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Homogeneous electron gas in arbitrary dimensions
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The homogeneous electron gas is one of the most studied model systems in condensed-matter physics. It is
also the basis of the large majority of approximations to the functionals of density-functional theory. As such,
its exchange-correlation energy has been studied extensively, and it is well-known for systems of one, two, and
three dimensions. Here, we extend this model and compute the exchange and correlation energy, as a function of
the Wigner-Seitz radius rs, for arbitrary dimension D. We find a very different behavior for reduced dimensional
spaces (D = 1 and 2), our three-dimensional space, and for higher dimensions. In fact, for D > 3, the leading
term of the correlation energy does not depend on the logarithm of rs (as for D = 3), but instead scales like a
polynomial: −cD/rγD

s , with the exponent γD = (D − 3)/(D − 1). In the large-D limit, the value of cD is found to
depend linearly on the dimension. In this limit, we also find that the concepts of exchange and correlation merge,
sharing a common 1/rs dependence.

DOI: 10.1103/PhysRevB.102.035123

I. INTRODUCTION

The homogeneous electron gas (HEG) is one of the most
fundamental models of condensed-matter theory [1]. Despite
its apparent simplicity, it has played a crucial role in the de-
velopment of electronic structure theory for almost a century
[2–10]. In 1965, Kohn and Sham showed that the exchange
and correlation energy of the HEG can be used to perform
accurate many-body calculations for atoms, molecules, and
solids [11]. Since then, the HEG is one of the systems of
choice to develop, improve, and benchmark functionals in
density-functional theory (DFT) [12].

In the D-dimensional HEG model, an infinite uniform gas
of electrons fills an infinite D-dimensional cube. The negative
charge is neutralized by a uniform positive background. Not
surprisingly, simple metals (i.e., metal sodium) resemble quite
well this paradigmatic system. While the exact kinetic energy
and exchange energy were determined at the very beginning
of quantum mechanics [13,14], the first analytical expression
for the correlation energy had to wait until much later. This
was obtained for high densities within the random-phase
approximation (RPA) [15]. Now we also have available highly
accurate numerical values for the correlation energy of the
HEG, for D = 1 [16], 2 [17], and 3 [18,19], from Monte Carlo
simulations.

For the spin-unpolarized HEG in D = 1, 2, and 3, the
energy per electron reads, as a function of rs, the Wigner-Seitz
radius [20]:

εD(rs → 0) = aD

r2
s

− bD

rs
+ cD ln rs + O

(
r0

s

)
, (1)

*Corresponding author: carlos.benavides-riveros@physik.uni-
halle.de

where aD, bD, and cD are constants independent of rs. The
first term on the right-hand side of (1) is the noninteracting
kinetic energy term, while the second is the exchange one. The
remaining terms represent the correlation energy. The values
of the constants in (1) are known for D = 1, 2, and 3 [1]. The
reconstruction of the series beyond the high-density regime is
a fascinating field in itself, with gaps still remaining in our
knowledge (see, for a recent review, Ref. [1]).

One of the most basic and essential concepts in science,
the dimensional parameter D is usually investigated as it can
yield remarkable insights into the physical 3D case [21–26].
There is a multitude of physical systems in which one or
two of the physical dimensions are much smaller than the
remaining ones. Such systems can often be modeled as one-
and two-dimensional (with the 3D form of the Poisson equa-
tion for the Coulomb interaction), reducing their complex-
ity while keeping the most important qualitative features of
D = 3 [27–29]. Indeed, by a meaningful dimensional
crossover, insights from 3D systems are useful to study
and develop exchange-correlation potentials for lower-
dimensional systems [30,31]. Furthermore, and perhaps more
importantly, reduced dimensions often exhibit notable phys-
ical properties. For example, in one dimension we find Lut-
tinger physics [32], while the synthesis of graphene [33] and
related materials has opened the way to a myriad of novel
physical effects in two dimensions [34]. In the large-D limit,
by increasing the degrees of freedom, the quantum world
reduces to a classical one [35]. Finally, recent progress in the
fabrication of artificial 2D materials paved the way for the
artificial realization of noninteger dimensions. Indeed, frac-
tal substrates (e.g., Sierpiński carpets of bulk Cu) confining
electron gases have already been reported, and the quantum
states are found to exhibit also a fractal structure [36–38].

