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Tunneling density of states in a Y junction of Tomonaga-Luttinger liquid wires:
A density matrix renormalization group study
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It is well known that the pristine bulk of an interacting one-dimensional system in Tomonaga-Luttinger
liquid (TLL) phase shows power law suppression of quasiparticle tunneling amplitude for all values of TLL
parameter g, in the zero-energy limit. We perform a density matrix renormalization group (DMRG) study of a
fully symmetric Y junction of TLL wires and observe an anomalous enhancement of the tunneling density of
states (TDOS) in the vicinity of the junction for both (a) interacting bosons case and (b) interacting fermions
case, when g > 1. We also observe suppression of TDOS for g < 1 for both bosonic and fermionic cases. We
find that the TDOS enhancements follow different power laws for bosonic and fermionic cases which suggests
that these represent distinct fixed points, owing to statistical correlations that play an important role at the Y
junction. Analysis of static conductance for the junction indicates that the fixed point for 1 < g < 3 resembles
the mysterious M fixed point of Y junction predicted by Oshikawa, Chamon, and Affleck [J. Stat. Mech. (2006)
P02008]. We also show that the TDOS enhancement spans over a length scale of ∝ ω−1 from the junction, for
1 < g < 3.
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I. INTRODUCTION

The technological advances at sub-micron scales have
enabled fabrication of one-dimensional (1D) wires and their
junction with high precision [1–5]. In a confined quasi-1D
geometry, effect of inter-electronic repulsion is omnipresent,
and the weakest of interactions could drive the system to the
Tomonaga-Luttinger liquid (TLL) phase in the low-energy
limit [6–8]. The TLL phases [9,10] of 1D electronic quantum
systems have been of sustained interest to condensed matter
physicists due to their non-Fermi liquid behavior [9,11–15].
The power law decay of the bulk electronic density of states
(DOS), ρ(ε) ∼ |ε − εF |α (εF being the Fermi energy) is a well
known signature of TLL wires, where the value of α depends
on the system parameters. Here α > 0 indicates the fact that
the DOS goes to zero as the energy approaches the Fermi
energy which is an effect induced purely due to inter-particle
interaction.

An early study of tunneling into a TLL wire was reported
by Oreg and Finkelstein [16] and since then there have been
several works reported on the topic [17–23]. Amongst these,
Jeckelmann in Ref. [20] applied dynamical density matrix
renormalization group (DMRG) method to a 1D spinless
fermion (SF) chain with nearest neighbor interaction. They
confirmed that the bulk DOS shows a power law suppression
as ε → εF in the gapless phase, as is expected from the

*monalisa12i@bose.res.in; singhroy.monalisa@gmail.com
†manoranjan.kumar@bose.res.in
‡sourin@iiserkol.ac.in
§These authors contributed equally to this work.

TLL theory. They also confirmed that the tunneling density
of states (TDOS) shows an enhancement (suppression) as
ε → εF at the boundary of the SF chain for attractive (re-
pulsive) inter-particle density-density interaction, which is
consistent with the predictions of TLL theory [24].

An interesting variant of the two-terminal TLL wire set
up is the junction of three or more TLL wires. Such multi-
wire junction of TLL wires presents a quantum impurity
problem which is distinct from an isolated quantum impurity
embedded in the bulk of a pristine TLL owing to its much
richer fixed point structure. In recent times, junctions of
TLL wires have gained much interest, especially the three-
wire junction (Y junction) which is the simplest non-trivial
junction of 1D TLL wires. This structure can be recognized
as a basic constituent of future quantum circuits and has
already been explored experimentally [25–32]. The first the-
oretical work on this topic was reported by Nayak et al.,
where they used bosonization and boundary conformal field
theory techniques to obtain fixed point conductance of the
Y junction hosting a resonant level [33]. Since then the
studies on the topic has predominantly focused on finding
various interesting fixed points and analyzing the spectral
properties of the system using bosonization, weak interaction
renormalization group (WIRG) or functional renormalization
group (fRG) [18,21,33–52]. In particular, an exhaustive study
of various fixed points of a Y junction enclosing a central flux
(φ), and their corresponding conductances was reported by
Oshikawa et al. using bosonization and boundary conformal
field theory techniques. They conjectured the existence of
a stable “mysterious” M fixed point (φ = 0 condition) in
the attractive interaction regime 1 < g < 3 [49]. However,
they also concluded that the conformally invariant boundary
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condition describing this fixed point could not be identified
and it remains an open problem. Later Rahmani et al. de-
veloped a method to evaluate the conductance of junction of
multiple TLL wires using static ground state correlations and
applied it to the M fixed point where the ground state was
obtained numerically [45].

Studies of TDOS using bosonization technique for a Y
junction of TLL wires was reported by Agarwal et al. in
Ref. [18] and a collection of fixed points were identified which
showed enhancement of TDOS in the zero-frequency limit.
This effect was attributed to an Andreev-like reflection off
the junction. This study was later extended to include spin
degrees of freedom in Ref. [21]. The ground state properties
of Y junctions have also been explored using density matrix
renormalization group (DMRG) techniques [53–55]. However
it should be noted that a numerical study using dynamical
DMRG techniques focused on evaluation of TDOS for Y
junction is presently lacking in literature, and is the primary
focus of the present work.

This paper starts by considering a Y junction of spin − 1/2
chains with nearest neighbor anisotropic (XXZ) Heisenberg
type interaction. This model can be exactly mapped on to a
hard-core boson (HB) model with nearest neighbor interac-
tion. We perform a DMRG study of Y junction for the XXZ
model and the corresponding SF model. We use the correction
vector approach to calculate the local contribution to the
TDOS of the system [56–59]. We first study the Y junction
of SF chains and draw a comparison with the existing studies
of 1D SF chains and report enhancement of TDOS in g > 1
limit. Thereafter, we shift our focus to the XXZ Y junction and
verify the existence of enhancement in TDOS near the junc-
tion in g > 1 limit. We also demonstrate that the enhancement
of TDOS is related to the M fixed point. It should be noted
that the evaluation of TDOS requires dynamical correlations
functions as input. The previous study by Rahmani et al.
[45] used time-independent DMRG to calculate the static
ground state correlations, while we evaluate the dynamical
correlations using dynamical DMRG techniques for the M
fixed point, hence enriching the existing understanding of
this analytically unsolvable problem of M fixed point. Next,
we explore the finite size effect on the TDOS spectra in the
enhancement regime, and comment on the length scale of the
observed TDOS enhancement near the junction.

