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We develop and demonstrate the performance of a nonseparable form of the generalized gradient approxi-
mation (GGA) for exchange and correlation that includes locally varying parameters that match second-order
gradient expansion behavior. Specifically, the high- and low-density limits are included to recover locally the
linear response through inclusion of their dependence on the electron density. This local parametrization allows
the GGA form to provide varying behavior depending on the density regime. On the basis of an extensive series
of property calculations involving both molecules and solids, we show that this nonempirical methodology can
lead to a balanced GGA description of both finite and extended systems.
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I. INTRODUCTION

Even though the magnitude of the exchange and correlation
contributions in Kohn-Sham density functional theory in gen-
eral are small compared to the total energy of a many-electron
system [1], approximations to those contributions determine
the accuracy of calculated properties. Betterment of such
approximations therefore is a continuing quest.

Those functionals depending solely on the electron density
n(r), and its gradient, through the dimensionless variable s =
|∇n(r)|/(2 kF n(r)), where kF = (3π2n)1/3, are called gener-
alized gradient approximations (GGAs). They constitute the
second rung of the so-called Jacob’s ladder classification [2].
Their use has spread throughout the chemistry and condensed
matter communities for the calculation of ground-state proper-
ties of atoms, molecules, solids, surfaces, and larger systems
[3], not only due to the good balance between accuracy and
computational effort when employed in periodic systems, but
also because they are important ingredients in higher-rung
functionals [4–6] and because they are the basis of the fourth-
rung hybrid functionals widely used for thermodynamic prop-
erties of molecules [7].

Despite the popularity of GGAs, none of them so far has
proved suitable for general use, unchanged, in both finite
and periodic calculations or in simultaneous structural and
energetic properties [8–14]. The issue is that their perfor-
mance is limited by their dependence on a single set of
fixed parameters. In nonempirical density functional approx-
imations (DFAs), such parameters are designed to satisfy as
many physical constraints as possible [15], consistent with
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reasonably simple expressions for the so-called enhancement
function. For exchange, the enhancement function Fx(s) is
defined such that

EGGA
x [n] =

∫
dr n(r)εunif

x (n)Fx(s), (1)

where εunif
x (n) is the exchange energy per electron for the

uniform electron gas of density n(r). To recover the uniform
electron gas limit, the exchange enhancement function must
satisfy the second-order gradient expansion

Fx(s) −−→
s→0

1 + μs2 . (2)

Critically, the coefficient μ = μGE = 10/81, which is accu-
rate for weakly inhomogeneous electron gases [16], has been
shown to improve calculated lattice constants and bulk moduli
of solids [9] when used in the Perdew-Burke-Ernzerhof (PBE)
GGA form [17], a combination called PBEsol. However,
that value of μ is not optimal for finite systems. Instead,
μ = μMB ≈ 0.219 51, the original PBE value, does better
for atomization energies [17]. Any attempt to compute the
properties of one system class with the parameter μ for the
other class, and with Fx(s) unchanged in Eq. (1), results in a
rather poor performance [18].

The regularized gradient expansion functional [19], based
on PBE, represents the first of several efforts that have
been made to pursue a generally applicable GGA for atoms,
molecules, and solids. This approximation keeps the value
μGE fixed and restores the slowly varying limit for s < 1.
Then its enhancement factor increases rapidly towards the
same local Lieb-Oxford bound [20,21] as used in the PBE
exchange functional. That increase is achieved through the
addition of an s4 term. A different scheme to satisfy the
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FIG. 1. Dependence of the correlation parameter β on the Wigner-Seitz radius rs corresponding to the models described in the text and
relative to the value from Eq. (3) that corresponds to μ = μMB used in PBE. The labels on the right indicate the low-density limits associated
with the specified exchange parameter μ.

rapidly and slowly varying density limits also was explored
[22]. In it the PBE form was retained and a sigmoid function
was employed to interpolate from μGE to μMB. Alternatively,
Fx(s) was expressed as a power-series expansion [23]. A
fusion of two different functionals has been suggested as
well [24].