The main aim of this paper is to study the HEG in
arbitrary dimensions. We assume that the integral form of
the Coulomb interaction in three dimensions is valid at
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arbitrary dimensions. Note that this is the usual assumption
for gases with dimensions larger than 1. For D = 1 the usual
Coulomb interaction leads to divergence, so it is usually
softened [39]. Other interactions have also been proposed to
study the crossover between 2D and 3D systems [31]. We
consider the D-dimensional Cartesian space, which can be
efficiently studied with the plane-wave basis set. Other, much
more involved, types of geometries are important to study the
strongly correlated (i.e., low-density) regime, as, for instance,
hyperspheres. Unfortunately, due to the added complexity,
that line of research has been limited to few electrons [40,41].

We will present analytic results for the D-dimensional
HEG for the leading terms of the kinetic, exchange, and
correlation energies. Our main result is that for D > 3 the
ground-state energy of the HEG has a quite different behavior
when compared to D = 3. Specifically, we will show that the
energy for D > 3 exhibits the following expansion in terms of
the Wigner-Seitz radius rs:

εD(rs → 0) = aD

r2
s

− bD

rs
+ cD

rγD
s

+ O
(
r0

s

)
, (2)

where γD = (D − 3)/(D − 1). To obtain this result we use
the RPA, which is known to be exact in the limit of
the dense gas. Incidentally, we note that the usefulness of
the RPA in materials science goes well beyond the study
of the HEG. In fact, the RPA provides an excellent framework
for producing fully nonlocal exchange-correlation function-
als, including long-range van der Waals interactions [42–44]
and static electronic correlations [45]. To go beyond the RPA
and to obtain accurate results for the mid- to low-density
regime would require the use of Monte Carlo techniques [46]
or other high-quality approaches such as the Singwi, Tosi,
Land, and Sjlander method [47].

This paper is organized as follows. We discuss first the
kinetic and exchange energy for the D-dimensional gas. Al-
though the results are both known, we offer an alternative
derivation for the exchange energy that is valid for integer and
noninteger dimensions. We then compute the correlation en-
ergy for the HEG in arbitrary dimensions. The paper ends with
a conclusion and two more technical Appendixes. Atomic
units are used throughout.

II. KINETIC AND EXCHANGE ENERGY

We use k± for the Fermi levels of the spin-up and spin-
down channels, respectively. For convenience, we also de-
fine the quantity kD

F ≡ (kD
+ + kD

− )/2. The relations k↑,↓ ≡
k±/kF = (1 ± ξ )1/D determine ξ , the system’s spin polariza-
tion, lying between 0 and 1. The Wigner-Seitz radius is written
as a function of the uniform density N/� in the usual way:

�
(

D
2 + 1

)
πD/2

1

rD
s

= N

�
. (3)

Here � is the gamma function, N is the number of electrons,
and � is the volume occupied by the electrons.

At any dimension, the one-electron orbitals are plane
waves and the ground-state energy of the HEG can be ob-
tained by perturbation methods, yielding

εD(rs, ξ ) = εt
D(rs, ξ ) + εx

D(rs, ξ ) + εc
D(rs, ξ ), (4)

where the noninteracting kinetic energy εt
D(rs, ξ ) and the

exchange energy εx
D(rs, ξ ) are the zeroth- and first-order terms

of the expansion. The correlation energy εc
D(rs, ξ ) is computed

from all higher orders.
The calculation of the kinetic energy for the HEG is a

textbook problem, and we present only the result. By integrat-
ing the energy contribution of each electron along the Fermi
sphere, one gets the following expression [1]:

εt
D(rs, ξ ) = α2

DD

2(D + 2)

ϒ2(ξ )

r2
s

, (5)

where αD = 2(D−1)/D�(D/2 + 1)2/D and

ϒn(ξ ) = 1
2 [(1 + ξ )(D+n)/D + (1 − ξ )(D+n)/D]

is the spin-scaling function. The first prefactor for the spin-
unpolarized case in Eqs. (1) and (2) is thus aD = α2

DD/2(D +
2). In the large-D limit (which is easily achieved by using
Stirling’s formula) we have for this function a quadratic
scaling with the dimension

aD→∞ = D2

2e2
+ ln(π ) + ln(D)

e2
D + O(D0). (6)

Here e is Euler’s constant.
The standard calculation of the exchange energy can also

be easily generalized to arbitrary dimensions. Indeed, the
exchange energy per particle reads

εx
D = − �

2N

∑
i∈{+,−}

∫ ki dD p1

(2π )D

dD p2

(2π )D
U (p1 − p2), (7)

where U (q) is the D-dimensional Fourier transform of the
Coulomb potential. All angular integrals in the expression (7)
are straightforward except the one for the angle between the
momenta p1 and p2. The integrals within are symmetric under
the interchange of p1 and p2, which can be used to factor out
one of the integrals over the magnitude of the momenta. After
these steps, one arrives at the expression

εx
D = −�

N

D

D + 1

(kD+1
+ + kD+1

− )

π (4π )
D
2 �

(
D
2 + 1

) I

(
D − 1

2

)
, (8)

where we introduced the integral

I (a) =
∫ 1

0

∫ 1

−1

η2a(1 − u2)a−1

(1 + η2 − 2ηu)a
du dη. (9)

We were unable to evaluate analytically this integral for
arbitrary values of a. However, we use a special relation with
respect to the variable η to construct a recursive relation. In
Appendix A we perform this calculation in full detail, leading
to the recursive formula

I (a) − I (a + 1) = 1

a(a + 1)
. (10)

In the special cases a = 1/2, 1, the integral (9) can be per-
formed analytically, resulting in I (a) = 1/a for all integral di-
mensions. Furthermore, one can evaluate the integral numer-
ically on the interval a ∈ (0, 1], leading to the result I (a) =
1/a for all values of a. Now one can substitute the Fermi
momenta with the corresponding expressions depending on
the spin polarization. One eventually obtains the result of
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Ref. [48] for arbitrary integer and noninteger dimensions as
well:

εx
D(rs, ξ ) = − 2αDD

π (D2 − 1)

ϒ1(ξ )

rs
. (11)

Thus for the spin-unpolarized case in Eq. (1) we have bD =
2αDD/π (D2 − 1). In the large-D limit, this term goes to a
constant value:

bD→∞ = 2

eπ
+ O(1/D). (12)

Notice that from Eq. (11) one eventually deduces that the ex-
change energy scales as (N/�)1/D+1, with the same exponent
of the Lieb-Oxford bound for the indirect Coulomb energy in
arbitrary dimensions [49,50].

III. CORRELATION ENERGY

The high-density correlation energy for the two- and
three-dimensional HEG is well understood [1]. For in-
stance, for D = 3 the correlation energy has the following
expansion [51]:

εc
3(rs, ξ ) =

∑
j

[λ j (ξ ) ln(rs) + ω j (ξ )]r j
s . (13)

For arbitrary dimensions in the high-density regime, we
apply the known resummation technique for D = 3 and gener-
alize accordingly to arbitrary dimensions. We follow closely
the classical work of Gell-Mann and Brueckner [15]. Since
the change of dimension does not modify the topology of the
Feynman diagrams, the sum of all the ring diagrams of the
same order (n) yields the usual form known from the RPA:

E (n)
c = (−1)n+1 �

2

∫
dDq

(2π )D

[
U (q)