This paper is organized in four sections. The motivation
and existing studies related to our problem have been intro-
duced in Sec. I. The model and numerical techniques are
described in detail in Sec. II. The calculation of TDOS for the
system using the correction vector method has been explained
there. The results are described in Sec. III. We have concluded
by summarizing our findings in Sec. IV.

II. MODEL AND NUMERICAL TECHNIQUES

We consider a Y junction of N = 3� + 1 sites, constituted
by three 1D TLL wires of � sites each, connected at a common
central site labeled x = 0, as shown in a schematic Fig. 1.
Our goal is to study both the bosonic and the fermionic Y
junction models. We start by considering a Y junction of three
spin-1/2 chains, where spins are interacting with their nearest
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FIG. 1. Schematic of Y junction of size N = 3� + 1 sites, formed
by three 1D TLL wire arms of length � each (encircled), joined at an
additional central site, at x = 0. In our convention, the labeling of the
spin sites start from the junction, as illustrated in the figure.

neighbors only through an anisotropic (XXZ) Heisenberg like
interaction. The model Hamiltonian for the system is given by

H =
�−1,3∑

x=1,k=1

[
J

2
(S+

x,kS−
x+1,k + H.c.) + JzSz

x,kSz
x+1,k

]

+
3∑

k=1

[
J

2
(S+

0 S−
1,k + H.c.) + JzSz

0Sz
1,k

]
, (1)

where S+
x,k (S−

x,k ) and Sz
i,k are the spin raising (lowering)

operator and z component of local spin operator, respectively,
acting at lattice site x on leg k of the system. S+

0 (S−
0 ) and

Sz
0 are the spin raising (lowering) operator and z component

of local spin operator, respectively, acting at the junction site
x = 0. The first part of the Hamiltonian represents exchange
interactions in each of the three wires (labeled by k = 1, 2, 3).
In the present work, we consider the XXZ model Hamiltonian,
therefore we have taken Jx = Jy = J , the value J = 1 has
been kept fixed in all the calculations related to the XXZ Y
junction, and Jz is the variable parameter.

Next, we consider the Y junction of HB wires where the
bosons obey only nearest neighbor inter-particle interaction,
and the corresponding Hamiltonian can be written as

H =
�−1,3∑

x=1,k=1

[
−t (b†

x,kbx+1,k + H.c.)

+V nx,knx+1,k + μ

(
nx,k + 1

4

)]

+
3∑

k=1

[−t (b†
0b1,k + H.c.) + V n0n1,k] + μ

(
n0 + 1

4

)
,

(2)

where bx,k (b†
x,k ) and nx,k are the boson annihilation (cre-

ation) operator and the number operator, respectively, acting
at lattice site x of leg k. b0 (b†

0) and n0 are the boson anni-
hilation (creation) operator and occupation number operator,
respectively, acting at the junction site x = 0. In the HB limit,
the maximum occupation number of the each site is 1, i.e.,
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each site possesses two degrees of freedom, similar to the
spin − 1/2 system. The Hamiltonian in Eq. (1) can be exactly
mapped to this bosonic Hamiltonian in Eq. (2), through the
transformation t = −J/2, V = Jz, and μ = Jz, where t, V ,
and μ are the transfer integral, density-density interaction
strength between neighboring sites, and the chemical potential
strength of the system, respectively [60]. Since there is a
one-to-one mapping between the HB and XXZ spin − 1/2
and the whole energy spectrum is same, we solve only the
XXZ model and refer to it as the bosonic Y junction.

Finally, we consider the SF model on the Y junction
geometry, where the fermions obey only nearest neighbor
inter-particle interaction, and the corresponding Hamiltonian
can be written as

H =
�−1,3∑

x=1,k=1

[
−t (c†

x,kcx+1,k + H.c.) + V nx,knx+1,k

+μ

(
nx,k + 1

4

)]

+
2∑

k=1

−t (c†
0c1,k + H.c.) − t ′(c†

0c1,3 + H.c.)

+
3∑

k=1

V n0n1,k + μ

(
n0 + 1

4

)
, (3)

where cx,k (c†
x,k ) and nx,k are the fermion annihilation (cre-

ation) operator and the occupation number operator, respec-
tively, acting at site x of leg k. c0 (c†

0) and n0 are the
fermion annihilation (creation) operator and number operator,
respectively, acting at the junction site x = 0. The model
Hamiltonian in Eq. (1) can be mapped to this fermionic model
Hamiltonian in Eq. (3) using Jordan-Wigner (JW) transforma-
tion [61] through the parameter transformations as: hopping
integral t = −J/2, electron-electron interaction V = Jz and
the chemical potential μ = Jz. t ′ in Eq. (3) can be related to t
in Eq. (2) as t ′ = ∏�

x=1(−1)nx,2+n0t (the site labels are shown
in schematic Fig. 1). It is easily seen that Eq. (3) is essentially
same as Eqs. (1) and (2) for a linear 1D chain. However,
for the multi-wire junction, the SF system is distinguished
due to the non-trivial phase factors associated in the hopping
interaction t ′ between the junction and the third constituent
wire, which accumulates the delocalized JW phase from the
other two constituent wires. We refer to this SF Y junction
system as the fermionic Y junction. It should be emphasized
that this excess phase in the fermionic case is not a single
particle phase, rather it is a many-body phase which depends
on the occupancy of fermions at the central site and the
other constituent chains. When we are in the TLL phase, the
electron is delocalized and hence the occupancy of fermion
at the central site is a dynamical quantity. So, the difference
between the bosonic and fermionic case can be thought of
as a difference of having or not having a dynamical phase
factor associated with the junction site. Further, it should be
noted that this extra phase which distinguishes the Y junction
of bosonic chains from the Y junction of fermionic chains
can not be thought of as a small difference since it can have
non-trivial consequences in deciding the stable fixed point

for the Y junction. This difference would also be reflected
later in the TDOS power laws for both models. In continuum
model of TLL wire, these extra phase are introduced into the
tunneling Hamiltonian forming the junction via Kline factors
and a detailed discussion on the influence of their presence
in deciding stable fixed point of Y junction can be found in
Ref. [48]. In our numerical analysis using DMRG for the
fermionic Y junction, we have kept t ′ = t = 1 fixed for all
calculations. In this paper we study both the bosonic and
fermionic Y junction models.