Since the enhancement functions of all the aforementioned
functionals still are based on a fixed set of parameters, their
design remains intrinsically biased either toward solids and
surfaces or toward atoms and molecules, a reason why they
are frequently preferred to describe heterogeneous catalysis
[25,26].

Motivated at least in part by the parametrization dilemma,
nonseparable exchange-correlation DFAs also have been de-
veloped. The earliest consideration of nonseparable DFAs
we have found is Ref. [27]. The separation of the exchange

correlation energy Exc into exchange and correlation terms
can be justified as a convenient way to study and analyze the
nature of those energy contributions. Thus, exchange can be
defined as that part of an Exc functional that scales linearly
in the case of uniform density scaling, while correlation is
the rest. It does not have simple scaling behavior [28,29].
The nonseparable idea reappeared in the late 1990s both
as a specific form for DFA development [30–33] and as a
discovered behavior of some extant DFAs [34]. It appears to
have lain dormant until renewed interest and utilization by
Truhlar and coworkers, mostly in the context of empirically
parametrized DFAs [35–39].

Instead of focusing upon the slowly and rapidly vary-
ing limits, in the present work we explore a nonseparable
parametrization approach based on the high- and low-density
limiting behavior of the correlation energy of the weakly
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FIG. 2. Enhancement functions for several GGAs with a fixed μ = μMB (upper row) and their corresponding lpGGAs with the local
parameter μ = μrev(rs) (lower row) for the interval between rs → 0 and rs → ∞.
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FIG. 3. Comparison of the mean absolute deviation for standard
enthalpies of formation, �Hf , and the mean absolute relative devia-
tion for bond lengths, BL, using different fixed values of μx , with
x = {GE, MB, MGE, mol}, which are ordered in increasing value
of μx .

inhomogeneous electron gas. Doing so provides an additional
degree of freedom to the exchange enhancement function
through the local density dependence of the second-order
coefficient μ from the correlation gradient expansion. That
density-dependent relationship between coefficients is what

introduces the nonseparability in a DFA form that otherwise
would be separable. We apply this methodology to various
DFAs on several sets of molecules and solids to provide a
performance overview with respect to earlier GGAs.

II. FUNCTIONAL CONSTRUCTION

A. Limiting behaviors

In the exchange PBE functional, the value of μ modulates
the weight given to density gradients in the exchange energy
and provides control over Fx(s) both for slowly varying den-
sities, s → 0, and for the case s → ∞. The latter situation
can correspond to rapidly varying density but also applies,
ambiguously, to the case of asymptotically small, smooth
densities. For correlation, PBE uses a parameter β to control
the effects of density variation. The two parameters are related
in PBE by the choice

μ = π2

3
β, (3)

in order to recover the linear response of the uniform electron
gas. This specific assumption has been used recently in de-
signing global hybrids [40], long-range screened hybrids [41],
and short-range screened hybrids [42].

This fixed parametrization omits a density dependence.
The gradient expansion of the correlation contribution
begins as

Ec[n] =
∫

dr n(r)
[
εunif

c (n) + βc(n) t2 + . . .
]
, (4)

where εunif
c (n) is the correlation energy per particle of the

uniform electron gas, and t = |∇n|/[4(3/π )1/6n7/6]. The co-
efficient βc(n) usually is expressed in terms of the dimen-
sionless Wigner-Seitz radius rs as βc(rs) = 16(3/π )1/3Cc(rs),

FIG. 4. Mean relative deviations of the bulk modulus and cohesive energies versus the lattice constants using the different values x =
{GE, MB, MGE, mol} for μx , ordered by increasing magnitude.
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FIG. 5. MAD for �Hf versus MARD for bond lengths, BL, for
lpGGAs using the set μx (rs ) for exchange and βx (rs ) for correlation,
with x = {MB, rev, mod, HL, RG}.

where rs = [3/(4 π n)]1/3B0
−1, and B0 = 1 is the Bohr radius

in atomic units. For n(r) → ∞, Ma and Brueckner [43]
demonstrated that

lim
n→∞ βc = βMB = 16(3/π )1/3 Cc(0)

≈ 1.975 63/3π2 = 0.066 724 4 . (5)