(2π )D

]n

An(q), (14)

where the functions

An(q) = 1

n

n∏
k=1

(
2

∫ ∞

−∞
dtkFq(tk )

)
δ

(
n∑

k=1

tk

)
(15)

integrate the propagators Fq(t ) = 1
2

∫
dD p e−|t |(q2/2+p·q). The

D-dimension Fourier transformed Coulomb potential is

U (q) = (4π )
D−1

2

qD−1
�

(
D − 1

2

)
. (16)

Notice that we get in Eq. (14) n copies of U (q) since we need
n interactions to connect the corresponding fermion loops and
n copies of (2π )−D from the momentum integrals over the
fermion loops. The oscillating sign comes from the fact that
every fermion loop comes with a minus. In the propagator
Fq(t ), the momentum integrals are performed for the regions
Ai = (|p| < ki ) ∩ (|p + q| > ki ).

Scaling the momenta q → kD
F q, using the relation kF =

αD/rs and the definition of the Wigner-Seitz radius, one even-
tually obtains the contribution of the nth-order ring diagram
to the total energy per particle:

ε(n)
c = −

[
�

(
D
2 + 1

)
�2

(
D−1

2

)
4π

3D
2 +1

]∫
dDq

q2D−3

×
∫ ∞

−∞
du

(−1)n

2πn
[Qq(u)]n

(
�

(
D−1

2

)
rs

qD−1αDπ
D+1

2

)n−2

(17)

with Qq(u) = ∫
dt Fq(t )eiuqt . In the RPA, the total correlation

energy per particle amounts naturally to the sum of all these
contributions. At this stage, one can show that the individual
ring diagram contributions of order greater than or equal to
2 diverge. The divergence occurs at low momentum q. If one
first focuses on the low momentum behavior of Qq(u), it turns
out that this quantity is independent of q. Thus one can pull
this factor out of the momentum integral if one stays close to
the lower limit of the integration. After expanding the integral
measure, one arrives at an integrand that is proportional to
1/[qD−2(qD−1)n−2]. Its integral diverges at the lower limit for
all D > 2 ∧ n � 2 and D � 2 ∧ n > 2.

Since we are interested in high densities (i.e., rs → 0),
the only relevant parts are the low momentum domain of the
q 
 1 integral. We then drop all terms with q raised to a
higher power. After these approximations are performed, we
reach a relatively simple expression for Qq(u):

Qq(u) ≈ 4π
D−1

2

�
(

D−1
2

)R D−1
2

(u, ξ ), (18)

where

R D−1
2

(u, ξ ) = 1

4u2

�
(

3
2

)
�

(
D−1

2

)
�(D/2 + 1)

{
(1 + ξ )YD−1

2

[
u

(1 + ξ )
1
D

]

+ (1 − ξ )YD−1
2

[
u

(1 − ξ )
1
D

]}
.

Here Ya(z) = 2F1(1, 3/2; a + 3/2; −1
z2 ) is the hypergeometric

function. One can now perform the angular part of the q
integration and evaluate the series with the same type of
Gell-Mann and Brueckner convergence argument [15].

We can group the results for the RPA correlation energy in
three different cases (see Appendix B):

(i) When D = 1 ∨ D = 2 the leading contribution to the
correlation energy is a constant term.

(ii) When D = 3 the leading term is the logarithmic correc-
tion known since 1950 [52]:

εc
3(rs, ξ ) = 1 − ln(2)

π2
ϒc(ξ ) ln(rs) + O

(
r0

s

)
, (19)

where the spin-scaling function for the correlation energy is

ϒc(ξ ) = 1

2
+ (1 − ξ 2)1/3[(1 + ξ )1/3 + (1 − ξ )1/3]

4[1 − ln(2)]

− 1

4[1 − ln(2)]
ln

{[
(1 + ξ )1/3 + (1 − ξ )1/3

]2

(1 + ξ )
1+ξ

3 (1 − ξ )
1−ξ

3

}
.