To correlate our lattice model parameters with the TLL
parameter, we use the results from the 1D bosonic and
fermionic systems. The TLL parameter gs corresponding to
the exchange interaction Jz of 1D spin-1/2 or bosonic system
can be derived using Bethe ansatz (a derivation is presented in
Ref. [62]), and is given by

1

gs
= 1 + 2

π
sin−1

(
Jz

J

)
. (4)

The TLL parameter g f corresponding to the inter-particle
density-density interaction V in the half-filled 1D fermionic
model can be derived using Bethe ansatz (a derivation is
presented in Ref. [13]) and is given by

g f = π

2

1

π − cos−1 (V/2t )
. (5)

The limit Jz = 0 (V = 0) corresponds to the free-particle
limit, where gs = 1 (g f = 1). The ferromagnetic Jz < 0 (or
attractive limit V < 0) corresponds to the TLL parameter 1 <

gs(g f ) < ∞, and the antiferromagnetic Jz > 0 (or repulsive
limit V > 0) corresponds to 0 < gs(g f ) < 1. We study the
TDOS in the bosonic and the fermionic Y junction systems in
both the 0 < gs(g f ) < 1 and 1 < gs(g f ) < 3 limits to identify
the enhancement and suppression regimes.

Since all the model Hamiltonians considered on the Y
junction geometry in Eqs. (1)–(3) contain many-body inter-
action terms, hence, the degrees of freedom in the system
increases exponentially with the system size N . Therefore,
the exact diagonalization (ED) technique is used for system
sizes up to N ∼ 28, and DMRG technique is used for larger
system sizes, up to N = 610. DMRG is a state-of-art numer-
ical technique based on the systematic truncation of irrele-
vant degrees of freedom, and renormalization of the system
observables with the reduced density matrix wave function
[63,64]. For accurate calculations we have used the modified
DMRG algorithm especially designed for Y junction, which
renders the accuracy of these calculations comparable to that
for linear 1D chains [54]. To maintain a reliable accuracy in
the calculations, eigenvectors corresponding to ∼200 largest
eigenvalues of the density matrix are retained in each DMRG
sweep. The truncation error of the density matrix eigenvalues
is less than 10−12. For better accuracy, we perform finite
DMRG upto 10 sweeps, and the total error in the ground state
is less than 0.01%.

In this paper, study of TDOS is our main focus. TDOS
is equivalent to locally injecting a magnon into the ground
state of the system, which can access all the excited states
with a finite transition probability determined by the non-zero
transition matrix elements between the ground state and the
respective excited state. Thus, the TDOS for a system gives
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information about the low lying excitations in the system, and
can be defined as

ρx(ω) =
∫ ∞

0
e−(iωt−η)dt |〈ψ0|Ax(t )A†

x (t )|ψ0〉

=
∫ ∞

0

∑
n

e−(iωt−η)dt |〈ψ0|Ax(0)e−iHt |ψn〉

× 〈ψn|eiHt A†
x (0)|ψ0〉

∝ Im

[∑
n

|〈ψn|A†
x |ψ0〉|2

En − (E0 + ω) + iη

]
, (6)

where |ψ0〉 and E0 represent the ground state wave function
and ground state energy, respectively. |ψn〉 and En repre-
sent the eigenvector and eigenvalue corresponding to the nth

eigenstate of the system, respectively. A†
x represents the spin

raising operator (S+
x ), the boson creation operator (b†

x), or the
fermion creation operator (c†

x ), acting at site x in Eq. (6).
The spatial numbering in the Y junction system is shown in
Fig. 1. The broadening factor η used in the calculation of
TDOS in Eq. (6) is generally proportional to the lifetime of
quasiparticles. It helps in avoiding the unphysical divergence
in ρx(ω) at the Fermi energy and it induces a Lorentzian
behavior in ρx(ω) near resonance frequency ωp = En − E0.
This does not change the physics of the problem, and to extract
the power-law exponents (α) of ρx(ω) as a function of ω, we fit
ρx(ω) with power-law function for ω > η. η = 0.20 has been
kept fixed throughout all the calculations. Both ω and η have
been described everywhere in units of t . We use the TDOS
correction vector technique to calculate the TDOS, which is
a state-of-art numerical technique for dynamical calculations
[56–59].

III. RESULTS AND DISCUSSIONS

In this paper, we present TDOS behavior of both the
bosonic and the fermionic Y junction systems. We find that
the TDOS in the proximity of junction (including the junction
site) shows enhancement in the attractive interaction limit and
suppression in the repulsive interaction limit, for both the
bosonic and the fermionic Y junction models. These results
have also been complemented by the static conductance cal-
culations which lead to identification of the fixed points re-
sponsible for the observed enhancement or suppression of the
TDOS. In particular, we show that the fixed point correspond-
ing to the enhancement in the fermionic Y junction model
belongs to the M fixed point earlier predicted by Oshikawa
et al. in Ref. [49]. Though we observe similar signatures in
the static current-current conductance for both the bosonic
and the fermionic Y junction models, the power law exponents
for the TDOS near the junction for both systems are distinct,
which can be attributed to the exchange statistics of the
respective particles– bosons in the bosonic Y junction model,
and fermions in the fermionic Y junction model. We note here
that for a two-wire junction, the effect of statistics of the par-
ticles is generally not reflected in the TDOS spectrum, owing
to cancellation of the statistical phase in 1D linear chain. In
the last Sec. III C, we analyze the length scale of the TDOS
enhancement and demonstrate that it is highly localized near
the junction. Before explaining the TDOS results, let us first

revisit the ground state properties of both models on the Y
junction geometry.