This result, if substituted in Eq. (3), gives rise to the value μMB

already quoted. Shortly thereafter, Rasolt and Geldart [44],

independently of Hu and Langreth [45], included the local
density dependence of Eq. (5) [46]. Rasolt and Geldart derived
an analytic representation for Cc(rs). Later this was employed
for the construction of the P86 correlation parametrization
[47], with the form

CRG(rs) = c1 + c2 + c3 rs + c4 r2
s

1 + c5 rs + c6 r2
s + c7 r3

s

, (6)

where c1 = 0.001 667, c2 = 0.002 568, c3 = 0.023 266, c4 =
7.389 × 10−6, c5 = 8.723, c6 = 0.472, and c7 = 7.389 ×
10−2. The results that Hu and Langreth obtained beyond the
random phase approximation were expressed roughly by

βrev(rs) = βMB
1 + c1 rs

1 + c2 rs
, (7)

with the values c1 = 0.1 and c2 = 0.177 8 employed in the
construction of the revTPSS correlation functional [48]. How-
ever, recently it was shown that more refined inclusion of rs

dependence in the Padé approximant can lead to an improved
correction. Hence, two more approximants were devised [49].
Both share the form

βmod/HL(rs) = βMB
1 + c1 rs(c2 + c3 rs)

1 + c1 rs(1 + c4 rs)
. (8)

Two parameter sets were proposed. The set c1 = 1/2, c2 = 1,
c3 = 1/6, and c4 = 0.296 33 is used for βmod(rs) in order to
have a slope equal to 0 when rs → 0. The second set has
c1 = 3, c2 = 1.046, c3 = 0.1, and c4 = 0.177 8 in βHL(rs) to
recover the positive slope of the original Hu and Langreth
form.

By design, Eqs. (7) and (8) were chosen so that

β(rs) −−→
rs→0

βMB, (9)

β(rs) −−−→
rs→∞ βGE, (10)

FIG. 6. MRD of B0 and Ecoh versus a0 using the set μx (rs) for exchange and βx (rs ) for correlation, with x = {MB, rev, mod, HL, RG}.
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where βGE = 10/(27π2) = 0.037 526 is the second-order cor-
relation coefficient for slowly varying densities. It is notewor-
thy that βRG(rs) has the same limiting behavior as Eq. (9),
but a different value for the low-density limit, (10). Fur-
ther substitution of βrev(rs), βmod(rs), βHL(rs), and βRG(rs)
in Eq. (3) delivers four different, density-dependent val-
ues for the second-order coefficient for exchange, namely,
μrev(rs), μmod(rs), μHL(rs), and μRG(rs). All of them
have limiting conditions analogous to those for the β(rs)
correlation coefficient,

μ(rs) −−→
rs→0

μMB, (11)

μ(rs) −−−→
rs→∞ μGE . (12)

The sole exception is μRG(rs) ≈ 7/81 for rs → ∞, which
corresponds to Sham’s coefficient [50]. We include it for
general utility in functional construction despite the fact that
it is known to be incorrect. A plot of the β(rs) functions
discussed above as a function of rs is shown in Fig. 1.

B. Implementation

Once the dependence on n(r) has been included in what
formally is the exchange contribution via μ(rs), we can
construct or select enhancement factors that interpolate rea-
sonably between the values defined by the high- and low-
density limits of the previously described approximants. It is
important to note that although the enhancement factors under
consideration were constructed and constrained as separable
forms, the local parametrization prescription just described
makes the resulting DFA nonseparable. For example, the in-
troduction of a density-dependent μ via the density-dependent
β means that what formally was an exchange energy no longer
obeys uniform scaling for exchange [28,29].

The implementation of this methodology is quite straight-
forward. Here we have selected four nonempirical GGA ex-
change functionals in which to include the different μ(rs)
values. These are the widely used PBE [17]; lsRPBE [51],
which is designed to satisfy the large dimensionless gradient
decay [21]; CAP [52], which forces Fx(s) to diverge as s → ∞
and includes the correct asymptotic potential [53]; and, finally,
NCAP [54], whose performance on standard thermochemistry
sets is comparable to higher-rung approximations. For corre-
lation, we included the set of β(rs) and C(rs) for PBE and P86,
respectively (see Sec. II of the Supplemental Material [55]).

