 0.004 and hKT = 0.290 ± 0.002. These values dis-
agree with the ones suggested for the anisotropic alternating
chain in Ref. [32] by observing the behavior of the two-site
entanglement calculated by the infinite time-evolving block-
decimation (iTEBD) algorithm: λ = −0.53 and h = 0.23. On
the other hand, the values estimated in Ref. [31] through
a finite-size analysis of the central charge and plateau size:
λ = −0.41 ± 0.01 and h = 0.293, are compatible with our
more precise results.

III. EDGE MAGNON EXCITATIONS OF THE
GAPPED 1/3 PLATEAU

In our open chain, the topological quantum phase transition
from the insulating (z = 2) to the metallic phase (z = 1)
manifests in the penetration into the bulk of the edge (surface)
states [47]. We start by discussing the magnon edge states
associated with the topological insulator at the 1/3 plateau
in the open AB2-chain of size Nc = 121 and λ = 0.4. In
Fig. 4(a) we present m(h) in the vicinity of the 1/3 plateau
(m = 0.5 in the thermodynamic limit). In this finite-size
system, the m-states that characterize the 1/3-plateau phase
are labeled by 1© (m = 60/121), 2© (m = 61/121), and 3©
(m = 62/121), while the first extended state above the plateau
is labeled by 4© (m = 63/121). As m changes from a state

i© to a state f©, the change in the average distribution of
�Sz = +1 magnons on sites A, 〈nA〉, and sites B = B1 + B2,
〈nB〉, is calculated through 〈nX 〉 i©→ f© = 〈Sz

X 〉 f − 〈Sz
X 〉i, with
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FIG. 4. DMRG results for m(h) and the average magnon distri-
bution along the AB2 open chain with Nc = 121 at λ = 0.4. (a) m(h)
in the vicinity of the 1/3 plateau displaying the indicated m-states:
1© (m = 60/121), 2© (m = 61/121), and 3© (m = 62/121), and the

first gapless m-state above the plateau (onset of the continuum):
4© (m = 63/121). (b) Average magnon distribution at sites A, 〈nA〉,

and B, 〈nB〉 ≡ 〈nB1 〉 + 〈nB2 〉, as a function of cell position l − 1.
Excitations 1© → 2©, 1© → 3©, and 1© → 4© create one, two, and
three magnons above the m-state 1©, while 3© → 4© creates one
magnon in the m-state 3©.

X = A or B, as shown in the panels of Fig. 4(b). In panel 1© →
2©, the magnon distribution indicates that a magnon added to

the state 1© is localized at the left edge of the chain, while a
second magnon added to 1©, panel 1© → 3©, is localized at the
right edge. Thus, the distributions of one- and two-magnon
states above 1© indicate the presence of localized states at
both edges of the chain, implied by the inversion symmetry
of the finite-size chain relative to its center, with the density
on A sites higher than those on B sites. Concerning the three-
magnon state, panel 1© → 4© in Fig. 4(b), the magnon distri-
bution evidences that the third magnon occupies a metallic
state, which extends throughout the bulk. Indeed, panel 3© →
4© in Fig. 4(b) presents the distribution of this one-magnon

extended state, which is clearly isolated from the edge states.
In Appendix A we show that the magnetization and magnon
distributions for an even number of unit cells and the same
boundary conditions have the same physical features, while
using a boundary condition with a B1, B2 at one extreme gives
rise to only one edge state. Further, in Appendix B we present
the average local magnetizations along the chain, from which
the magnon distributions were calculated.

Now, we shall focus on the very interesting behavior of
edge and bulk magnon excitations as the 1/3 plateau gets
closer to the KT critical point: λKT, hKT. In Fig. 5 (semilog
plots), we present the average distributions of one ( 1© → 2©)
and two ( 1© → 3©) magnon excitations above 1©, as well as
the isolated one-magnon extended state (excitation 3© → 4©),
for λ = 0.1, 0.0, and −0.1, corresponding to the first, second,
and third columns, respectively. For λ = 0.1 (first column) the