The ground state of fermionic Y junction systems for odd
N-sized system (even �-sized constituent chain lengths) con-
tains ρ = N/2 + 1 fermions, for an isotropic interaction t=V ;
whereas for the spin − 1/2 Y junction (bosonic Y junction)
model, the ground state lies in Sz = 1/2 manifold at J = Jz.
For even N system size (odd �) at the isotropic interaction
limit Jz = J , the ground state of the spin − 1/2 system has
three spin − 1/2 up spins delocalized at the edge of each leg
and a down spin delocalized near junction sites; however,
overall the ground state of the system is a triplet state. In
the anisotropic limit Jz/J < 1 (V/t < 1), the ground state of
the spin − 1/2 or bosonic Y junction system (fermionic Y
junction system) lies in Sz = 0 (ρ = N/2) sector [54].

A. Tunneling density of states (TDOS)

The TDOS spectrum for 1D TLL wires has been ex-
tensively studied in literature, where the bosonic and the
fermionic model spectra are indistinguishable. However for
quasi-1D or multi-wire junctions, such as a Y junction, dif-
ference in TDOS spectrum is expected between the bosonic
and the fermionic Y junction systems because of non-trivial
many-body phase factors involved in the fermionic Y junction
model, any well defined analytic study of which is lacking in
literature. As the Y junction systems are well known for their
unique behavior of DOS near the junction [49], here we study
the TDOS of this system near the junction for both the bosonic
and the fermionic Y junction models. Since the TDOS of the
1D SF model has been extensively studied [20], therefore, we
first recapitulate the TDOS results of the 1D SF system, and
then compare it with that of the Y junction system. The power
law exponent α corresponding to the TDOS of the bulk or
mid-chain αbulk, and TDOS of the boundary or open end αend

of the interacting 1D SF chain are given by

αbulk = (g f − 1)2

2g f
and

αend = 1

g f
− 1, (7)

where g f is the Luttinger parameter, as defined in Eq. (5)
To compare the power law exponent αbulk and αend obtained

for the 1D SF chain with that obtained for the fermionic
Y junction system (αf, Y), we begin by calculating TDOS
ρ0(ω) at the junction site x = 0, for V = 1, 0 and −1, as a
function of frequency ω, as shown in Fig. 2. We notice that
the TDOS of junction site near the Fermi energy for V = −1
shows a peak at ω → 0 which is a signature of enhancement,
whereas it shows a suppression near ω → 0 for V = +1. The
peak near ω ≈ 0 for V � 0 owes its origin to the degeneracy
at the Fermi-point of the half-filled fermionic Y junction
system, and the TDOS shows Lorentzian behavior with ω for
ω � η, due to the introduction of the broadening factor η, as
discussed after Eq. (6) in Sec. II. For V = +1, the TDOS
shows a peak at a large ω, which though similar to 1D SF
model, differs in terms of the power law exponent. For the
1D SF chain, αbulk and αend are calculated from Eq. (7) as
0.04 and 1/3, respectively, for V = +1. Whereas we extract
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FIG. 2. The TDOS spectrum of junction (x = 0) for the
fermionic Y junction system ρ0(ω) as a function of frequency ω,
at V = −1, 0, +1 [or equivalently, gf = 3/2, 1, 3/4 from Eq. (5)],
for a finite system size N = 310, with broadening factor η = 0.20.
The solid lines show fitting of ρ0(ω) with power law function of the
form ρ = Aωα . The fitting parameters (A, α) corresponding to V =
−1, 0 and +1 are (0.070, −1.50), (0.62,−0.13), and (0.44,0.12),
respectively. (Inset) Power law exponents αf, Y with error bars, for
different V (t = 1 is kept fixed).

αf, Y = 0.120 ± 0.04 from the TDOS spectra of the fermionic
Y junction system for V = +1. For V = −1, αbulk and αend

are calculated from Eq. (7) as 0.08 and −1/3, respectively, but
we extract αf, Y = −1.50 ± 0.07 for the fermionic Y junction.
For V = 0, we find αf, Y = −0.13 ± 0.04. On increasing V ,
we notice transition in the nature of TDOS from enhancement
to suppression. The repulsive interaction fermionic Y junction
model (V > 0) shows suppression, whereas in the attractive
regime (V < 0) it shows enhancement, as reflected by the
change in sign of αf, Y in the inset of Fig. 2. In the inset of
Fig. 2, the error in extraction of αf, Y has been determined by
keeping the lower bound for fitting as ω ≈ η, and by varying
the upper bound of ω ∈ (2η, 1).

Similar to the fermionic Y junction model, the bosonic Y
junction also shows a qualitatively similar TDOS pattern. The
TDOS ρ0(ω) of the junction site for the bosonic model for
various values of Jz are shown as a function of frequency
ω in Fig. 3. We notice that TDOS of junction sites ρ0(ω)
for Jz = −1/2 shows enhancement and the corresponding
power law exponent is extracted as αb, Y = −0.69 ± 0.06. The
maxima of ρ0(ω) decreases with increasing Jz, and ρ0(ω)
follows a power law with exponent αb, Y which increases with
increasing Jz, as shown in the inset of Fig. 3. At Jz = +1,
the power law corresponding to the suppression is given by
αb, Y = 0.10 ± 0.04. Similar to the fermionic Y junction case,
the error in extraction of αb, Y in the inset of Fig. 3 has been
determined by keeping the lower bound for fitting as ω ≈ η,
and by varying the upper bound of ω ∈ (2η, 1).

While the regime of enhancement and suppression is quali-
tatively similar for the bosonic and the fermionic Y junctions,
especially in the regime of attractive interactions (Jz < 0
and V < 0), the quantitative details differ, e.g., in terms of
the power law exponent α. The power law exponents are
αb, Y = −0.86 ± 0.08 for the bosonic Y junction, and αf, Y =
−1.50 ± 0.07 for the fermionic Y junction at Jz = −1 and
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FIG. 3. The TDOS spectrum of junction (x = 0) for the bosonic
Y junction system, ρ0(ω) as a function of frequency ω, at
Jz = −1/2, 0, and + 1 [or equivalently, gs = 3/2, 1, and 1/2
from Eq. (4)], for a finite system size N = 406, with broaden-
ing factor η = 0.20. The solid lines show fitting of ρ0(ω) with
power law function of the form ρ = Aωα . The fitting parameters
(A, α) corresponding to Jz = −1/2, 0, and +1 are (0.33,−0.69),
(0.46, −0.32), and (0.50,0.10), respectively. (Inset) Power law ex-
ponents αb,Y with error bars, for different Jz (J = 1 is kept fixed).