We denote these functionals lpPBE, lplsRPBE, lpCAP, and
lpNCAP, or collectively lpGGAs, where lp stands for local
parameter. Their exchange enhancement factors are

F l pPBE
x (s) = 1 + κ − κ

1 + μ(rs )
κ

s2
, (13)

F l plsRPBE
x (s) = 1 + κ − κ e− μ(rs )

κ
s2

− (1 + κ )
(
1 − e−α

μ(rs )
κ

s2)
, (14)

F l pCAP
x (s) = 1 + μ(rs)

s ln[1 + s]

1 + c μ(rs) ln[1 + s]
, (15)

F l pNCAP
x = 1 + μ(rs) tanh[s] sinh−1[s]

×
1 + γ

c μ(rs ) {(1 − ζ )s ln [1 + s] + ζ s}
1 + γ tanh[s] sinh−1[s]

, (16)

where κ = 0.804, α = 0.023 534, c = 3/(4π ), γ =
0.018 086, and ζ = 0.304 121. It should be noted that
the values of ζ and γ correspond to the case for which μ is a
constant, fixed at the PBE value, i.e., μMB. In principle, both
ζ and γ should be parameters that correspond to the local
μ(rs) but these effects are expected to be small compared
to the effects of the local μ itself. The notation Fx is used
solely to indicate the parentage of these enhancement factors.
We iterate that in this form they are not pure exchange. A
comparison of Eqs. (13) to (16) for the fixed value μMB

and the local parameter μrev(rs), depicted in Fig. 2, shows
how the local dependence on n(r) produces more versatile
enhancement functions. Notably, their shapes can vary
inside the black regions, unlike those approximations with
fixed parameter sets illustrated in the first row of panels
in Fig. 2.

III. RESULTS AND DISCUSSION

Calculations on molecules were done with a develop-
mental version of NWChem 6.6 [56], using the same test
sets of molecules and computational parameter choices as
in Ref. [57], while computations for solids were performed
with a modified version of VASP [58–60]. We used the same
crystalline test data sets for periodic systems as in Ref. [6],
except that we omitted Y due to convergence issues with
CAP and NCAP. Moreover, there were two minor changes
in computational details. For all compounds involving Li, the
cutoff was increased to 1200 eV, and approximate isolated
atom energies were calculated with an 11 × 12 × 13 Å3 cell.

For the sake of thorough context, we first analyze the effect
of different fixed values of μ on molecules and solids. In addi-
tion to μGE and μMB, two other nonempirical values have been
reported in the literature. These are μMGE = 0.26, obtained
from the asymptotic expansion of the semiclassical neutral
atom [61], and μmol = 0.275 83, from the self-interaction
cancellation for the hydrogen atom [57].

To begin, Fig. 3 depicts the effect for molecules of the
four choices of fixed μ on the behavior of the mean absolute
deviation (MAD) for the standard enthalpies of formation and
mean absolute (unsigned) relative deviation (MARD) of the
bond lengths. Here we have included lsPBE [51] (same as
lsRPBE but with a PBE kernel instead) in lieu of NCAP in
order to classify the functionals in two distinct groups, one for
the enhancement functions of PBE and lsPBE and the other
for lsRPBE and CAP. There are two main messages in Fig. 3.
The first, long known, is that independently of the form of
Fx(s), an increase in μ is accompanied by a loss in structural
description accuracy. The second message is related more
to thermodynamic values. Functionals such as lsRPBE and
CAP reach their optimum performance for both properties
with a value of μ smaller than those such as PBE and
lsPBE. That optimum value is generally μMB, above which
the thermodynamic accuracy deteriorates. The underpinnings
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FIG. 7. Relative deviation of lattice constants for the solids considered in this work. The lpGGAs use the set μx (rs) for exchange and βx (rs )
for correlation, with x = {MB, rev, mod, HL, RG}.

of this behavior are atomic. The smaller the μ value is, the
more underestimated are the energies of the atoms, hence,
energy differences between molecules and atoms are more
overestimated with μGE and somewhat underestimated with
μmol for lsRPBE and CAP.

