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Spectral function of an electron coupled to hard-core bosons
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We have computed static and dynamic properties of an electron coupled to hard-core-boson (HCB) degrees
of freedom in one spatial dimension. The polaron, an electron dressed with HCB excitations, remains light even
in the strong-coupling limit as its effective mass remains of the order of the free-electron mass. This result
is in a sharp contrast to the Holstein model where the electron effective mass increases exponentially with
the electron-phonon coupling. HCB degrees of freedom mediate the attractive potential between two electrons
that form a bound singlet bipolaron state at any nonzero coupling strength. In the low-frequency regime of the
electron spectral function we observe a quasiparticle (QP) band that is separated from the continuum of states
only in the central part of the Brillouin zone. The quasiparticle weight approaches zero as the QP band enters the
continuum where it obtains a finite lifetime. At finite temperature an electron can annihilate thermally excited
HCBs. Such thermally activated processes lead to a buildup of the spectral weight below the QP band. While the
investigated model bears a resemblance with the Holstein model, we point out many important differences that
originate from the binary HCB excitation spectrum, which in turn mimics spin- 1

2 degrees of freedom.
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I. INTRODUCTION

We investigate the static, dynamic, and thermodynamic
properties of an electron coupled to hard-core-boson (HCB)
degrees of freedom. The model under the investigation re-
sembles the well-known Holstein model (HM) [1], which has
been a subject of extensive research [2–20]. Starting from
the HM, the HCB model (HCBM) is obtained by replacing
each oscillator with its infinite degrees of freedom by a HCB
representing a state that can be either occupied or unoccupied.
Despite a significant reduction of inelastic degrees of free-
dom in comparison to the HM, the statistics of neighboring
energy-level spacings in HCBM remains well described by
the Wigner-Dyson distribution [21], characteristic of nonin-
tegrable ergodic quantum models. The reduction of HM to
HCBM has further important consequences: HCBM possess
a limited energy spectrum which further facilitates finite-
temperature studies, reduction of inelastic degrees of freedom
allows studies of larger-size systems approaching closer the
thermodynamic limit.

An important motivation for the research presented in this
paper originates from the research into high-temperature su-
perconductivity where the quest for the origin of the attractive
interaction between charge carriers is still active. Among the
fundamental open questions is whether the attractive interac-
tion is based on lattice degrees of freedom or is due to the
strong Coulomb interaction that generates the spin-exchange
coupling. Since the binary spectrum of HCBs closely re-
sembles a spin- 1

2 degree of freedom, HCBM can be used to
simulate properties of a spin-polaron [22–24], i.e., electron,
interacting with spin degrees of freedom and thus bridging
the gap between research into lattice and spin models.

So far, physical realization of systems with HCBs is limited
to ultracold atoms in optical lattices [25,26]. Nevertheless,

models where electrons are coupled to HCBs may carry
potential relevance to microscopic mechanisms of supercon-
ductivity. As we show in this paper, the effective polaron
mass remains small even in the limit of very strong electron-
HCB coupling strength. We also demonstrate that HCBs can
mediate the necessary attractive potential for the formation of
light bipolarons.

II. MODEL AND METHOD

We analyze a model with a single electron in a one-
dimensional chain of size L with periodic boundary conditions
coupled to HCB degrees of freedom,

H = −t0
∑

j

(c†
j c j+1 + H.c.) − g

∑
j

n̂ j (b
†
j + b j )

+ω0

∑
j

b†
jb j, (1)

where c†
j and b†

j are electron and HCB creation operators

at site j, respectively, and n̂ j = c†
j c j represents the electron-

density operator. HCBs are defined via the following com-
mutation relation [bi, b†

j] = δi, j (1 − 2b†
i bi ). Parameter g mea-

sures the strength of coupling between the electron and HCB,
ω0 denotes a dispersionless optical HCB frequency, and t0
nearest-neighbor hopping amplitude. From here on we set
t0 = 1.

In most calculations we have used a full translationally
invariant Hilbert space spanning Nst = 2L basis states. In
case of zero-T calculations we have implemented the stan-
dard Lanczos [27] technique. To determine static and dy-
namic properties of the model at finite-T we have imple-
mented the finite temperature Lanczos method (FTLM) as
described in Refs. [28,29] where it has been shown that static
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thermodynamic properties of an operator A can be evaluated
via sampling over random states |r〉 defined in a subspace with
one electron and multiple HCB degrees of freedom,

〈A〉T = Z−1
R∑

r=1

M∑
j=1

e−βε j 〈r|ψ j〉〈ψ j |A|r〉,

Z =
R∑

r=1

M∑
j=1

e−βε j |〈r|ψ j〉|2, (2)

where |ψ j〉 and ε j are Lanczos wave functions and corre-
sponding energies, respectively, in the subspace with one elec-
tron, β = 1/T , and Z is the partition function. Furthermore,
R represents the number of different random states, and M is
the number of Lanczos iterations.