V = −1, respectively. As discussed before in Sec. II, this
difference could be attributed to the difference in the exchange
statistics of the particles of the respective models.

B. Conductance Gβ,γ and M fixed point

Since we observed qualitatively similar TDOS enhance-
ments at the junction in both the bosonic and the fermionic Y
junction systems, though the TDOS power law exponents dif-
fered quantitatively for the two models, it becomes important
to identify the stable fixed point the Y junction flows into, to
correctly characterize the system. In absence of any external
field, the Y junction preserves the time-reversal symmetry and
can be described by the elusive M fixed point reported in liter-
ature [49]. The M fixed point describes the stable fixed point
for the Y junction with the following properties: (1) It must
be time-reversal invariant, (2) It must be a wire-symmetric
junction (symmetric under permutation of the three wires
forming the junction), and (3) The bulk Luttinger parameter
g should be bounded by 1 < g < 3.

It is well known that the bosonization description of the
M fixed point is not possible, and that only the numerical
study of the same can be conducted [45,49]. Rahmani et al.
investigated a fermionic Y junction model with periodic
boundary conditions at half-filling where they developed a
boundary conformal field theory based approach to find the
DC conductance in these systems [45]. At the M fixed point
of this Y junction in the regime of attractive interactions
(1 < g < 3), the following relation is expected to be followed
away from the boundary, i.e., for � → ∞ and x → ∞ [45]:

Gβγ = lim
x→∞

〈
Jβ

R (x)Jγ
L (x)

〉
gs

[
4�sin

(
π

�
x

)]2 e2

h
, (8)

where Jβ
R (x) and Jγ

L (x) represent the right-moving and left-
moving chiral currents on any constituent wire β and γ of the
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z
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fermionic bosonic(a) (b)
Y junction Y junction

FIG. 4. Log-log plot of the static current-current correlations
for the (a) fermionic Y junction system at V = −1/2 and +1 [or
equivalently, gf = 1.192 and 3/4 from Eq. (5)], and (b) bosonic Y
junction system, at Jz = −1/2 and +1 [or equivalently, gs = 3/2
and 1/2 from Eq. (4)], where x represents the site index as shown
in schematic Fig. 1, and � = (N − 1)/3 represents the length of
each arm forming the Y junction. Here, N = 310. Solid lines are of
slope = −2.

Y junction, respectively, and � is the length of each arm of
the Y junction system. In the fermionic Y junction model, the
current is simply given by J (x) = i(c†

xcx+1 − c†
x+1cx ), where

c†
x (cx ) represents the creation (annihilation) operator acting at

site x. Similarly for spin system, J (x) = i(S+
x S−

x+1 − S+
x+1S−

x ),
where S+

x (S−
x ) are the spin raising (lowering) operators acting

at site x. In the finite x/� limit, for � → ∞ and x → ∞, Gβγ

should have a constant value and the following relation is
expected to hold:

〈Jβ (x)Jγ (x)〉gs ∝
[

1

π/�
sin

(
π

�
x

)]−2

. (9)

We plot 〈Jβ (x)Jγ (x)〉gs as a function of
[

1
π/�

sin
(

π
�

x
)]

in a
log-log scale in Fig. 4 to confirm the validity of this relation.
Figures 4(a) and 4(b) correspond to the fermionic and bosonic
Y junction models, respectively. We observe that in both the
attractive limit V < 0 (Jz < 0) and the repulsive limit V > 0
(Jz > 0), the slope is found to be in the vicinity of −2
[represented by solid lines in Figs. 4(a) and 4(b)], which is
consistent with previous works [45]. The oscillatory nature
of the static current-current correlations is clearly visible in
the repulsive V > 0 (Jz > 0) limit, again consistent with Ref.
[45]. This strongly suggests that our Y junction systems could
be in the vicinity of the M fixed point, in the attractive regime
of interaction V < 0 (Jz < 0), which is also the same interac-
tion regime where we report the enhancement in TDOS of the
junction in Sec. III A. Since the prediction of the existence of
M fixed point [49], not much was known about it except for its
existence, until the DC conductance related to this fixed point
was reported in Ref. [45]. Even then, the dynamical properties
and power law exponents related to this fixed point remained
unknown until now. In the present work, we show the relation
of a stable M fixed point with the enhancement of the TDOS
in the attractive regime of interactions, and thus contribute

new information regarding this fixed point to the literature
of multi-wire junctions. We note here that both the bosonic
and the fermionic Y junctions follow Eq. (9) in the attractive
interaction regime (V < 0 and Jz < 0, respectively), although
the respective power laws for the TDOS enhancement are
different, as discussed in Sec. III A.

C. Length scale of TDOS enhancement

So far, we have illustrated that the bosonic and the
fermionic Y junctions are connected to a stable M fixed point
in the parameter regime 1 < g < 3 or the attractive interaction
limit (V < 0 or Jz < 0). Existing studies in literature regard-
ing the effect of impurities in quantum wires point to a finite
spatial cut-off on the enhancement caused by the impurities
[39]. In similar spirit, we wish to study the spatial extent
of the enhancement observed in the attractive limit of the
Y junction. Since the TDOS spectra of the bosonic and the
fermionic model on Y junctions are similar, here we present
the results of only the bosonic Y junction model. To estimate
the spatial extent of the enhancement in TDOS, we plot the
maximum intensity of TDOS ρx′ (ωp) at peak frequency ωp

as a function of scaled distance from the junction x′ = x/� in
Fig. 5 for the bosonic Y junction. ρx′ (ωp) is inversely propor-
tional to η in case of resonance condition and proportional to
the sum of the squares of all the transition matrix elements
1
η

∑
n |〈ψn|S+

x |ψ0〉|2. Therefore, keeping the η same, we can
extrapolate the sum of the matrix elements for different N .
The spatial dependence of ρx′ (ωp) as function of scaled spatial
unit x′ at Jz = −1/2 (enhancement regime) for three system
sizes N = 106, 202 and 406 are shown in Fig. 5(a). The finite
size dependence of ρx′ (ωp) for sites near the junction is weak
as shown in Fig. 5(b), but it is strong for sites away from the
junction, as is clear from Fig. 5(a). We also note that the extent
of enhancement of ρx′ (ωp) is limited to the neighborhood of
the junction.