Among the most obvious properties of interest in solids
are the lattice constants, a0, bulk modulus, B0, and cohesive

energies, Ecoh. Figure 4(a) shows that whenever the mean
relative deviation (MRD) of the lattice constants increases,
the bulk modulus MRD does the opposite in an almost-linear
response to the value of μ. Conversely, Fig. 4(b) shows that
cohesive energies go from overestimates to underestimates
as μ is increased, in accordance with the behavior observed
for molecules in Fig. 3 for the formation enthalpies. Further

035129-6



GENERALIZED GRADIENT APPROXIMATIONS WITH … PHYSICAL REVIEW B 102, 035129 (2020)

comparison in Fig. 4 reveals that for a balanced description
of a0, B0, and Ecoh, the interval of interest of μx lies between
μGE and μMB, corresponding to the limits in Eqs. (11) and
(12) used for the construction of μ(rs).

Now we turn to the lpGGAs. We observed that lpPBE,
lplsRPBE, and lpCAP perform better when combined with the
PBE correlation, while lpNCAP is better with P86 correlation.
Hence, the following discussion is for those combinations.
Figure 5 depicts how the MAD for �Hf is worsened with
respect to the functionals with fixed parameters identified with
the label MB. This disadvantage is more evident for lpCAP
than for the rest of the functionals. Nevertheless, this behavior
is expected due to the limits imposed in the Padé approximants
for both exchange and correlation. In this respect it should also
be highlighted that the consequence of these limits is to under-
estimate more the total energies of atoms in comparison to the
molecules, with the overall result of overestimating �Hf , but
this overestimation is at least 50 % smaller compared to the
fixed value μGE (see Fig. 3).

Bond lengths, onthe other hand, exhibit trends opposite
to enthalpies of formation. The addition of rs dependence
in the second-order coefficients of Eq. (3) lowers the rate at
which the enhancement functions grow, because rs reduces
the weight given to the density gradients in the exchange
and correlation functionals. Thus, it favors the structural
description of molecules compared to the magnitude of the
deviations obtained keeping μ = μMB and β = βMB fixed.
We can also observe in Fig. 5 that except for lpNCAP, the
lpGGAs using μHL(rs) and μRG(rs) produce larger errors in
the bond lengths than μrev(rs) and μmod(rs), probably due
to the maxima shown in the β(rs) function located at small
values of rs. It is also noteworthy that the data depicted in
Fig. 5 does not allow recommending a general choice of
μ(rs). Instead, we observe different trends for each functional.
Overall, for all the lpGGAs considered, the local dependence
on μ(rs) improves the description of bond distances but at the
expense of degrading the quality of the heats of formation.

It should be noted that GGA functionals with fixed pa-
rameters such as PBE and lsPBE provide better performance
for heats of formation and bond lengths (see black circles
and blue squares labeled “MGE” and “mol” at the bottom of
Fig. 3) than the lpGGAs depicted in Fig. 5. Nonetheless, when
considered in the context of balanced performance on both
molecules and condensed phases (see below) from a single
DFA, it can be concluded that the functionals lplsRPBE and
lpNCAP, combined with μRG(rs), provide acceptable predic-
tions of structural and thermodynamic data for molecules. By
selecting the MAD for �Hf and MARD for bond lengths
in the axes in Figs. 3 and 5 one obtains scales from which
the effects of DFAs and of the μx parameter are clearer than
from the use of other combinations of statistical deviations.
Values for the MAD, MD, and MARD are listed in the tables
in Sec. III of the Supplemental Material [55].

