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Large tunable anomalous Hall effect in the kagome antiferromagnet U3Ru4Al12
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The Berry curvature in magnetic systems is attracting interest due to the potential tunability of topological
features via the magnetic structure. f electrons, with their large spin-orbit coupling, abundance of noncollinear
magnetic structures, and high electronic tunability, are attractive candidates to search for tunable topological
properties. In this study, we measure anomalous Hall effect (AHE) in the distorted kagome heavy fermion
antiferromagnet U3Ru4Al12. A large intrinsic AHE in high fields reveals the presence of a large Berry curvature.
Moreover, the fields required to obtain the large Berry curvature are significantly different between B ‖ a and
B ‖ a∗, providing a mechanism to control the topological response in this system. Theoretical calculations
illustrate that this sensitivity may be due to the heavy fermion character of the electronic structure. These results
shed light on the Berry curvature of a strongly correlated band structure in magnetically frustrated heavy fermion
materials but also emphasize 5 f electrons as an ideal playground for studying field-tuned topological states.

DOI: 10.1103/PhysRevB.102.035127

I. INTRODUCTION

The Berry curvature of a material is a property of the
electronic structure that provides an anomalous transverse
velocity to electrons traveling in a solid. For insulators, the
integral of the Berry curvature becomes quantized leading to
the notion that an electronic structure has a topology defined
by its Berry curvature. This topology can lead to dramatic ob-
servables such as quantized conductance and novel boundary
states [1–5]. By tuning the topology of a system one may hope
to control these properties. This has been demonstrated in sev-
eral noncollinear antiferromagnets (AFM) and ferromagnets
(FM), where the opposite Berry curvature from two different
domains can be accessed by flipping a small applied magnetic
field [6–10]. The reversal of the Berry curvature is witnessed
by the change in sign of a large intrinsic component to the
anomalous Hall effect [11]. A finite Berry curvature is a con-
sequence of spin-orbit coupling (SOC). SOC enables a mag-
netic field and/or magnetic structure to modify the electronic
structure [12–14]. This demonstrates an additional mecha-
nism to tune the topological response of a system with a rotat-
ing magnetic field, but for typical electronic energy scales, one
would expect a field of a few Tesla to be a weak perturbation.

Strong electronic correlations can further broaden the land-
scape of topological materials, for instance, by creating novel
fractionalized particles [15–18]. Importantly, it can amplify
the tunability of materials through increased susceptibility
to external perturbations. f -electron heavy fermion systems
are ideal for these types of studies, as the renormalized
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electronic energy scales are 100–1000 times smaller than
ordinary metals. Furthermore, strong SOC can lead to topo-
logically nontrivial properties as well as noncollinear spin
structures [19–21].

Here we report Hall effect measurements on the heavy
fermion, noncollinear antiferromagnet U3Ru4Al12. With an
applied magnetic field we find a significant nonlinear anoma-
lous Hall response, which can be tuned by small rotations of
the magnetic field. Theoretical calculations reveal that this
can be understood as a consequence of the magnetic field
exceeding the linear response regime due to a small electronic
energy scale of heavy fermion quasiparticles. Hence, the
electronic structure, and consequently the Berry curvature, is
significantly modified by the field strength and orientation.
This work demonstrates that 5 f -based materials are interest-
ing model systems to investigate the tunability of the Berry
curvature in the presence of strong electronic correlations.