(20)

(iii) For D > 3, the contribution is

εc
D(rs, ξ ) = − 2D�D

π3(D − 1)

(
αDπ

4rs

) D−3
D−1

∫ ∞

−∞
du

[
R D−1

2
(u, ξ )

] D+1
D−1

+ D

π3(D − 3)

∫ ∞

−∞
du

[
R D−1

2
(u, ξ )

]2 + δD, (21)

where �D is a special D-dependent series (see Appendix B)
and δD regulates the full approximation such that the second-
order energy contribution is exact. Remarkably, the constant
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FIG. 1. Coefficient cD and cD/D as a function of the dimension D for the HEG in the unpolarized and totally polarized limits.

term in Eq. (21) does not diverge as D → 3 from above, since
δD exhibits the same divergence with the opposite sign.

Our result then shows that for D > 3, the correlation be-
haves as

εc
D(rs, ξ ) ∼ r (3−D)/(D−1)

s . (22)

We obtained numerically the prefactors cD (see Fig. 1).
In Table I we give explicitly the values up to D = 9. Notice
that they are all negative, as expected for a correlation energy.
In the large-D limit, they scale linearly with the dimension:
cD→∞ = −D/2eπ2 + O(D0). Finally, from Eq. (22) one ob-
tains that in leading order the total correlation energy scales
with the density as (N/�)(D2−3)/[D(D−1)].

For the sake of comparison, we can now evaluate the
equilibrium density that minimizes the energy of the HEG.
Interestingly, the larger the dimension, the larger is the equi-
librium rs. For example, using only the exchange energy, we
obtain the equilibrium rs of 4.823 37 (D = 3), 9.340 01 (D =
4), and 15.1596 (D = 5). Including the RPA correlation, these
values are reduced to 3.828 65 (D = 3), 8.739 97 (D = 4), and
13.3068 (D = 5). This means that the large-dimension HEG is
stable for very low density gases. Recall that rs and the density
are connected by the definition (3). Since the dimensional
factor �(D/2 + 1)/πD/2 increases rapidly with the dimension,
one can see that the equilibrium density decreases with the
dimension but at a much slower pace than the increase of rs.

IV. CONCLUSION AND OUTLOOK

Recent progress in the physical realization of noninteger
dimensions has stimulated the study of electronic gases in
exotic dimensions, beyond the three-dimensional world that

TABLE I. Value of the coefficients cD for different integer di-
mensions D in the unpolarized and totally polarized limits.

cD 4 5 6 7 8 9

ξ = 0 −0.0196 −0.0285 −0.0391 −0.0509 −0.0638 −0.0773
ξ = ±1 −0.0131 −0.0216 −0.0318 −0.0432 −0.0556 −0.0689

we are used to a priori. In this paper, we studied the HEG in
such situations, with special emphasis on the leading orders
of the correlation energy.

From our results, we can extract some interesting algebraic
properties of the correlation energy of the D-dimensional
HEG. First, our physical world, with D = 3, stands out as
completely different from either the reduced dimensions (1
or 2) or higher dimensions. For dimensions greater than 3, the
leading dependence on rs changes with the dimensionality, in
contrast to the kinetic and exchange parts. Finally, for large
dimensions the correlation energy goes as 1/rs, which is the
same dependence as exchange. This means that for higher
dimensions, the HEG no longer becomes weakly correlated
for large densities, but it is equally correlated in the whole
range of densities. We believe that this work on arbitrary
dimensions can shed some light on the more far-reaching
problems of the correlation energy for the HEG in frac-
tional dimensions [36,38,53–55] and its quantum-information
properties [56–60]. This can also be a point of departure to
develop a more coherent and unified dimensional approach to
new exchange-correlation functionals within DFT. Indeed, for
the cases of 2D and 3D, such a dimensional unification has
already proved to be quite successful [31].
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APPENDIX A: CALCULATION OF THE RECURSIVE
RELATION FOR THE INTEGRAL I(a)