FIG. 5. DMRG results for the average magnon distributions 〈nA〉
and 〈nB〉 along the AB2 open chain with Nc = 121 as the KT transi-
tion gets closer. A log-normal scale is used in the figures. The panel
columns are data for λ = −0.1, 0.0, and 0.1, from left to right,
while panel lines show 〈nA〉 and 〈nB〉 for the 1© → 2©, 1© → 3©, and
3© → 4© excitations. The localization length ξ shown in the second

line of the panels is obtained by fitting the data of 〈nA〉 in the range
30 � x � 40 to e−x/ξ , with cell position x = l − 1.

one-magnon state is exponentially localized at the right edge,
while the two-magnon state displays one localized magnon
at each edge, similarly to the λ = 0.4 case in Fig. 4(b).
Thus, left and right edge states are still degenerate. However,
at λ = 0 (second column), the gap between the two edge
states [≡ �h = 6 × 10−4, as shown in Fig. 6(a)] is open
and the one-magnon state displays a symmetrical density on
both edges of the chain due to hybridization, thus leading to
bulk penetration. Also, the two-magnon state exhibits similar
behavior with a small dip at the center of the chain. Further,

FIG. 6. (a) DMRG results for m(h) in the vicinity of the 1/3
plateau of the AB2 open chain with Nc = 121 for the indicated values
of λ and the indicated m-states: 1© (m = 60/121), 2© (m = 61/121),
3© (m = 62/121), and 4© (m = 63/121), as in Fig. 4. Notably, for
λ = 0.0, there is a finite-size step of size �h = 6 × 10−4 at the
m-state 2©. (b) Upper and lower band energies for �Sz = +1
magnons of wave-vector q, with h at the center of the 1/3 plateau,
(h+ + h−)/2, for λ = 0.4 (�) and −0.5 (•), using ED results from
Nc = 10 and 12 under closed boundary conditions. We also indicate
the twofold-degenerate magnon edge states (–) below the bottom of
the magnon upper band, using DMRG for λ = 0.4 and an open chain
with Nc = 121.
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as shown in Fig. 5, as the bulk gap �(λ) (width of the 1/3
plateau) decreases, the localization length ξ of the edge states
increases, since ξ (λ) ∼ 1/�(λ), and the edge state becomes
more extended. In fact, for λ = −0.1, the density profiles of
one- and two-magnon edge states are very extended, with
the density at the boundaries approaching their values in
bulk. Using data from the excitation 1© → 3© in Fig. 5 for
λ = 0.1, 0.0, and −0.1, we have estimated the values of
the localization length: ξ = 7.4, 18, and 41, respectively. On
the other hand, for λ = 0.1, the weight at the boundaries of
the isolated one-magnon extended state, excitation 3© → 4©,
is much higher than the practically negligible weight in the
λ = 0.4 case [see Fig. 4(b)]. In fact, as the gap closes,
the insulating bulk is squeezed, as shown in Fig. 5 by the
decreasing of the distance between the two minima in the
3© → 4© excitation, and also by the increasing penetration of

the edge states for the two-magnon 1© → 3© state. Notably,
far enough from the boundaries, the bulk wave function of
the 3© → 4© one-magnon state is that of a squeezed chain of
size L − 2ab, where ab is the boundary scattering length of an
effective repulsive potential [48]. A more detailed quantitative
discussion is presented in Sec. V A.

IV. GAPPED AND GAPLESS EXCITATIONS AROUND THE
TOPOLOGICAL KT TRANSITION

In Fig. 6(a), we show m(h) in the vicinity of the 1/3 plateau
for the indicated values of λ and using the same state labeling
of Figs. 4 and 5. A remarkable feature is the breaking of the
degeneracy between states 2© and 3© for λ ∼ 0.0 (black curve),
as one decreases λ from λ = 0.1 (green curve), in agreement
with the magnon distribution in Fig. 5. In fact, for λ = 0.0
there is a gap of size 6 × 10−4 between these states, implying
an m-step of width �h = 6 × 10−4 in the m-state 2©. Further,
the width of the m-step increases (decreases) at the m-state 2©
( 1©) as the gap closes, and all states take part of the continuum
at the KT critical point (λKT, hKT) in the thermodynamic limit.
Accordingly, in our finite-size system we observe uniformity
in the values of the widths of the m-steps, as shown in Fig. 6(a)
for λ = −0.5 (blue curve), a signature of a gapless LL phase.