II. EXPERIMENTS

The heavy-fermion antiferromagnet U3Ru4Al12 has a
Gd3Ru4Al12 type hexagonal crystal structure. Distorted
kagome nets of uranium atoms govern the magnetism. Due
to the 5 f electrons of uranium and the frustrated kagome
geometry, the system orders at 8 K in a unique noncollinear
magnetic structure shown in Fig. 1(a) [22]. Neutron scattering
measurements show that the spins are rotated ±60 degrees
in each triangle, resulting in a net ferromagnetic component
in-plane [23]. This ferromagnetic component is then canceled
out by adjacent layers that have the opposite spin arrange-
ment, forming the antiferromagnetic structure. The system
possesses a large Sommerfeld coefficient γ of 110 mJ/mol-U
K2 suggesting a large effective mass within the magnetically
ordered state [see Fig. 1(b)].
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FIG. 1. Magnetization and anomalous Hall resistivity at different
temperatures. (a) The magnetic structure of U3Ru4Al12. Only ura-
nium atoms are shown. The arrows indicate the magnetic structure
determined by neutron scattering measurements [23]. (b) Specific
heat data of U3Ru4Al12. (c),(d) Anomalous Hall resistivity with
J ‖ c and (c) B ‖ a and (d) B ‖ a∗. (e),(f) In-plane magnetic field
dependence of magnetization with (e) B ‖ a and (f) B ‖ a∗. The
curves are offset by 0.04 μB/U atom for clarity.

Our main observation is a surprising nonlinearity and an-
gular dependence in the transverse resistivity (anomalous Hall
effect, AHE) in comparison to the magnetization as shown
in Fig. 1(c) and Fig. 1(d) for B ‖ a and B ‖ a∗, respectively.
At low fields, ρyz and M increase linearly with applied fields.
However, an unexpected field-induced enhancement of ρyz is
observed in both orientations at low temperatures and low
fields (< 10 T), as indicated by arrows.

Figures 1(e) (B ‖ a) and 1(f) (B ‖ a∗) show the magnetic
field dependence of magnetization at different temperatures
and different field orientations. In both orientations, at low
fields hysteresis loops are observed, illustrating antiferromag-
netic domain reorientation (see SM). Also, the susceptibility
is almost identical in a and a∗ at low fields, indicating an
isotropic response. With increasing field, both orientations
show a nearly linear field dependence. An additional jump
with a hysteresis loop is observed in the B ‖ a∗ orientation
at the critical field BM = 12 T at T = 2 K, which is also seen
in magnetoresistance (MR) data shown in the Supplemental
Material and in magnetization and ultrasound data [24,25].
Thus, it is confirmed that a field-induced phase transition
originates from a metamagnetic transition at BM . A similar in-
plane metamagnetic phase-transition anisotropy was observed
in Dy3Ru4Al12 [26] and Ho3Ru4Al12 [27], indicating that this

property is related to the crystal electric field anisotropy and
the crystal structure.

In contrast to the high-field metamagnetic transition, the
field-induced nonlinear anomalous Hall conductivity (AHC)
behavior is not due to a phase transition. Indeed, no anomaly
is observed in magnetization or specific heat data at the field
where ρyz is suddenly enhanced, as shown in Figs. 1(c) and
1(d). Below, we discuss that the AHC possesses both extrinsic
and intrinsic anomalous Hall contributions, and by subtracting
a contribution proportional to the magnetization, we find a
significant field and temperature dependent intrinsic AHE
contribution.

In general, in magnetic materials, the transverse resistivity
ρyz is expressed as

ρyz = RH B + μ0Rext
s M + Rint

AHE, (1)

where RH , Rext
s , and Rint

AHE are ordinary, extrinsic anomalous,
and intrinsic anomalous Hall contributions, respectively. The
ordinary Hall contribution RH B can be determined at high
temperatures and is found to be negligible [24]. Thus, the
expression of ρyz reduces to

ρyz = μ0Rext
s M + Rint

AHE. (2)

The extrinsic AHE μ0Rext
s M originates from a scattering

mechanism. The intrinsic AHE Rint
AHE originates from the

Berry curvature. Because the magnetic structure shown in
Fig. 1(a) is symmetric with the product of the time rever-
sal operation and the inversion symmetry operation P × T ,
Rint

AHE vanishes at zero field. In low fields when ρyz and M
are proportional we cannot distinguish between the intrinsic
and extrinsic responses. However, we note that Onoda et al.
suggest that the AHC is dominated by the intrinsic component
when ρ > 10–100 μ� cm for rare earth compounds [28].
Since the resistivity of U3Ru4Al12 is larger than 300 μ� cm,
the anomalous Hall effect could be solely attributed to the
intrinsic contribution. If this is the case, the intrinsic AHC
would reach about 100 (280) �−1 cm−1 with B ‖ a∗ (B ‖ c)
(for B ‖ c data, see SM [24]).