Let us define the auxiliary function f (c, b, u), which reads

f (c, b, u) =
∫ 1

0

ηb

(1 + η2 − 2ηu)c
dη. (A1)

One can easily verify that this function satisfies the relation
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f (c, b, u) = −(2 − 2u)1−c + (b − 1) f (c, b − 2, u) + (c − b)2u f (c, b − 1, u)

2c − b − 1
. (A2)

It turns out to be useful if one first obtains the antideriva-
tive of f (as a function of u), which is F (c, b, u) =
f (c − 1, b − 1, u)/[2(c − 1)] and its derivative, f ′(c, b, u) =
2c f (c + 1, b + 1, u), before one starts with the main calcula-
tion. Now, choosing b = 2a and c = a, Eq. (A1) leads to the
following expression:

I (a) = 21−a
∫ 1

−1
(1 + u)a−1du + (1 − 2a)

×
∫ 1

−1
(1 − u2)a−1 f (a, 2a − 2, u)du + 2a

×
∫ 1

−1
(1 − u2)a−1u f (a, 2a − 1, u)du. (A3)

The first term on the right-hand side is an easy integration
giving 2/a. Consider now the third term on the right-hand
side. We can partially integrate this term, and under the
condition a > 1, the boundary term vanishes. This results in

−2a
∫ 1

−1

d

du
[(1 − u2)a−1u]F (a, 2a − 1, u)du

= − a

(a − 1)
I (a − 1) − a(1 − 2a)

(a − 1)

×
∫ 1

−1
(1 − u2)a−2u2 f (a − 1, 2a − 2, u)du.

Let us now come to the second term on the right-hand side
of (A3). Here we partially integrate again. The boundary
terms vanish also for a > 1. As before, we integrate f and
differentiate the rest of the integrand to obtain the following
expression:

−(1 − 2a)
∫ 1

−1

d

du
[(1 − u2)a−1]F (a, 2a − 2, u)du

= (1 − 2a)
∫ 1

−1
(1 − u2)a−2u f (a − 1, 2a − 3, u)du. (A4)

Inserting these three results on the right-hand side of Eq. (A3),
we obtain

I (a) = 2

a
+ (1 − 2a)L(a) − aI (a − 1)

a − 1
(A5)

with L(a) = ∫ 1
−1(1 − u2)a−2[(a − 1)u f (a − 1, 2a − 3, u) −

au2 f (a − 1, 2a − 2, u)]du.
Now we use the relation (A1) again, but this time inserting

c = a − 1 and b = 2a − 1, obtaining

(2 − 2u)2−a − 2 f (a − 1, 2a − 1, u)

= 2(a − 1) f (a − 1, 2a − 3, u)

− 2au f (a − 1, 2a − 2, u). (A6)

If we multiply (A6) with u(1 − u2)a−2 and integrate over
u from −1 to 1, we can see that the right-hand side is

equal to 2L(a). After manipulating the left-hand side (partial
integration of the second term; in this case we differentiate
the function f and integrate the rest of the integrand), we
get L(a) = −I (a) + (a − 2)/a(a − 1). Finally, we insert the
relation for L(a) in (A6) and obtain

I (a) = 1

(a − 1)2
− aI (a − 1) + (1 − 2a)I (a)

a − 1

⇒ I (a − 1) − I (a) = 1

a(a − 1)
⇒ I (a) − I (a + 1)

= 1

a(a + 1)
. (A7)

Notice that for the partial integration steps, we assumed a > 1
to eliminate the boundary terms. Therefore, this expression
only holds for a > 1. This is the relation we used in the main
text of the paper.