The main goal of this work is to analyze the single-electron
spectral function, corresponding to electron addition, as ob-
tained via the corresponding retarded Green’s function

A(ω, k) = −π−1 lim
η→0+

GR(ω + iη, k), (3)

where, at finite T , GR(ω + iη, k) is obtained via the Gibbs
ensemble,

GR(ω, k) = Z−1
∫ ∞

0
dteiωt

∑
n

e−βε0
n
〈
φ0

n

∣∣ck (t )c†
k (0)

∣∣φ0
n

〉
,

(4)
where φ0

n are multi-HCB eigenstates of the Hamiltonian in
Eq. (1) with no electron present in the system, while ε0

n are
the corresponding energies and ck = 1/

√
L

∑L
j=1 exp(ik j)c j .

We finally take advantage of the FTLM method [28] and
replace the trace over a complete set of states |φ0

n〉 by the
summation over random states |r0〉 = ∑N0

n=1 αn|φ0
n〉, where αn

are distributed randomly, and

A(ω, k) = Z−1
R∑

r=1

N0∑
n=1

M∑
j=1

e−βε0
n
〈
r0

∣∣φ0
n

〉〈
φ0

n

∣∣ck

∣∣ψ j
〉

×〈ψ j |c†
k |r0〉δ(ω − ε j + ε0

n

)
, (5)

where |ψ j〉 and ε j are Lanczos wave functions and the
corresponding energies, respectively, in the subspace with
one electron. Lanczos states are generated starting from
states c†

k |r0〉. Furthermore, R ≈ 100 represents the number
of different random states, N0 = 2L is the size of the Hilbert
space in the zero-electron subspace, and M is the number of
Lanczos iterations. We have used typically M = 50 Lanczos
iterations to obtain static properties at finite T and M = 500
for dynamic quantities combined with the Gram-Schmidt
orthogonalization procedure to avoid spurious nonorthogonal
states that appear at large values of M. The Lorentzian form
of the δ functions with the half-width at half maximum
(HWHM) η was used for graphic representations of A(k, ω).

While our calculations were limited to rather small sys-
tem sizes L = 16, we have expanded our calculations from
using only periodic boundary conditions towards the twisted
boundary conditions [20,30–32] that are equivalent to the
introduction of the magnetic flux penetrating the ring. In this
approach, the kinetic-energy term in Eq. (1) is transformed
to Hkin = −t0

∑
j (c

†
j c j+1eiθ + H.c.), where θ represents a
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FIG. 1. Ground-state properties computed by using full basis on
a ring with L = 16 taking into account the full translational symme-
try: (a) the kinetic energy Ekin = 〈ψk | − t0

∑
j c†

j c j+1 + H.c.|ψk〉 vs g

at different ω0, (b) the total number of HCBs Nb = 〈ψk |
∑

j b†
jb j |ψk〉,

and (c) the effective mass meff = (∂2E (k)/∂k2|k=0)−1 compared with
the free-electron mass m0 = 1/2t0 where E (k) = 〈ψk |H |ψk〉, where
|ψk〉 is the ground-state polaron wave function with momentum k.
Thin lines represent the inverse of the quasiparticle weight defined
as Zqp(k) = |〈ψk |c†

k |∅〉|2 at k = 0 where |∅〉 is the state with no
electron and no HCB excitations. In panels (d) through (f) we show
k-dependent properties at fixed coupling g of the total energy E (k) in
panel (d), Nb(k) in panel (e), and the quasiparticle weight Zqp(k) in
panel (f). Horizontal lines in panel (d) indicate values of ω0.

magnetic flux that penetrates the ring φm = θL/2π in units
of h/e0. Discrete k points kn = 2πn/L can thus be connected
by choosing θ ∈ [0, 2π/L].

Further details concerning the construction of the trans-
lationally invariant basis states and comparison of the se-
lected ground-state properties between a small basis set and
a full basis can be obtained in Appendix A. We show in the
Appendix B that finite-size effects seem to be well under
control in all temperature regimes by comparing A(k, ω)
computed on two different system sizes and different T . In
the Sec. III E we also compute the lowest-frequency moments
of A(k, ω) and compare them with analytical results that
are free of finite-size effects, which in turn renders further
insight into the applicability of FTLM to the model under the
investigation.