After subtracting the linear-in-M component, the remain-
ing nonlinear intrinsic AHC at different temperatures is shown
in Fig. 2(b). The AHC with different orientations is shown
in (c). When B ‖ a the intrinsic nonlinear anomalous Hall
conductivity becomes finite above Ba � 4-5 T. When B ‖ a∗
the nonlinear AHC emerges above Ba∗ � 2-3 T, and the AHC

�σ int
yz = − �ρint

yz

ρyyρzz+ρ2
yz

reaches about 34 �−1cm−1 at 13 T, com-

parable to ferromagnetic materials.
Given the nonlinear Berry curvature with field magnitude,

we also explore the angle dependence of the AHE. The fact
that the onset field for the nonlinear AHC is almost double
for B ‖ a than for B ‖ a∗ indicates the Berry curvature can be
sensitively tuned by rotating the magnetic field. Indeed, the
intrinsic nonlinear AHC as a function of tilt angle φ, shown in
Fig. 2(d), is remarkably sensitive to the sample orientation. An
overall twofold oscillation is expected due to the reorientation
of the magnetic structure with the applied magnetic field.
However, at B = 5 T, the absolute value of AHC reaches
local maxima when B ‖ a∗ (namely, 30, 90, 150, 210, 270,
and 330 degrees). On the other hand, the absolute value of
�σ int

AHE almost vanishes at every 60 degrees, when B ‖ a. This
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FIG. 2. Intrinsic anomalous Hall conductivity and its angular
dependence. (a) Linear and nonlinear contribution of anomalous
Hall resistivity with B ‖ a∗. The blue (red) curves indicate the total
(linear in M) anomalous Hall resistivity. The difference between
blue and red curves represents the nonlinear intrinsic contribution.
(b) The temperature dependence of the intrinsic anomalous Hall
conductivity after subtracting the extrinsic contribution with B ‖ a∗.
(c) The intrinsic anomalous Hall conductivity with B ‖ a and B ‖ a∗

at T = 2 K. (d) In-plane angular dependence of nonlinear anomalous
Hall conductivity at B = 5 T. φ = 60 n for B ‖ a and φ = 60 n + 30
for B ‖ a∗. The current was applied parallel to the c axis.

demonstrates that the Berry curvature of our system can be
highly tuned by small sample rotations.

III. THEORETICAL MODEL

To better understand the AHC in U3Ru4Al12 with field and
angle we construct a minimal model that captures the essential
physics (see SM). The coplanar spin structure suggests that
the intrinsic contribution to the AHE is a consequence of
the Berry curvature created by the electronic structure in
momentum space, as opposed to a real space contribution
[29,30]. We introduce a Kondo lattice model to describe our
system (see SM)

H =
∑

〈iα, jβ〉
tiα, jβc†

iαc jβ − J
∑

iα

c†
iαSiα · σciα

−
∑

iα

c†
iαB · σciα + it so

iα, jβ

∑

〈iα, jβ〉
c†

iαnαβ · σc jβ, (3)

where ciα = (ciα↑, ciα↓)	 is the conduction electron annihi-
lation operator of a two-component spinor at the ith unit
cell and of the α sublattice. The localized f electrons are
responsible for the magnetic moments Si, which are treated
classically. We take the experimentally measured spin con-
figuration Si [23]. The spin-orbit coupling (SOC) vectors
nαβ respect the T and P symmetries and are defined in
SM [24]. As discussed in detail in the Supplemental Ma-
terial [24], we need to break PT , {PC2z|(0, 0, 1/2)}, and
{T Mz|(0, 0, 1/2)} symmetries to have a nonzero AHC. Here
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FIG. 3. Theoretically calculated intrinsic anomalous Hall con-
ductance in model Eq. (3). (a) The anomalous Hall conductance σ int

yz

as a function of the field angle φ and electron filling. (b) σ int
yz vs φ

for fixed filling at 0.38. (c) σ int
yz as function of the field strength B

for the two field angles φ = 180◦ and 210◦. Here we use the lattice
parameter a1 = 0.862 nm to obtain σ int

yz .