APPENDIX B: SUMMATION OF ALL RING DIAGRAMS

We now derive the final formula for the correlation en-
ergy starting from the expression (17). If we insert in this
expression our approximation for Q and perform the angular
q integrals, we obtain the following:

εc
D ≈ δD − 2D

π3

∫ ∞

−∞
du R2

D−1
2

(u, ξ )
∫ 1

0

dq

qD−2

×
∞∑

n=2

(−1)n

n

(
4R D−1

2
(u, ξ )rs

αDπqD−1

)n−2

. (B1)

In this expression, δD regulates the approximation such that
the second-order energy contribution is exact, namely,

δD = ε(2)
c + D

π3

∫ ∞

−∞
[R D−1

2
(u, ξ )]2du

∫ 1

0

dq

qD−2

= lim
β→0

[
−

(
�

(
D
2 + 1

)
�2

(
D−1

2

)
4π

3D
2 +1

)

×
∫ ∞

β

dDq

q2D−2
�

(D)
1 (q; k↑, k↓)

+ D

π2

∫ 1

β

dq

qD−2

∫ 1

0
x[1 − x2]

D−3
2

×
∫ 1

0
y[1 − y2]

D−3
2 �

(D)
2 (x, y; k↑, k↓)dx dy

]
,

where

�
(D)
1 (q; k↑, k↓) = 1

4

∑
i, j=↑,↓

∫
Ai j

dD p1dD p2

q2 + q(p1 + p2)
,

�
(D)
2 (x, y; k↑, k↓) = 1

4

[
k2D−1
↑ + k2D−1

↓
x + y

+ 2(k↑k↓)D−1

xk↑ + yk↓

]
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with Ai j = (|p1| < ki ) ∩ (|p1 + q| > ki ) ∩ (|p2| < k j ) ∩
(|p2 + q| > k j ).

To simplify the notation, we define βD(u, ξ ) ≡
4

αDπ
R D−1

2
(u, ξ ). Substituting this in Eq. (B1), we obtain

εc
D ≈ δD − 2D

π3

∫ ∞

−∞
du

[
R D−1

2
(u, ξ )

]2

(βD(u, ξ )rs)2

[
βD(u, ξ )rs

2

−
∫ 1

0
dq qD ln

(
1 + βD(u, ξ )rs

qD−1

)]
(B2)

= δD − 2D

π3

∫ ∞

−∞
du

[R D−1
2

(u, ξ )]2

(βD(u, ξ )rs)2

[
βD(u, ξ )rs

2

−
∫ 1

0

dy

D − 1
y

2
D−1 ln

(
1 + βD(u, ξ )rs

y

)]
. (B3)

We made the substitution y = qD−1. Furthermore, we define
the quantity α ≡ 2

D−1 . Unfortunately, since the latter is not in
general an integer, we cannot solve this integral in a closed
form. To evaluate it, we must expand the integrand in a Taylor
series. To do this, we must separate the integral into two
parts, where one part is smaller than and one part greater than
βD(u)rs. By doing so, one stays in the convergence radius of
the corresponding series. Let us consider first the lower part
of the interval, namely∫ βD (u,ξ )rs

0

αyα

2
ln

(
1 + βD(u, ξ )rs

y

)

= α

2

∫ βD (u,ξ )rs

0
yα ln

(
1 + y

βD(u, ξ )rs

)

− α

2

∫ βD (u,ξ )rs

0
yα ln

(
y

βD(u, ξ )rs

)
dy. (B4)

The second integral on the right-hand side of this equation
can be easily done, yielding −[βD(u, ξ )rs]α+1/(α + 1)2. The
first integral on the right-hand can be Taylor-expanded. After
doing so, we arrive at∫ βD (u,ξ )rs

0
yα ln

(
1 + y

βD(u, ξ )rs

)

= −
∞∑

n=1

(−1)n

n[βD(u, ξ )rs]n

∫ βD (u,ξ )rs

0
yn+αdy

= −
∞∑

n=1

(−1)n

n

[βD(u, ξ )rs]α+1

n + α + 1
. (B5)

To perform the upper half of the integration interval, let us de-
fine δa,b as the Kronecker delta and a related quantity �a,b =
1 − δa,b, which works as the complement of the Kronecker
delta. With these definitions, we can expand and eventually
calculate the integral∫ 1