III. RESULTS

A. Zero-T properties

In Figs. 1(a) through 1(c) we show some characteristic
ground-state properties of the model at k = 0. With increasing
electron-boson coupling g the kinetic energy Ekin increases
but shows a tendency toward saturation at larger g, as seen
in Fig. 1(a). Ekin also increases with increasing ω0 at fixed
g which stands in contrast to a decrease of the total number
Nb of HCBs with increasing ω0, seen in Fig. 1(b). Further
elaborating on results at fixed g: at smaller ω0 the electron
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is dressed up with a larger number of HCB excitations than
at larger values of ω0; nevertheless, its kinetic energy is less
affected by the presence by the HCB cloud at smaller ω0. It
is furthermore instructive to compare the slow increase of Nb

with increasing g to the increase of the number of phonons
in the strong-coupling limit in the HM where Nph = (g/ω0)2.
This profound difference between the two models is trivially
explained since the maximal on-site occupancy of HCBs is
limited to 1. In Fig. 1(c) we display the effective polaron mass
meff . In the small-g limit, perturbation theory can be applied
and results in the following polaron dispersion relation:

E (k) = ε(k) + 1

L

∑
q

g2

ε(k) − ε(k + q) − ω0
, (6)

where ε(k) = −t0 cos(k) is the free-electron dispersion rela-
tion. In this limit, meff/m0 − 1 ∝ g2 just as in the HM, while
at larger g it displays a slow sublogarithmic increase with g.
Here, the difference with the HM is even more pronounced
since it is well known that, in the strong-coupling limit of
the HM, meff/m0 = exp[(g/ω0)2]. In the case of the HM, meff

can be determined from Zqp(k = 0)−1 = meff/m0, as shown
in Ref. [9]. In Fig. 1(c) we show along meff/m0 also Z−1

qp . The
agreement between both quantities is good for large ω0 at any
g, but starts to deviate strongly at small ω0.

In Figs. 1(d) through 1(f) we show k-dependent properties
of the electron coupled to HCBs at fixed g = 2 and various
ω0. We start with the discussion of the dispersion relation rep-
resenting the polaron energy E (k) = 〈ψk|H |ψk〉, where |ψk〉
is the ground-state polaron wave function with momentum k,
shifted by E (k = 0) which facilitates a quantitative compari-
son between results corresponding to different values of ω0,
as shown in Fig. 1(d). Common to all cases is a quadratic
increase at small k followed by an abrupt flattening of the
band at a value of k0 corresponding to E (k0) − E (0) = ω0. It
seems as if the polaron band, also known as the quasiparticle
(QP) band intercepts the continuum of states that starts at
the energy ω0 above E (0). This is in a sharp contrast to the
Holstein-polaron case where the QP band remains separated
from the continuum in the whole Brillouin zone. A similar
k dependence is observed in the mean HCB number Nb(k),
Fig. 1(e). The QP weight Zqp(k) provides information about
the electronic character of the polaronic state. In Fig. 1(f)
we observe the disappearance of Zqp at k0 where the QP
band enters the continuum. This result suggests that the
ground state |ψk〉 for k > k0 contains nearly zero free-electron
contribution of a state c†

k |∅〉. Instead, |ψk〉 is composed of a
polaron in the state k = 0 that contains a significant amount
of the free-electron wave function c†

k=0|∅〉, and an extra HCB
excitation in the state k. This is further consistent with results
presented in Fig. 2 where we show the electron kinetic energy
Ekin(k) = 〈ψk|Hkin|ψk〉. Naively, one would expect Ekin(k) to
resemble a renormalized free-electron dispersion relation. In
contrast, Ekin(k) shows a nonmonotonic behavior whereby, at
larger k > k0, it again reaches its value at zero momentum,
i.e., Ekin(k = 0) ∼ Ekin(k > k0), consistent with the above
hypothesis.

Before switching to the description of finite-T properties of
the HCBM we show that the electron-HCB interaction leads to
a formation of bound pairs of polarons or bipolarons. To test
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FIG. 2. Electron kinetic energy Ekin vs k at different ω0.

this assumption we investigate a system with two electrons
coupled with HCBs in the presence of a Coulomb on-site
interaction U

H = −t0
∑

j,σ∈[↑,↓]

(c†
j,σ c j+1,σ + H.c.) − g

∑
j

n̂ j (b
†
j + b j )