C2z is the twofold rotation of the lattice with respect to the ro-
tation axis along the z direction, Mz denotes the mirror sym-
metry with the mirror plane perpendicular to the z direction,
and (0, 0, 1/2) denotes a nonprimitive translation along the z
direction by half a lattice constant. The B field breaks PT and
the SOC breaks {PC2z|(0, 0, 1/2)} and {T Mz|(0, 0, 1/2)}
symmetries.

We calculate the intrinsic anomalous Hall conductivity σ int
yz

as a function of field angle φ and electron filling, see Fig. 3(a).
In a range of filling, from about 0.36 to 0.42, the theoretically
calculated σ int

yz is consistent with the experimental results.
The field strength and direction dependence of σyz at one
typical filling at 0.38 are displayed in Figs. 3(b) and 3(c). The
simple model captures semiquantitatively the experimental
observation in Figs. 2(d) and 2(c).

IV. DISCUSSION

In Fig. 4, we show the magnetic phase diagram and nonlin-
ear AHC contour plot of U3Ru4Al12. With the magnetic field
B applied parallel to a∗, a magnetic phase transition is ob-
served in MR, magnetization, and heat capacity measurements
(see SM), which is consistent with a recent study [25]. At low
fields, the system stays in the antiferromagnetic phase I (AF I).
At high fields, there is a metamagnetic transition and the
system enters antiferromagnetic phase II (AF II). Surprisingly,
the AHC behaves almost independently from the magnetic
phases. At low temperatures, a magnetic field Ba∗ required
to push the Berry curvature to a nonlinear regime is almost
constant and much smaller than BM . At high temperatures,
Ba∗ increases rapidly as the temperature approaches TN , while
BM decreases. Neutron scattering measurements at high fields
would be helpful to understand the magnetic structure of the
AF II phase and the evolution of the AHC.

In recent reports, the sign of the Berry curvature was
switched by flipping the domain structure [6–10], but it is
quite rare to observe an in-plane Berry-curvature switching
without inducing a magnetic transition. This is reasonable be-
cause in most cases the in-plane magnetic anisotropy is quite
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FIG. 4. Magnetic and topological phase diagram of U3Ru4Al12.
The magnetic field is applied parallel to a∗. The magnetic phase
transitions are determined by heat capacity and magnetization mea-
surements, which are consistent with MR. The contour plot indicates
the amplitude of the nonlinear AHC.

small, as is also the case in U3Ru4Al12. What causes such an
anisotropic and field-dependent behavior of Berry curvature in
U3Ru4Al12? A noncoplanar spin texture could generate such
an effect but would require the coplanar spin arrangement
in zero field to cant out of the plane. Our theoretical model
demonstrates that a field and angular dependent momentum-
space Berry curvature could arise in U3Ru4Al12 if the strength
of the field becomes a sizable fraction of the bandwidth. For
most materials this is not possible with today’s magnets, but
the renormalized bandwidth found in heavy fermion materi-
als enables this mechanism as a result of strong electronic
correlations.

V. CONCLUSIONS

We have demonstrated that a heavy fermion noncollinear
antiferromagnet can be driven into a regime with a nonlinear
response of the Berry curvature. A similar field-induced Berry
curvature was also observed in the noncollinear antiferro-
magnet and attributed to the proximity of Weyl nodes to the
Fermi energy [14]. The total AHC in U3Ru4Al12 reaches
0.21 e2/ha for σyz where a is the a-axis lattice parameter
of which a minimum of 0.08 e2/ha can be attributed to an
intrinsic Berry curvature effect. For σxy, an even larger value
of total AHC (0.68 e2/hc) was reached. (c is the c-axis lattice
parameter). These large values are found despite U3Ru4Al12

being a three-dimensional electron system. The combination
of large effective masses, crystal electric fields, and a frus-
trated distorted kagome lattice enables this system to possess
strong sensitivity of the Berry curvature to the magnitude
and direction of an applied field and sample rotation, further
illustrating that f -electron systems are fruitful playgrounds to
explore tuning of their Berry curvature.
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