In addition, a remarkable topological change in the dis-
persion relation of the low-energy magnetic excitations takes
place around the KT critical point. There are two kinds of bulk
magnetic excitations from the 1/3 plateau: one carrying a spin
�Sz = +1, which increases the 1/3-plateau total spin Sz

1/3
by one unit, and the other carrying a spin �Sz = −1, which
decreases Sz

1/3 by one unit. The excitations with �Sz = −1
can be understood as a hole, in the reciprocal q-space, in a
filled band of �Sz = +1 excitations. The magnetic field acts
as a chemical potential: for h = h− the lower band is filled and
the upper one is empty; increasing h, the magnetization does
not change (plateau region) up to h = h+, at which the upper
band starts to be filled. Defining E1/3 as the total energy of the
1/3-plateau magnetization and h = 0, the energy ε±(q) of the
upper (+) and lower (−) bands is given by

ε±(q) = ±[E±(q) − E1/3] − h, (11)

where E+(q) and E−(q) are the lowest total energy at the
sector q for Sz = Sz

1/3 + 1 and Sz = Sz
1/3 − 1, respectively,

with h = 0. In Fig. 6(b) we show ε± for a closed system with

Nc = 10 and 12, and h = (h+ + h−)/2 for λ = 0.4 (gapped
magnon in the 1/3-plateau phase) and λ = −0.5 (gapless
spinon in the LL phase). The expected [41,43,49] long-
wavelength behavior is also sketched with full lines. For h− <

h < h+ (inside the 1/3 plateau), the excitations should obey a
quadratic dispersion relation [41,43,49]

ε±(q) → h± ± v2
±

2h±
q2 − h as q → 0, (12)

where v± are the spin-wave velocities (see the discussion in
Sec. II). For λ = 0.4, shown in Fig. 6(b), a fitting (full lines)
gives v2/2h ≈ 0.61 (0.62) for the upper (lower) band. On the
other hand, in the gapless LL phase, the upper and lower
bands are joined at q = 0, and the excitations follow a linear
dispersion relation

ε±(q) → ±vs|q| as q → 0, (13)

where vs is the spinon velocity.

V. BOUNDARY AND MAGNON-MAGNON
SCATTERING LENGTHS

A. Boundary scattering length for magnon excitations
from the 1/3-plateau magnetization

Here, we consider the average density profile of the iso-
lated extended magnon excitation, obtained from the mag-
netization change 3© → 4©, as described in Sec. III. In our
open chain, the bulk magnon lives on a squeezed chain with
size [48] Nc − 2ab, where the boundary scattering length
ab accounts for the repulsive (ab > 0) boundary potentials.
Thereby far enough from the boundaries, the bulk single-
particle wave functions in the open chain can be written as
[48]

ψp(x) =
√

A sin

[
pπ (x − ab)

(Nc − 2ab)

]
, (14)

where p = 1, 2, . . . and A is a constant. In Fig. 7 we fit the
DMRG data for the chain with Nc = 121 unit cells to the
expression in Eq. (14) with p = 1, and we obtain ab = 0.6,
8.0, and 18.0 for λ = 1.0, 0.1, and −0.1, respectively.

B. Fully polarized plateau: Insulator with trivial topology,
and magnon-magnon scattering length

The fully polarized plateau is an example of a topological
trivial insulator, with a Chern number C3/2 = 0 (see the dis-
cussion in Sec. II). Thus, in an open chain, the fully polarized
state does not have edge states. Below we present the bulk
magnon excitations from the fully polarized plateau, including
the linear correction for the square-root law, and we discuss
the magnon density profile for two magnons in an open chain.