To study the length scale of enhancement near the junction
in more detail, in Fig. 5(c) we plot the TDOS ρx(ω) as func-
tion of x, for different frequencies ω, for N = 406 and Jz =
−1/2. Near the junction, the TDOS follows a Lorentzian be-
havior of the form A/(B + x2) with x for 0 < x < xc, whereas
it follows an algebraic decay of the form Gx−γ for x > xc.
We recognize the distance which shows this transition from
Lorentzian fitting to power law fitting, xc, as the length scale of
TDOS enhancement. We note that xc decreases continuously
with ω and eventually tends towards xc ≈ 3 ± 1, as evident
from the shrinking Lorentzian fitting regime of ρx(ω, N ) with
x in Fig. 5(c), and shown more clearly in Fig. 5(d). This result
is consistent with an earlier prediction for bosonizable fixed
points of the Y junction which predicts a relation between
the length scale of enhancement of TDOS and the frequency
scale of tunneling ω as, xc ∝ 1/ω [18]. From our analysis, we
conclude that for the symmetrically coupled Y junction, at M
fixed point, the enhancement of TDOS is highly localized near
the junction for moderate values of ω.

IV. SUMMARY AND CONCLUSION

Junction of TLL wires poses a complex quantum impurity
problem owing to the richness of the manifold of fixed point
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FIG. 5. (a) Plot of TDOS ρx′ (ωp, N ) vs. x′, for different N
at Jz = −1/2 [or equivalently, gs = 3/2 from Eq. (4)], for the
bosonic Y junction, where, x′ = x/�, and � = (N − 1)/3 is the
length of each constituent chain, and x′ = 0 represents the junction
site (see schematic in Fig. 1). ωp is the peak frequency where the
maxima of the TDOS spectra occurs for a particular Jz and N .
(J = 1 is kept fixed). (b) Plot of TDOS maxima at the junction
ρ0(ωp, N ) vs. inverse system size 1/N , for the same parameters as
in Fig. (a). (c) Plot of TDOS ρx (ω, N ) vs. x, for different ω at
N = 406 and Jz = −1/2, for the bosonic Y junction. For x < xc,
the fitting is Lorentzian: ρx (ω, N ) = A/(B + x2) and is repre-
sented by the solid red curves. The parameters (A, B) extracted
for ω = 0.10, 0.18, 0.26, 0.36 are (465.24,363.90), (298.05,250.25),
(133.48,124.078), and (47.69,47.26), respectively. For x � xc, the
fitting follows a power law: ρx (ω, N ) = Gx−γ , and is represented by
the dashed black curves. The parameters (G, γ ) extracted for ω =
0.10, 0.18, 0.26, and 0.36 are (1.60,0.24), (1.44,0.28), (2.14,0.54),
and (1.64,0.60), respectively. (d) Plot of distance from the junction
up to which the Lorentzian fitting holds, xc, as a function of ω, for
the same parameters as in Fig. (c). It can be fitted with power law of
the form, xc = 2/ω.

that it can host. In this paper, we have considered the simplest
possible Y junction comprising of three equi-length 1D TLL
wires which are symmetrically coupled to the central junction
site. Using dynamical DMRG, we have calculated TDOS as
a function of distance from the junction and extracted the
associated power law exponents. We observe enhancement
in TDOS in the attractive interaction limit (1 < g < 3) and
suppression of TDOS in the repulsive interaction limit (g < 1)
in case of both the bosonic Y junction and the fermionic Y
junction, though they follow distinct power law exponents
for the TDOS. This difference can be attributed to the non-
trivial many-body phase factors associated in the hopping
between the junction site and the constituent arms, and stems
from the different quantum exchange statistics of constituent

particles. Earlier Oshikawa et al. [49] had conjectured the
existence of a “mysterious” stable M fixed point for such a
system in the regime of 1 < g < 3, however its properties
had remained unknown as this fixed point is not bosonizable.
Later on, Rahmani et al. [45] evaluated the static ground
state correlation function for the M fixed point using time-
independent DMRG. In this work, we perform a numerical
analysis which is complimentary to Rahmani et al. where
we use the dynamical DMRG to evaluate the dynamical
correlation functions. These dynamical correlation functions
are then used to evaluate the TDOS for the M fixed point.

As far as a quantitative comparison with exsiting bosoniza-
tion prediction is concerned, one could compare the power law
that is numerically obtained in our work for the M fixed point
with the existing prediction of power laws for all possible
bosonizable fixed points which respect time-reversal symme-
try and wire symmetry (symmetric under permutations of the
three wires among themselves), as these two symmetries are
valid symmetries for our numerical analysis. We find that, if
we try to extract the parameter θ (the parameter parametrising
the space of fixed points respecting these symmetries) from
Eq. (6) of Ref. [18], which describes the power law exponents
for these bosonizable fixed points, it gives unphysical solution
leading to the condition of cosθ > 1, for the attractive regime
of interaction 1 < g < 3. This can be considered as an illus-
tration of the fact that the M fixed point cannot be described
through bosonization analysis.

Finally, we investigated the spatial extent of TDOS en-
hancement through a finite size scaling study and observed
that the TDOS peak amplitude near the junction is weakly
dependent on the system size N . We also checked that the
length scale of enhancement showed a 1/ω dependence on
the frequency, which is consistent with an earlier study that
reported enhancement of the Y junction TDOS for various
bosonizable fixed point studies therein [18]. We noted that
for ω > η the TDOS enhancement spans over just a few sites
away from the junction, e.g., 3 ± 1 lattice units for N = 406
and Jz = −1/2. Thus we found that the enhancement of the
TDOS is highly localized near the junction site.