+U
∑

j

n j↑n j↓ + ω0

∑
j

b†
jb j, (7)

where n j = n j↑ + n j↓ and n j,σ = c†
j,σ c j,σ . We have computed

the binding energy of a bipolaron defined as � = E2 − 2E1

where E2 is the ground-state energy of two electrons with
opposite spin orientation and E1 is the ground-state energy
of a system with one electron. In Fig. 3 we present � vs g for
different values of the HCB frequency ω0. The results show
that at U = 0 the bipolaron remains bound irrespective of the
coupling strength as well as ω0 while at finite U = 1 there
exists a critical value of gc. This result is consistent with �

computed in the atomic limit, i.e., at t0 = 0 where we obtain
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FIG. 3. � vs g for different values of ω0 as shown in the legends
for U = 0 and 1 in panels (a) and (b), respectively. In panels (c) and
(d), we present γ ( j) at fixed g = 2 while the other parameters
of the model are the same as in panels (a) and (b). All results
were computed on a system with 13 sites using periodic boundary
conditions.

035135-3
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FIG. 4. Finite-T properties of selected expectation values com-
puted on a system with L = 16 presented on a semilog plot. In
panel (a) we present the energy of the system E (T ) = 〈H〉T per
site L where the expectation value is taken by using the FTLM
method, as described in Eq. (2). Similarly, in panel (b), we present
Ekin(T ), in panel (c) we display the electron-HCB coupling part
of the Hamiltonian in Eq. (1): Eg = −〈g∑

j n̂ j (b
†
j + bj )〉T , and in

panel (d) the number of HCB per site nb = Nb/L along with the
HCB thermal distribution functions n0

b = 1
exp[βω0]+1 , shown using thin

black lines.

the following expression for the binding energy:

� =
√

4g2 + ω2
0 − 1

2

√
16g2 + ω2

0 − ω0/2 + U, (8)

which leads to � < 0 for U = 0 at arbitrary |g| > 0.
To get further insight into the shape of the bipolaron we

also present in Fig. 3 the density-density correlation function

γ ( j) =
∑

i〈ψ0|nini+ j |ψ0〉∑
i,l〈ψ0|nini+l |ψ0〉 , (9)

defined so as
∑

j γ ( j) = 1. The � < 0 regime is reflected in
an exponentially decaying form of γ ( j). At finite U the bound
state is formed from two electrons positioned predominantly
on neighboring sites. This results bears a similarity to a S1
bipolaron in the Holstein-Hubbard model [33–36].

B. Finite-T properties

In Fig. 4 we present selected thermodynamic properties of
the model. The total energy of the system increases with T as
well as with ω0; see Fig. 4(a). This is in part due to the thermal
increase of the average HCB site occupation number nb. The
other contribution comes from the increase of the kinetic
energy Ekin, shown in Fig. 4(b), that with increasing T ap-
proaches its high-T limit Ekin = 0. Unexpectedly, Ekin shows
very weak dependence on the HCB frequency ω0 except at
very small T . Likewise, the electron-HCB coupling part of
the Hamiltonian, Eg as shown in Fig. 4(c) increases with T
and even changes sign, also displays very little dependence
on ω0 above T � 1. The HCB occupancy per site nb closely
follows the Fermi-Dirac-like distribution, characteristic for
HCBs n0

b ∼ 1/[exp(βω0) + 1], as shown in Fig. 4(d) by thin

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
k[π]

0

0.1

0.2

0.3

0.4

0.5

<n
k>

T=0.05
T=0.2
T=0.4
T=0.6
T=1.0
T=2.0
T=5.0
T=10.0

ω0=1.0,  g=2.0

L=16

FIG. 5. The single-particle density matrix n̄k vs T computed by
using ω0 = 1, g = 2, and L = 16.

black lines. In the high-T limit, i.e., for T � ω0, numerical
results clearly approach nb → 1/2.

In Fig. 5 we present the single-particle density matrix n̄k

defined as 〈c†
kck〉T where the thermal average is taken in the

subspace with one electron. In addition, n̄k represents the sum
rule of the electron-removal spectral function. In the case of
the free electron, i.e., at g = 0, n̄k (T = 0) = δk,0, while at
finite g > 0, n̄k (T = 0) remains centered around k = 0 but
obtains a finite width in momentum space. With increasing
T its width increases and in the T → ∞ limit approaches
a constant n̄k = 1/L. We should also stress that, besides the
sum rule

∑
k n̄k = 1 there exists another slightly less obvious

relation −2t0
∑

k cos(k)n̄k = Ekin(T ).