Turning to the results for extended systems, the first thing
to note in Fig. 6(a) is that there is a clustering of the results
provided by lpPBE and lpCAP, on one hand, and lplsRPBE
and lpNCAP, on the other. The former functionals show a
better performance in lattice constants and bulk modulus than
the latter. Also, it is clear in Fig. 6(a) that including the local
behavior in μx reduces the deviations in the bulk modulus and
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FIG. 8. Box plots of different properties for a representative set
of functionals. See text for explanation.

lattice constants of solids. Therefore, it seems to be generally
valid that lpGGAs provide better predictions for the mechan-
ical properties of solids. The results for the cohesive energies
show a similar clustering of functionals, as shown in Fig. 6(b).
From the two plots depicted in Fig. 6 one can conclude that

the lpPBE and lpCAP functionals combined with μrev(rs) are
the best lpGGAs to be used in extended systems. These re-
sults indicate that local parameters in nonseparable exchange-
correlation GGAs can provide a better balance between finite
and extended systems. The clustering and behavior shown in
Figs. 4 and 6 are better defined when using the MRDs for
the solid properties. The scales provided by other statistical
deviations do not show this clean distinction.

In a recent study on a large set of density functional
approximations from different rungs of Jacob’s ladder, Tran,
Stelzl, and Blaha [62] showed that an inappropriate shape of
the enhancement function makes many approximations fail in
the description of a0, B0, and Ecoh, particularly for alkali and
alkali-earth metals. So to obtain deeper insight into the perfor-
mance of lpGGAs over the entire set of extended systems, in
Fig. 7 we plot the relative deviation for every solid and func-
tional. As expected, the major differences in lpGGAs come
from alkali and alkali-earth metals. These results are shown
between the dashed vertical lines in Fig. 7. Taking as the
starting point the original functional with the fixed parameter
μMB, PBE shows the smallest deviations for these systems,
while CAP delivers the largest, followed closely by lsRPBE
and NCAP.

The rationale for these deviations in alkali metals relies
on the values of the dimensionless gradient (s > 1) in the
core-valence separation region [63]. In the latter work it
also was noted that for these solids rs has a moderately
near-constant value in the interstitial region that arises from
the overlap of diffuse valence-electron densities. Hence it
was argued that this makes a nonnegligible contribution to
the derivatives of both the exchange and the correlation
approximations.

Since Fx(s) in lpGGAs also depends on rs, a higher value
of rs weakens the enhancement function [see Eq. (12)], and
as a result it contributes to ameliorating, in part, the artifi-
cial overestimation of a0 for alkali metals. Figure 7 shows
how lpGGAs in general reduce the relative error of lattice
constants for the whole set, with a greater effect upon alkali
and alkali-earth materials than the others. Even though lpPBE,
lplsRPBE, and lpNCAP do not show an improvement as
strong as lpCAP does, it is enough to reduce the mean relative
deviation depicted in Fig. 6.

Along with these last results it is appropriate to mention
that PBE also has proven to be one of the most successful
approximations for the calculation of lattice constants for
transition metals [64–66]. In Fig. 7 we observe how the lpPBE
family is comparatively better than lplsRPBE and lpNCAP,
whose relative deviations are systematically larger. Neverthe-
less, we cannot disregard the fact that the lpCAP family is as
competitive as lpPBE for these materials and in some cases it
outperforms the latter.

In Table I we gather the mean absolute deviations and
their uncertainties [67] for a set of properties important for
chemistry and materials physics as generated by a represen-
tative selection of GGAs. They may be divided into three
groups. From left to right, the first group is composed of
NCAP, lsRPBE, CAP, and PBE, designed for molecules. Then
there are lpCAP using μHL(rs), RGE2 [19], and PBEint [22],
aimed at describing molecules and solids. Finally, PBEsol
[9] is specifically calibrated for bulk solid calculations. The
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headings “X” and “C” in Table I denote the exchange and
correlation functionals, respectively. Obviously in the case of
the nonseparable lpGGAs, that labeling refers to the parent
functional, not its role in the lp combination. (Complete
lists corresponding to Table I comparing popular separable
functionals with locally parametrized variants are included in
the Supplemental Material [55].) From the results in Table I
it becomes clear that whatever works best for molecules does
the opposite for solids, and vice versa. For instance, standard
enthalpies of formation are well described with the first group
of functionals and poorly described with PBEsol, yet that
functional is itself very accurate for lattice constants and bulk
modulus, while the first group is not. This observation is
consistent with earlier findings summarized in Sec. I.