ACKNOWLEDGMENTS

M.S.R. thanks S. N. Bose National Centre for Basic Sci-
ences for PBIR-PhD fellowship. M.K. thanks D. Sen, S.
Ramasesha, and Z. G. Soos for valuable suggestions. M.K.
thanks Department of Science and Technology (DST), India
for Ramanujan fellowship and computation facility provided
under the DST Project No. SNB/MK/14-15/137. S.D. would
like to acknowledge the ARF grant received from IISER
Kolkata and the MATRICS grant (MTR/2019/001 043) from
Science and Engineering Research Board (SERB), India for
funding.

[1] S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J.
Geerligs, and C. Dekker, Nature (London) 386, 474 (1997).

[2] M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley,
L. Balents, and P. L. McEuen, Nature (London) 397, 598
(1999).

[3] O. M. Auslaender, A. Yacoby, R. de Picciotto, K. W. Baldwin,
L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 84, 1764 (2000).

[4] O. M. Auslaender, A. Yacoby, R. de Picciotto, K. W. Baldwin,
L. N. Pfeiffer, and K. W. West, Science 295, 825 (2002).

[5] M. Shiraishi and M. Ata, Solid State Commun. 127, 215 (2003).

035130-7

https://doi.org/10.1038/386474a0
https://doi.org/10.1038/17569
https://doi.org/10.1103/PhysRevLett.84.1764
https://doi.org/10.1126/science.1066266
https://doi.org/10.1016/S0038-1098(03)00417-4


SINGH ROY, KUMAR, AND DAS PHYSICAL REVIEW B 102, 035130 (2020)

[6] T. Giamarchi, Quantum Physics in One Dimension, The Inter-
national Series of Monographs on Physics Vol. 121 (Oxford
University Press, Oxford, UK, 2004).

[7] N. Goldenfeld, Lectures on Phase Transitions and the Renormal-
ization Group, Frontiers in Physics Vol. 85 (Addison-Wesley,
Boston, MA, 1992).

[8] J. von Delft and H. Schoeller, Ann. Phys. 7, 225 (1998).
[9] F. D. M. Haldane, J. Phys. C: Solid State Phys. 14, 2585 (1981).

[10] F. Haldane, Phys. Lett. A 81, 153 (1981).
[11] S.-i. Tomonaga, Prog. Theor. Phys. 5, 544 (1950).
[12] J. M. Luttinger, J. Math. Phys. 4, 1154 (1963).
[13] K. Schönhammer, in Strong Interactions in Low Dimensions,

edited by D. Baeriswyl and L. Degiorgi (Springer Netherlands,
Dordrecht, 2004), pp. 93–136.

[14] K. Schönhammer, J. Phys.: Condens. Matter 25, 014001 (2012).
[15] J.-S. Caux and C. M. Smith, J. Phys.: Condens. Matter 29,

151001 (2017).
[16] Y. Oreg and A. M. Finkel’stein, Phys. Rev. Lett. 76, 4230

(1996).
[17] Y. V. Nazarov, A. A. Odintsov, and D. V. Averin, Europhys.

Lett. 37, 213 (1997).
[18] A. Agarwal, S. Das, S. Rao, and D. Sen, Phys. Rev. Lett. 103,

026401 (2009).
[19] D. N. Aristov, A. P. Dmitriev, I. V. Gornyi, V. Y. Kachorovskii,

D. G. Polyakov, and P. Wölfle, Phys. Rev. Lett. 105, 266404
(2010).

[20] E. Jeckelmann, J. Phys.: Condens. Matter 25, 014002 (2012).
[21] S. Mardanya and A. Agarwal, Phys. Rev. B 92, 045432

(2015).
[22] A. Latief and B. Béri, Phys. Rev. B 98, 205427 (2018).
[23] D. Vu, A. Iucci, and S. D. Sarma, Phys. Rev. Research 2, 023246

(2020).
[24] M. P. A. Fisher and L. I. Glazman, in Mesoscopic Electron

Transport, edited by L. L. Sohn, L. P. Kouwenhoven, and G.
Schön (Springer Netherlands, Dordrecht, 1997), pp. 331–373.

[25] Z. Yao, H. W. C. Postma, L. Balents, and C. Dekker, Nature
(London) 402, 273 (1999).

[26] J. Li, C. Papadopoulos, and J. Xu, Nature (London) 402, 253
(1999).

[27] R. Egger, A. Bachtold, M. S. Fuhrer, M. Bockrath, D. H.
Cobden, and P. L. McEuen, in Interacting Electrons in Nanos-
tructures, edited by R. Haug and H. Schoeller (Springer, Berlin,
Heidelberg, 2001), pp. 125–146.

[28] L. Biró, Z. Horváth, G. Márk, Z. Osváth, A. Koós, A. Benito, W.
Maser, and P. Lambin, Diamond Relat. Mater. 13, 241 (2004).

[29] M. Subhramannia, K. Ramaiyan, M. Aslam, and V. K. Pillai,
J. Electroanal. Chem. 627, 58 (2009).

[30] E.-X. Ding, J. Wang, H.-Z. Geng, W.-Y. Wang, Y. Wang, Z.-C.
Zhang, Z.-J. Luo, H.-J. Yang, C.-X. Zou, J. Kang, and L. Pan,
Sci. Rep. 5, 11281 (2015).

[31] S. Sharma, M. S. Rosmi, Y. Yaakob, M. Z. M. Yusop, G. Kalita,
M. Kitazawa, and M. Tanemura, Carbon 132, 165 (2018).

[32] V. Mosallanejad, K.-L. Chiu, and G.-P. Guo, J. Phys.: Condens.
Matter 30, 445301 (2018).

[33] C. Nayak, M. P. A. Fisher, A. W. W. Ludwig, and H. H. Lin,
Phys. Rev. B 59, 15694 (1999).

[34] S. Lal, S. Rao, and D. Sen, Phys. Rev. B 66, 165327 (2002).
[35] R. Egger, B. Trauzettel, S. Chen, and F. Siano, New J. Phys. 5,

117 (2003).
[36] S. Das, S. Rao, and D. Sen, Phys. Rev. B 70, 085318 (2004).
[37] X. Barnabé-Thériault, A. Sedeki, V. Meden, and K.

Schönhammer, Phys. Rev. B 71, 205327 (2005).
[38] X. Barnabé-Thériault, A. Sedeki, V. Meden, and K.