C. Spectral functions A(k, ω)

In Fig. 6 we present density plots representing A(ω, k) in
the entire Brillouin zone (BZ) at fixed coupling g = 2 and
two different sets of ω0 = 1 and 0.2. For a more quantitative
analysis we also display with dashed lines the corresponding
ground-state polaron energy E (k) = 〈ψk|H |ψk〉, where |ψk〉
is the ground-state polaron wave function with momentum k.
We focus first on ω0 = 1 and small T/ω0 = 0.05 where we
clearly observe in the low-ω regime the QP band only in a
limited part of the Brillouin zone, k ∈ [−0.6π, 0.6π ]. The
spectral weight of the QP band is given by Zqp(k). Outside
this interval the QP band enters the continuum of states and
Zqp approaches zero, also consistent with Figs. 1(d) and 1(f).

In the Appendix B we show that only a partial separation of
the QP band from the continuum is a consequence of the HCB
commutation relation. In a model where the Hilbert space of
the HCBM is expanded to contain up to two phonon degrees
of freedom per site, the QP band remains visible throughout
the entire BZ and approaches the lower edge of the continuum
near the edge of the BZ.

This behavior is in a sharp contrast to the HM case where
the QP band extends through the whole BZ and is entirely
located below the continuum [9,16–20]. Within the incoherent
part of the spectra we observe a rather-well-defined band of
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FIG. 6. A(ω, k) for g = 2 vs different values of T/ω0 presenting
two sets of results in parallel for ω0 = 1 in panels (a) through (c) and
ω0 = 0.2 in panels (d) through (f). The same size of the system L =
16 was used as in Fig. 1. In addition we have used twisted boundary
conditions to compute A(ω, k) at 25 equally spaced k points in the
interval k ∈ [0, π ] with increments of �k = π/24. Moreover, in all
figures from panels (a) to (f), the same color coding is used to enable
direct comparison between different cases. In all figures we also
display the polaron dispersion relation at zero-T E (k) using a dashed
line as a guide to the eye. Lorentzian broadening η = 0.05 was used
in all cases.

high-energy excitations with its maximal intensity around the
edges of the BZ. The separation between between the QP band
and these high-energy excitations can be estimated from the
energies computed in the atomic limit of the model, i.e., at
t0 = 0:

ε±
t0=0 = 1

2

(
ω0 ±

√
ω2

0 + 4g2
)
, (10)

which gives the energy gap �gap = (ω2
0 + 4g2)1/2 = 4.1,

which further determines an estimate of the separation be-
tween the two bands. With increasing T additional spectral
weight develops below the QP band predominantly around the
center of the BZ, as seen in Figs. 6(b) and 6(c). This buildup
of the spectra below the QP band appears because at elevated
T an electron can annihilate a thermally excited HCB.

Remnants of the QP band remain clearly distinguishable
even at T = ω0, the same holds also for the well-pronounced
peaks around the edges of the BZ in the high-frequency
regime. In contrast to the HM case, the extra spectral weight
that develops below the QP band extends only ω0 below the

FIG. 7. Comparison of A(ω, k) for ω0 = 1 and g = √
2 or λ =

g2/(2ω0t0 ) = 1 vs different values of T/ω0 for two different models.
The dimensionless coupling constant λ in the HM case at λ = 1
represents the intermediate coupling regime. From panels (a) through
(c), for the HCBM and from panels (d) through (f) for the HM.
The latter set of results was computed by using a Hamiltonian as
defined in Eq. (1) but with standard boson commutation relations
[bi, b†

j] = δi, j and by using the method described in Ref. [20]. In all
panels from (a) to (f) we have used identical color coding to enable
direct comparison between different cases. Lorentzian broadening
η = 0.05 was used in all cases.

bottom of the QP band, consistent with the fact that only a
single HCB is allowed per site.

In spectral functions at small ω0 = 0.2, shown in Figs. 6(d)
through 6(f), the QP band is barely visible even at small
T/ω0 = 0.05, it merges with the continuum around k ≈
0.35π . This is also consistent with the behavior of Zqp, shown
in Fig. 1(f), which at k ≈ 0.35π approaches zero. In contrast
with the ω0 = 1 case where the QP band is well separated
from the incoherent continuum, at ω0 = 0.2 we find rather
large spectral weight just above the QP band. Towards the
edge of the BZ the incoherent part of the spectrum consists
of a series of separated and split bands.