Then halfway in Table I are the intermediate approxi-
mations that provide compromises between molecules and
periodic systems. One sees that RGE2 and PBEint still favor
solids. Even though they remain accurate for a0, B0, and Ecoh,
their performance for the thermochemistry set G3 is at least
9 kcal/mol larger than for PBE. This is not the case for lpCAP
with the local dependence μHL(rs) in what nominally is
exchange and βHL(rs) for what nominally is correlation. This
provides advantages of approximately 47% versus RGE2 and
about 60% versus PBEint for this same property. Moreover,
lpCAP competes very closely with RGE2 for lattice constants
and bulk modulus, while at the same time it performs as well
as PBEint for cohesive energies. The rest of the properties are
approximately equally well described, with subtle differences.

With respect to the other functionals, lpCAP outperforms
NCAP, lsRPBE, CAP, and PBE for a0 and B0, but PBE is
better for Ecoh. The latter statement is notwithstanding the fact
that PBEsol remains the best functional for a0 and B0.

Using the data in Table I, additional statistical analyses
of representative functionals and properties were done. The
results are depicted as box plots in Fig. 8. In this analysis,
the signed deviations Pcalc − Pref for property P are used to
generate the boxes corresponding to the interquartile range,
with the minimum and maximum deviations shown by the
end of the whiskers. The black horizontal line indicates the
median value and the outliers in the set are depicted by the
dots. The median corresponds to the mean (signed) deviation
[67]. In general, as we move from the functionals designed
for molecules to those designed for periodic systems, we
can verify that the error distributions for the enthalpies of
formation and cohesive energies become wider. In contrast,
for bond lengths and lattice constants the error distributions
narrow. Also noticeable are the opposite trends exhibited by
the median values of the energetic properties for molecules
and solids, while the structural description is practically the
same for both kind of systems, although bond lengths are
overestimated whereas lattice constants also include underes-
timated values.

Finally, we did not consider whether layered solids such
as graphite and hexagonal boron nitride are well treated, nor
did we consider Kohn-Sham bandgaps for semiconductors or
insulators. The layered systems are known to be bound mainly

by weak interactions, hence dispersion corrections are needed
in order to describe them appropriately [62]. Regarding
bandgaps, the omitted functional derivative discontinuity of
the energy with respect to the electron density in the exchange
and correlation functionals under consideration, except for lp-
NCAP, makes any bandgap calculation an underestimate by as
much as a factor of 2 [68,69]. However, NCAP and, therefore,
lpNCAP introduce the derivative discontinuity effects through
the asymptotic behavior of the exchange correlation potential.
Thus, it will be worthwhile to analyze the performance of
NCAP and lpNCAP in the prediction of bandgaps.

IV. CONCLUDING REMARKS

The study presented here reveals that conversion of GGAs
to a nonseparable form by the use of local parameters μ(rs)
and β(rs) in what originally were the exchange and correlation
contributions, respectively, adds enough flexibility to account
for roughly equal treatment of molecules and solids without
adding computational effort. Moreover, these nonempirical
nonseparable GGAs with local parameters can fulfill the
two different values of the second-order coefficient from the
gradient expansion, namely, that of Ma and Brueckner for the
high-density limit and that of Antoniewicz and Kleinman for
the low-density limit.

Results for molecules showed that these local parameters
reduce the errors on calculated bond lengths and that the ther-
modynamic description with these functionals is at least 45%
less in error in comparison to other nonempirical approxima-
tions that pursue a balanced description of finite and extended
systems as well. Meanwhile for solids, a detailed analysis of
the calculated lattice constants revealed that this nonempirical
parametrization also is capable of circumventing the prob-
lems associated with alkali and alkali-earth metals, for which
the local parameters correctly reduce the overestimation of
what formally are the exchange and correlation energies. We
additionally showed that bulk moduli and cohesive energies
are more appropriately described when we added the local
parameters to several density functional approximations.

Overall, due to the flexibility that the enhancement
functions can acquire, this scheme is a promising alter-
native to explore further in the design of new general-
ized gradient approximations for the exchange-correlation
energy.
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