βD (u,ξ )rs

αyα

2
ln

(
1 + βD(u, ξ )rs

y

)

= −α

2

∞∑
n=1

[−βD(u, ξ )rs]n

n

∫ 1

βD (u,ξ )rs

yα−ndy (B6)

= −α

2

∞∑
n=1

�n,α+1(−1)n

n

[βD(u, ξ )rs]n − [βD(u, ξ )rs]α+1

α + 1 − n

+ α

2

∞∑
n=1

δn,α+1(−1)n

n
[βD(u, ξ )rs]

n ln[βD(u, ξ )rs]. (B7)

Let us define �D ≡
∞∑

n=1
[ (−1)n

n(n+α+1) − �n,α+1(−1)n

n(α+1−n) ] − 1
(α+1)2 and

rewrite the content of the square brackets in Eq. (B3):

βD(u, ξ )rs

2
−

∫ 1

0

dy

D − 1
y

2
D−1 ln

(
1 + βD(u, ξ )rs

y

)

= βD(u, ξ )rs

2
+ α

2
�D[βD(u, ξ )rs]

α+1

+ α

2

∞∑
n=1

�n,α+1[−βD(u, ξ )rs]n

n(α + 1 − n)

− α

2

∞∑
n=1

δn,α+1[−βD(u, ξ )rs]n

n
ln[βD(u, ξ )rs]. (B8)

Now let us take a closer look at α = 2
D−1 . If we restrict our

calculations to dimensions greater than 1, we have that α ∈
(0,∞). This means that α + 1 is never 1, therefore we can
drop the n = 1 term of the second series on the right-hand side
of Eq. (B8). In contrast to this, the n = 1 term of the first series
is always there and cancels the first term of the right-hand side
in Eq. (B8). That allows us to simplify the above expression,
and arrive at

βD(u, ξ )rs

2
−

∫ 1

0

dy

D − 1
y

2
D−1 ln

(
1 + βD(u, ξ )rs

y

)

= α

2
�D[βD(u, ξ )rs]

α+1 + α

2

∞∑
n=2

[−βD(u, ξ )rs]n

n

×
(

�n,α+1

α + 1 − n
− δn,α+1 ln[βD(u, ξ )rs]

)
. (B9)

Since we are only interested in terms that do not vanish when
rs approaches zero, we consider the expression 1

[βD (u,ξ )rs]2

times the equation above. If we now look in the limit of
small rs, we can perform some simplifications: The first term
vanishes for small radii if α > 1, which leads to the step
function in the next expression. Furthermore, the parts of the
series will all vanish for small radii if and only if n > 2,
which means that the series truncates at n = 2. Since it started
from 2, the series has in this limit only one term, namely
n = 2. Performing all these steps, we get the following closed
expression:

α

2
�D[βD(u, ξ )rs]

α−1θ (1 − α)

+ α�1,α

4(α − 1)
− αδ1,α

4
ln[βD(u, ξ )rs]

= �D[βD(u, ξ )rs]−
D−3
D−1

D − 1
θ (D − 3)

− �3,D

2(D − 3)
− δ3,D

4
ln[βD(u, ξ )rs], (B10)

035123-6



HOMOGENEOUS ELECTRON GAS IN ARBITRARY … PHYSICAL REVIEW B 102, 035123 (2020)

where we have substituted the definition of α. The full expres-
sion for the correlation energy is then

εc
D ≈ δD − 2D�D

π3(D − 1)

(
αDπ

4rs

) D−3
D−1

×
∫ ∞

−∞
[R D−1

2
(u, ξ )]

D+1
D−1 du θ (D − 3)

+
∫ ∞

−∞

[
D�3,D

π3(D − 3)
+ Dδ3,D

2π3
ln

(
4rs

αDπ
R D−1

2
(u, ξ )

)]

× [
R D−1

2
(u, ξ )

]2
du. (B11)

From this expression, one can learn directly the different
behavior for D < 3, D = 3, and D > 3.
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