In Fig. 7 we compare between A(ω, k) as obtained from
the HCBM and the standard HM using identical model pa-
rameters. The most notable distinction is observed already at
small T/ω0 = 0.1, as shown in Figs. 7(a) and 7(d). While
in the HCBM, a single well-defined QP band in the vicinity
of the center of the BZ is observed, in the HM there are
multiple well-defined bands separated by ω0 above the QP
band extending throughout the entire BZ. Spacing between
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FIG. 8. A(ω, k) and �(ω, k) for g = 2 and ω0 = 1 and 0.2 com-
puted at two distinct values of T/ω0 = 0.1 in panels (a), (c), (e),
(g) and 1.0 in panels (b), (d), (f), (h). The same size of system was
used as in Figs. 1 through 6. In each figure we present nine curves
computed at k = mπ/8, m = 0, . . . , 8. Lorentzian broadening η =
0.05 was used in all cases, which is also responsible for a small
deviation from zero in Fig. 8(c) for ω � −2.5.

multiple bands observed in the case of HM model can be
explained by inspecting the energy spectra in the atomic limit
of the model given by εn

t0=0 = −g2/ω0 + nω0. In addition,
we find larger effective mass in the HM that is reflected in
a less dispersive QP band in comparison with the HCB case.
A quantitative analysis yields a mass ratio mHM

eff /mHCB
eff ≈ 1.6.

Shifting now the comparison to finite-T results we observe
additional spectral weight that emerges with increasing T
below the respective QP bands in both cases. Nevertheless,
in the HCBM the latter is limited to the energy interval
[E (k), E (k) − ω0] and remains restricted to the center of
the BZ while in the HM case it appears as replicas of the
nearly flat QP bands located at energies E (k) − nω0 and with
decreasing intensity as n ∈ N increases.

D. Self-energies

To study the lifetime of the QP peaks at elevated T , we
have computed the corresponding self-energies. In Fig. 8
we show a direct comparison between a family of A(ω, k)
obtained in the interval k ∈ [0, π ] and the imaginary parts
of matching self-energies �′′(ω, k) for two different values
of ω0 = 1 and 0.2 at low T/ω0 = 0.05 as well as for high
T/ω0 = 1. Results of �′′(ω, k) were obtained from the re-
lation GR(ω, k) = 1/[ω − ε(k) − �(ω, k)], where ε(k) is the
free-electron energy ε(k) = −2t0 cos(k). From comparison
of Figs. 8(a) and 8(c) we notice that �′′(ω, k) ≈ 0 in the
frequency regime that corresponds to the well-defined QP
band in Fig. 1(a). In Fig. 8(a) this regime, however, does not
extend though the entire BZ since �′′(ω, k) becomes finite

already around k0 = 3π/4 and at the value of ω corresponding
to the lowest peak in A(ω, k0). This behavior shows that
a well-defined quasiparticle with an infinitely long lifetime
exists only in a limited region of the BZ. In Fig. 8(g), cor-
responding to ω0 = 0.2 the regime of �′′(ω, k) ≈ 0 is even
more limited to the vicinity of the QP peak at k = 0. In both
cases �′′(ω, k) displays a rather pronounced k dependence
which is in contrast to the HM case [20]. At elevated T ,
�′′(ω, k) deviates significantly from zero already at frequen-
cies corresponding to the positions of QP peaks, as seen in
Figs. 8(d) and 8(h). This result demonstrates the importance
of incoherent processes that originate from thermal collisions.

E. Frequency moments

We have computed the lowest frequency moments of the
spectral function. As already shown in Refs. [19,20,37], fre-
quency moments of the single polaron spectral function can
be obtained analytically by using the following relation:

Mm(k) =
∫ ∞

−∞
ωmA(ω, k)dω

= 〈[[[ck, H], H], . . . , H]c†
k〉T , (11)

where 〈. . . 〉T represents the thermal average over zero-
electron states and the number of commutators corresponds
to the order of the frequency moment. Taking into account the
HCB commutation relation [bi, b†

j] = δi, j (1 − 2b†
i bi ), analyt-

ical expressions may be obtained for arbitrary moments even
at finite T . Here we list just a few:

M0(k) = 1,

M1(k) = ε(k),

M2(k) = ε2(k) + g2,

M3(k) = ε3(k) + 2g2ε(k) + g2ω0
(
1 − 2n0

b

)
, (12)

where ε(k) = −2t0 cos(k) and n0
b = 1/[exp(ω0/T ) + 1]. Note

that M0(k) through M2(k) do not depend on T .
In Figs. 9 we plot Mn(k); n ∈ [1, 2, 3] extracted from