In Fig. 8(a) we present the two-particle average magnon
density along the chain for the fully polarized plateau, 〈nl〉.
For comparison, we show the free fermion density for two
fermions in a chain of size Nc − 1 and vanishing boundary
condition:

2

Nc − 1

[
sin2

(
πx

Nc − 1

)
+ sin2

(
πx

Nc − 1

)]
, (15)
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FIG. 7. Average magnon density 〈nl〉 per unit cell along the chain
for the extended one-magnon excitation in the 1/3-plateau state. (•)
DMRG results for Nc = 121. The full line is a fitting of the DMRG
data to the continuum limit expression for the probability density (far
from the boundaries) of a particle in a box with a finite potential at the
boundaries: A sin2[π (x − ab)/(Nc − 2ab)], where ab parametrizes
the interaction with the boundaries, A is a fitting parameter, and
x = l − 1. The fitting is done using the data in the range x = 45–75.

with x = l − 1. We notice the absence of edge states in this
case for −0.9 � λ � 1.0. A tiny departure from the free
fermion result is observed as λ → −1, the critical ferromag-
netic point. The average magnon density increases at the
boundaries with a decrease in the central region as λ → −1.
We explain it by noticing that if a �Sz = −1 magnon is at
a boundary A site, with the other sites fully polarized, the
value of the longitudinal term of the energy is −λ. If the
magnon is not at a boundary site, this energy term is −4λ

(at a B1 or B2 site) or −2λ (at an A site). Hence, for λ < 0
the effect of the boundaries is represented by an attractive
potential at the chain ends. However, while in Fig. 7 we can
observe a crossover between the profiles at the center and at
the boundaries of the chain, this crossover is not evidenced in
the density profiles shown in Fig. 8(a).

In the high-dilute limit of magnons near the hs(λ) line, the
bulk magnon density per unit cell is given by

n =
√

2hsμ

π2v2
, (16)

with n = mFP − m, μ = hs − h, and v in Eq. (5). Including
the linear first correction [48,50–53] to the square-root law,
the magnon density becomes

n =
√

2hs

π2v2

√
μ − a

4

3

2hs

π2v2
μ, (17)

where a is the magnon-magnon scattering length, which can
be positive or negative. For an infinite hard-core potential,
a > 0 and is equal to the core size, while a < 0 for a repulsive
δ-function potential. Hence, from the effective low-energy
theory, we expect a < 0.

In Fig. 8(b), we show DMRG data for n normalized by μ1/2

as a function of μ1/2 for Nc = 121. The magnetization values
shown range from m = mFP − (3/Nc) (three magnons) to
m = 1 (one magnon per unit cell). To obtain a as a function
of λ, we compare the DMRG data with the expression in

FIG. 8. Dilute magnon regime and the scattering length a,
DMRG results for Nc = 121. (a) Magnon density 〈nl〉 along the chain
for two magnons added to the FP state for the indicated values of
λ. (b) Average magnon density per unit cell n for the FP plateau:
n = mFP − m, with mFP = (3/2) + (1/2Nc ), as a function of μ1/2,
where μ = hs − h is the effective chemical potential and hs is the
saturation field. Inset: scattering length a derived from a fitting of
the DMRG results to the expression of the effective fermion model
with a linear correction: n/μ1/2 = β − 4

3 aβ2μ1/2, with β and the
scattering length a as fitting parameters.

Eq. (17). In fact, from Eq. (17) we find

n

μ1/2
= β − a

4

3
β2μ1/2, (18)

with

β(λ) =
√

2hs

π2v2
. (19)

We fit the full set of DMRG data in Fig. 8(b) to Eq. (18),
for each λ value, by considering β and a as fitting parameters.
Indeed, the relative departure between the values of β from
the fitting and the ones obtained from Eq. (19) ranges from
5% to 10%. In Fig. 8(b), we observe that n/μ1/2 is almost
constant for λ = 0.9, implying the prevalence of the square-
root behavior for these magnetization values. The scattering
length a, shown in the inset, is ≈0 for λ = 0.9, and the hard-
core boson or free fermion model is thus the most effective
theory. Notice that the value of a decreases smoothly as λ

decreases and takes only negative values, as expected for a
δ-function potential.
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VI. SUMMARY AND CONCLUSIONS