Schönhammer, Phys. Rev. Lett. 94, 136405 (2005).
[39] P. Kakashvili, H. Johannesson, and S. Eggert, Phys. Rev. B 74,

085114 (2006).
[40] S. Das, S. Rao, and D. Sen, Phys. Rev. B 74, 045322 (2006).
[41] A. Tokuno, M. Oshikawa, and E. Demler, Phys. Rev. Lett. 100,

140402 (2008).
[42] P. Wächter, V. Meden, and K. Schönhammer, J. Phys.: Condens.

Matter 21, 215608 (2009).
[43] A. Rahmani, C.-Y. Hou, A. Feiguin, C. Chamon, and I. Affleck,

Phys. Rev. Lett. 105, 226803 (2010).
[44] D. N. Aristov and P. Wölfle, Phys. Rev. B 84, 155426 (2011).
[45] A. Rahmani, C.-Y. Hou, A. Feiguin, M. Oshikawa, C. Chamon,

and I. Affleck, Phys. Rev. B 85, 045120 (2012).
[46] D. N. Aristov and P. Wölfle, Phys. Rev. B 86, 035137 (2012).
[47] D. N. Aristov and P. Wölfle, Phys. Rev. B 88, 075131 (2013).
[48] C. Chamon, M. Oshikawa, and I. Affleck, Phys. Rev. Lett. 91,

206403 (2003).
[49] M. Oshikawa, C. Chamon, and I. Affleck, J. Stat. Mech.: Theory

Exp. (2006) P02008.
[50] V. Meden, W. Metzner, U. Schollwöck, O. Schneider, T.

Stauber, and K. Schönhammer, Eur. Phys. J. B 16, 631 (2000).
[51] B. Bellazzini, P. Calabrese, and M. Mintchev, Phys. Rev. B 79,

085122 (2009).
[52] P. Calabrese, M. Mintchev, and E. Vicari, J. Phys. A: Math.

Theor. 45, 105206 (2012).
[53] H. Guo and S. R. White, Phys. Rev. B 74, 060401(R) (2006).
[54] M. Kumar, A. Parvej, S. Thomas, S. Ramasesha, and Z. G.

Soos, Phys. Rev. B 93, 075107 (2016).
[55] F. Buccheri, R. Egger, R. G. Pereira, and F. B. Ramos,

Nucl. Phys. B 941, 794 (2019).
[56] Z. G. Soos and S. Ramasesha, J. Chem. Phys. 90, 1067 (1989).
[57] S. Ramasesha, Z. Shuai, and J. Brédas, Chem. Phys. Lett. 245,

224 (1995).
[58] S. K. Pati, S. Ramasesha, Z. Shuai, and J. L. Brédas, Phys. Rev.

B 59, 14827 (1999).
[59] E. Jeckelmann, Phys. Rev. B 66, 045114 (2002).
[60] S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge

University Press, Cambridge, UK, 2011).
[61] P. Jordan, J. v. Neumann, and E. Wigner, Ann. Math. 35, 29

(1934).
[62] S. Rao and D. Sen, in Field Theories in Condensed

Matter Physics (Hindustan Book Agency, Gurgaon, 2001),
pp. 239–333.

[63] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[64] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).

035130-8

https://doi.org/10.1002/(SICI)1521-3889(199811)7:4<225::AID-ANDP225>3.0.CO;2-L
https://doi.org/10.1088/0022-3719/14/19/010
https://doi.org/10.1016/0375-9601(81)90049-9
https://doi.org/10.1143/ptp/5.4.544
https://doi.org/10.1063/1.1704046
https://doi.org/10.1088/0953-8984/25/1/014001
https://doi.org/10.1088/1361-648X/aa6012
https://doi.org/10.1103/PhysRevLett.76.4230
https://doi.org/10.1209/epl/i1997-00133-6
https://doi.org/10.1103/PhysRevLett.103.026401
https://doi.org/10.1103/PhysRevLett.105.266404
https://doi.org/10.1088/0953-8984/25/1/014002
https://doi.org/10.1103/PhysRevB.92.045432
https://doi.org/10.1103/PhysRevB.98.205427
https://doi.org/10.1103/PhysRevResearch.2.023246
https://doi.org/10.1038/46241
https://doi.org/10.1038/46214
https://doi.org/10.1016/j.diamond.2003.10.014
https://doi.org/10.1016/j.jelechem.2008.12.021
https://doi.org/10.1038/srep11281
https://doi.org/10.1016/j.carbon.2018.02.037
https://doi.org/10.1088/1361-648X/aae09d
https://doi.org/10.1103/PhysRevB.59.15694
https://doi.org/10.1103/PhysRevB.66.165327
https://doi.org/10.1088/1367-2630/5/1/117
https://doi.org/10.1103/PhysRevB.70.085318
https://doi.org/10.1103/PhysRevB.71.205327
https://doi.org/10.1103/PhysRevLett.94.136405
https://doi.org/10.1103/PhysRevB.74.085114
https://doi.org/10.1103/PhysRevB.74.045322
https://doi.org/10.1103/PhysRevLett.100.140402
https://doi.org/10.1088/0953-8984/21/21/215608
https://doi.org/10.1103/PhysRevLett.105.226803
https://doi.org/10.1103/PhysRevB.84.155426
https://doi.org/10.1103/PhysRevB.85.045120
https://doi.org/10.1103/PhysRevB.86.035137
https://doi.org/10.1103/PhysRevB.88.075131
https://doi.org/10.1103/PhysRevLett.91.206403
https://doi.org/10.1088/1742-5468/2006/02/P02008
https://doi.org/10.1007/s100510070180
https://doi.org/10.1103/PhysRevB.79.085122
https://doi.org/10.1088/1751-8113/45/10/105206
https://doi.org/10.1103/PhysRevB.74.060401
https://doi.org/10.1103/PhysRevB.93.075107
https://doi.org/10.1016/j.nuclphysb.2019.03.005
https://doi.org/10.1063/1.456160
https://doi.org/10.1016/0009-2614(95)00993-E
https://doi.org/10.1103/PhysRevB.59.14827
https://doi.org/10.1103/PhysRevB.66.045114
https://doi.org/10.2307/1968117
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/RevModPhys.77.259