A(ω, k) for a set of temperatures T ∈ [0.2, 0.4, . . . , 2.0].
Except for the smallest T = 0.2 and 0.4, numerically ob-
tained frequency moments match nearly perfectly analytical
predictions from Eq. (12) that are free of finite-size effects.
A slight disagreement at low T could be the consequence
of the discrete as well as limited frequency interval used in
our calculations. It is instructive to note that the agreement
with analytical predictions becomes even better at higher
T , which further validates the applicability of the finite-T
Lanczos procedure as well as the introduction of twisted
boundary conditions. Attention should also be drawn to the
notion that, in contrast with numerically obtained Mn(k) from
calculations on a finite-size system with L = 16, analytical
results in Eq. (12) are free of finite-size effects. By applying
twisted boundary conditions we were able to present Mn(k) on
25 k points spaced by �k = π/24 instead of on L/2 + 1 = 9
points when using periodic boundary conditions. We observe
no spurious effects that might be expected due to twisted
boundary conditions.
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FIG. 9. M1(k), M2(k), and M3(k) at ω0 = 1 and g = 2. In all plots
we present with open symbols frequency moments obtained from
numerical results of A(ω, k) computed on L = 16 sites system with
twisted boundary conditions, just as in Fig. 6, but for ten different
values of T ∈ [0.2, 0.4, . . . , 2.0]. Results for the lowest T = 0.2 and
0.4 are represented with blue and green circles, respectively, while
the rest of the results for T � 0.6 are shown in red. Blue lines
represent analytic results from Eq. (12). In panel (c) we observe a
slight downward shift of numerical data with increasing T , which is
nearly perfectly captured by a set of thin lines representing M3(k)
[Eq. (12)].

IV. SUMMARY

We have computed typical ground state as well as finite-
T static and dynamic properties of an electron coupled to
inelastic HCB degrees of freedom. While the model resembles
a widely investigated HM, the limitation of infinite phonon
degrees of freedom to HCBs brings about important differ-
ences. A polaron dressed with HCB excitations remains light,
its effective mass remains of the order of the free-electron
mass even in the limit of strong coupling. Still, the model
remains within a class of nonintegrable models that exhibit
ergodic properties at elevated temperatures.

In the electron spectral function we observe a dispersive
QP peak forming a QP band with its maximal spectral weight
centered around the center of the BZ. The peak remains
separated from the continuum of states only in the central
part of the BZ. With increasing momentum the weight of the
QP band approaches zero as the peak enters the continuum
while the imaginary part of the self-energy starts deviating

from zero, which in turn signals the appearance of a finite
lifetime. This result is in contrast with the HM where the
QP band remains separated from the continuum throughout
the whole BZ. With increasing T , additional features in the
spectral function emerge in the form of additional spectral
weight below the QP band already at temperatures below
ω0. These features appear due to processes where an electron
annihilates one or more thermally excited HCBs.

As mentioned in the introduction, models where electrons
are coupled to HCBs may carry potential relevance to micro-
scopic mechanisms of superconductivity where the attraction
between electrons is mediated by HCB degrees of freedom.
Such mechanisms have been comprehensively investigated
in connection with bipolaron formation mediated by lattice
vibrations [7,35,36,38–40]. One of the shortcomings of these
theories are exponentially large effective polaron and bipo-
laron masses in the strong electron phonon coupling regime.
We have also shown that, in a system of two electrons with
total spin S = 0 and in the absence of the on-site Coulomb
interactions, a bound bipolaron exists at any finite HCB-
electron coupling strength g. In the case of finite Coulomb
interactions there exists a threshold value of gc. Since the
effective polaron mass remains small even in the limit of
very strong electron-HCB coupling regime, HCB-mediated
electron-electron interaction leads to the formation of light
bipolarons.
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APPENDIX A

To gain further physical intuition into the ground-state
properties of the HCBM as well as into the numerical ap-
proach used in this work, we have diagonalized the model
in a restricted translationally invariant basis that spans only
14 states, obtained by acting with the off-diagonal part of
Hamiltonian in Eq. (1), i.e.,

Hoff = Ht0 + Hg = −t0
∑

j

(c†
j c j+1 + H.c.)

− g
∑

j

n̂ j (b
†
j + b j ), (A1)

Nh times on a state with a single electron in a translationally
invariant state k with zero HCB degrees of freedom to obtain
a limited basis set, {∣∣φ(Nh )

k,l

〉} = HNh
off c†

k |∅〉. (A2)

Translationally invariant basis states are represented by HCB
position coordinates i j as |i1, i2, . . . , iNHCB〉k, where NHCB de-
notes the number of HCBs of a particular parent state. Due to
the translational invariance, the electron position is kept fixed
and does not need to be indexed. For the case of Nh = 4 we
obtain 14 states: |∅〉k = c†

k |∅〉, |0〉k , | ± 1〉k , |0,±1〉k , | ± 2〉k ,
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FIG. 10. Ground-state properties computed by using a full basis
on a ring with L = 16 with Nst = 2L parent states (thick lines)
taking into account the full translational symmetry in comparison
with calculations using only Nst = 14 parent states (thin lines).
Panels (a) and (b) show k-dependent energy E (k) − E (0) and Zqp(k),
respectively, at fixed coupling g. Panel (c) shows the effective mass
meff/m0 = 2t0(∂2E (k)/∂k2|k=0 )−1 vs g.