In summary, we use the density matrix renormalization
group to discuss the phase diagram of the anisotropic AB2

chain with an applied magnetic field. In particular, we reveal
the locus of the magnon edge states, observed in finite-size
systems, inside the gap of the topological 1/3 plateau state.
In addition, we use the transverse spin correlation functions
to estimate the critical point of the Kosterlitz-Thouless transi-
tion: λKT = −0.419 ± 0.004 and hKT = 0.290 ± 0.002, such
that we reach a better precision than known results. We also
display the magnon distribution in the edge states and in
the first extended state above the gap. Further, we follow
the penetration of the edge states in the bulk as the 1/3
plateau gap closes. The gap closing is also accompanied by an
effective squeezing of the chain, parametrized by a boundary
scattering length. Considering the bulk states, we also use
exact diagonalization to show the topological change in the
dispersion relation of the excitations in the vicinity of the
Kosterlitz-Thouless transition point. Furthermore, we studied
the topologically trivial fully polarized plateau state. Since
this insulating state is trivial, we show that the boundary
magnon distributions in this case are distinct from that of
the excitations from the topological 1/3 plateau state. In
particular, we estimate the magnon-magnon scattering length
as a function of the anisotropy and confirm that it provides a
good correction (linear) to the square-root singularity in the
dilute regime of magnons.

We expect that the reported features of the quantum many-
body edge and extended states, and the rich phase diagram
of the anisotropic Heisenberg AB2 chain in a magnetic field,
notably the KT transition and the topological change of the
excitations, will stimulate theoretical and experimental in-
vestigations in quasi-one-dimensional compounds exhibiting

FIG. 9. (a) and (b) DMRG results for m(h) at λ = 0.4 in the
vicinity of the 1/3 plateau magnetization for an even number of
unit cells: Nc = 120. In (a) we display results for one A site at
each boundary, while in (b) we consider one A site at the left
boundary and B1, B2 sites at the right boundary. (c) One and (d) two
magnon excitations above the magnetization m = 60/120: average
distribution at sites A, 〈nA〉, and B, 〈nB〉 ≡ 〈nB1 〉 + 〈nB2 〉, as a function
of the cell position l − 1 for the same boundary condition as in (b).

topological 1/3 magnetization plateaus, including ultracold
optical lattice analogs.
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APPENDIX A: MAGNETIZATION FOR AN EVEN
NUMBER OF UNIT CELLS

In Fig. 9(a) we show the magnetization m(h) for an even
number of unit cells, Nc = 120, λ = 0.4, and the same bound-
ary conditions used throughout the manuscript: one A site at
each boundary, with the 1/3-plateau magnetization at m =
(1/2) − (1/2Nc) = 59.5/120. This curve should be compared
with that in Fig. 4(a) for Nc = 121. The physical features are
essentially identical to that of an odd number Nc, except that
for even Nc the minimum value of the spin is Sz = 1/2, since
the chain has an odd number of sites.

In Fig. 9(b) we show m(h) for a chain with one A site at
the left boundary, and B1, B2 sites at the right boundary, for
Nc = 120. In this case, the system presents only one edge
state in the left boundary, as shown in Fig. 9(c) through
the magnon distribution along the chain. We also show in
Fig. 9(d) the first extended magnon excitation. These figures
should be compared with the excitations 1© → 2© and 1© → 4©
in Fig. 4(b). This behavior can be understood by noticing that
there is a “local” distinction between A and B1, B2 sites. This
is equivalent to the presence of distinct local potentials for
A and B1, B2 sites, such that this difference inhibits the edge
state in the B1, B2 boundary.

FIG. 10. (a) and (b) DMRG results for the average spin distri-
bution at sites A, 〈Sz

A〉, and B, 〈Sz
B〉 ≡ 〈Sz

B1
〉 + 〈Sz

B2
〉, as a function

of cell position l − 1 at the indicated m-states: 1© (m = 60/121),
2© (m = 61/121), 3© (m = 62/121), and 4© (m = 63/121) for a chain

with Nc = 121 and λ = 0.4.
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APPENDIX B: AVERAGE LOCAL MAGNETIZATIONS

In Fig. 10 we present the average magnetizations at sites
A, 〈Sz

A〉, and at B sites, 〈Sz
B〉 = 〈Sz

B1
〉 + 〈Sz

B2
〉 as a function of

cell position for λ = 0.4. These magnetizations were used

to build the curves for the average magnon distributions
shown in Fig. 4(b), in which case the edge magnon states are
highlighted. This is one of the two degenerate states, which is
chosen by the renormalization procedure, as explained in the
main text.
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