| ± 3〉k , |0,±2〉k , |1, 2〉k , | − 1,−2〉k . We next list just a few
nonzero matrix elements:

k〈∅|H |∅〉k = −2t0 cos(k),

k〈0|H |0〉k = k〈 ± 1|H | ± 1〉k = ω0, . . . ,

k〈∅|H |0〉k = k〈 ± 1|H |0 ± 1〉k = −g,

k〈0|H | ± 1〉k = k〈 ± 1|H | ± 2〉k = −t0e∓ik,

k〈0,±1|H |0,±1〉k = 2ω0.

· · · (A3)

In Fig. 10 we show a comparison between results obtained
by using a full translationally invariant basis (FB) on an
L = 16 site system with Nst = 2L states with those obtained
by using only 14 limited basis states (LBSs) as listed above.
Note also that results presented in the main body of the
paper have been obtained by using the full translationally
invariant basis. The only exemption from this rule is results
of the HM presented in Fig. 7 where LBS states have been
used combined with the standard Lanczos technique [27] and
described in detail in Refs. [3,4]. Using LBS, we expectedly
obtain consistently higher energies in comparison with the
FB while it is also evident that differences between results
decrease with increasing ω0 at fixed coupling g. This con-
sistently holds true for all quantities, shown in Fig. 10. It is
rather surprising that the comparison of meff/m0 for the largest
ω0 = 1 shows nearly identical results obtained by using sub-
stantially different numbers of basis states. Some of the main
characteristics of ground-state properties may be discerned

FIG. 11. A(ω, k) for ω0 = 1, g = 2 for two different system sizes
L = 12 shown in panels (a) through (c) and L = 16 shown in panels
(d) through (f) and three different values of T/ω0 as specified in
the panels. In all cases A(ω, k) was computed in 25 equally spaced
nonequivalent k points in the interval k ∈ [0, π ] with increments of
�k = π/24. Note that, in all panels from (a) to (f) the same color
coding was used to enable direct comparison between different cases.

FIG. 12. A(ω, k) for ω0 = 1, g = 2 for (a) the HCBM, (b) the
truncated HM (THM) with up to two phonon quanta per site, and
(c) the HM with up to 22 phonon quanta per site.
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even from considerably reduced LBS, such as a decrease of
Zqp(k) with increasing k and a slow increase of meff/m0 with g.
Nevertheless, much larger systems with complete basis states
are needed to obtain some of the most interesting properties
of the polaron, such as the disappearance of the Zqp(k) with
increasing k, and crossing of the QP band with the continuum
of states that is reflected in the flattening of E (k) at k0, given
by the solution of E (k0) = E (0) + ω0. In addition, using
FB as opposed to LBS is necessary to investigate finite-T
properties of the model where multiple HCB excitations are
needed to properly describe thermally activated processes.

APPENDIX B: FINITE-SIZE ANALYSIS

We investigate the extent of finite-size effects on the spec-
tral function. In Fig. 11 we present results obtained on two dif-
ferent systems with L = 12 and 16 sites. In both cases, A(ω, k)
were computed on discrete k points according to periodic
as well as twisted boundary conditions, equivalent to kn,m =
2πn/L + mθ with n ∈ [−L/2, L/2] and θ = 2π/(MθL); m ∈

[0, Mθ − 1]. For L = 12 and 16 systems we have chosen
M = 4 and 3, respectively. As a result, for each system size
A(ω, k) were computed by using Mθ ∗ L/2 + 1 nonequivalent
k points. Despite substantially different system sizes, results
are qualitatively identical at any T .

Finally, we follow the evolution of A(ω, k) with increasing
number of allowed bosonic excitations per site starting from
the HCBM in Fig. 12(a), over a truncated HM (THM) where
we allow up to two phonon quanta per site, to the HM in
Fig. 12(c) where we have expanded the Hilbert space up to a
maximum of 22 phonon excitations per site. The emphasis of
this analysis is on the evolution of the QP band. While in the
HCBM the QP band enters the continuum at finite k0, already
in the HMR it flattens out and shows a tendency to disperse
below the continuum almost towards the edge of the BZ, as
seen in Fig. 12(b). Note that, in the case of the HM g = 2
represents the strong-coupling limit, λ = 2, where we observe
a nearly flat QP band with a substantially reduced QP weight,
followed by a series of nearly flat bands, separated by ω0 as
predicted by the strong-coupling theory.
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