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Neutron scattering off Weyl semimetals
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We present how to detect type-I Weyl nodes in a material by inelastic neutron scattering. Such an experiment
first of all allows one to determine the dispersion of the Weyl fermions. We extend the reasoning to produce a
quantitative test of the Weyl equation, taking into account realistic anisotropic properties. These anisotropies are
mostly contained in the form of the emergent magnetic moment of the excitations, which determines how they
couple to the neutrons. Although there are many material parameters, we find several quantitative predictions
that are universal and demonstrate that the excitations are described by solutions to the Weyl equation. The
anisotropic coupling between electrons and neutrons implies that even fully unpolarized neutrons can reveal
the spin-momentum locking of the Weyl fermions because the neutrons will couple to some components of
the Weyl fermion pseudospin more strongly. On the other hand, in an experiment with polarized neutrons, the
scattered neutron beam remains fully polarized in a direction that varies as a function of momentum transfer
(within the range of validity of the Weyl equation). This allows measurement of the chirality of Weyl fermions
for inversion-symmetric nodes. Furthermore, we estimate that the scattering rate may be large enough for such
experiments to be practical; in particular, the magnetic moment may be larger than the ordinary Bohr magneton,
compensating for a small density of states.
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I. INTRODUCTION

The Weyl equation, first applied in high-energy physics to
describe neutrinos, has recently been connected to condensed
matter physics, where it describes materials whose electronic
excitations have a strong coupling between spin and orbital
degrees of freedom. In experiments [1–3] guided by band-
structure calculations [4–6], Weyl fermions have recently
been realized in the context of Weyl semimetals (WSM) in
crystalline solids, photonic crystals [7], and magnon bands
[8–10].

Except for establishing magnetic structure [11–13], spin
dynamics [14], and probing magnon excitations [15,16], neu-
tron scattering has by and large been absent in revealing the
physics in topological semimetals [17,18]. WSMs, however,
are characterized by the property that their excitations are
spin-momentum locked. This indicates that inelastic neu-
tron scattering (INS) could measure these as it is a probe
well suited for measuring magnetic properties of excitations.
However, it has long been known that INS is a technique
that has severe difficulties probing electronic excitations due
to kinematic restrictions, form factor, and low density of
states at the Fermi level. For normal metallic systems, the
cross-section intensity was predicted [19] to be as low as
10−4–10−3 mb/meV sr f.u. At first glance, the prospects of
probing excitations in WSMs seem worse since the cross
section should be limited by the small density of states at
a Weyl point. However, the coupling of the neutron to Weyl
fermions has a contribution from orbital currents in addition
to the usual form factor that determines the rate of neutron
scattering. This can be large enough to compensate for the

small density of states. As a proof of concept, we employ
a toy model to estimate the cross section with this coupling
included; with some optimistic assumptions, the cross section
can be as large as 10−2 mb/meV sr f.u., which is similar to
the rates of scattering associated with other spin- 1

2 related
phenomena, that have been observed [20–24].

The Weyl equation (when applied to fundamental particles)
describes a particle which is massless and therefore always
moves at the speed of light in some direction, and which also
has a handedness: the spin is aligned to the velocity. This is
described mathematically by a two-component spinor wave
function. In a Weyl semimetal the two components correspond
to two different Bloch states that happen to be degenerate
at a specific crystal momentum, and the fact that they are
described by the same equation as relativistic particles nearby
is an emergent effect. In particular, qualitative properties of
a Weyl semimetal that agree with relativistic Weyl fermions
are the correlation between the velocity and the orientation of
the pseudospinor (degree of freedom that transforms as spin)
on the Bloch sphere and the existence of handedness. The
chirality is especially important because it alone determines
the magnitude of the “chiral anomaly,” which leads to macro-
scopic phenomena such as a strong magnetoresistance.

This paper models the coupling of Weyl fermions to neu-
trons and calculates the INS cross section in detail. We show
that although a Weyl semimetal may not have any perma-
nent magnetic ordering, neutrons will still become polarized
when they are scattered. When a neutron scatters from the
system, it excites an electron from some state below the
Fermi energy to one above. The chance of the electron’s
velocity being deflected in a given direction depends on the
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angle between this direction and the initial and final spins
of the neutron (which in principle can be controlled exper-
imentally). If this can be seen in an experiment, it would
be a sign of spin-momentum locking. INS would provide
information that other experimental techniques cannot obtain.
For example, it would go beyond ARPES in being able to
resolve all three components of momenta and so would be able
to probe spin-momentum locking more cleanly. INS would
correctly distinguish a Weyl semimetal from a narrow-gap
semiconductor because the spin-momentum locking does not
occur in a narrow-gap semiconductor (at least not at low
energies). Aside from the specific problem discussed in this
paper of how to deduce the properties of Weyl excitations
from neutron scattering, the detailed analysis of the scat-
tering cross section suggests that highly unusual types of
particle-hole excitations could be generated by a scattering
event.

There are two difficulties with using neutron scattering to
understand Weyl semimetals in this way. Neutron scattering
creates a continuum of particle-hole pairs. Only the momen-
tum transfer from the neutron is known, and this can result
from many different combinations of momenta of the excited
particle and hole, each of which corresponds to a different
change in the neutron spin. However, at the maximum mo-
mentum transfer (for a given energy transfer) the electron
velocity must switch sign. This determines the direction of the
initial and final velocity, and the magnitudes are not needed
to detect spin-momentum locking. The other difficulty is that
although the excitations are essentially described by Weyl
equation, the coupling of the neutrons to the electrons is not
simply proportional to the emergent magnetic moment and
depends on many material-dependent parameters. The differ-
ential cross section is thus given by a relativistic expression
that is distorted in a complex way. Nevertheless, we show that
there is remarkably a pattern hidden in this function that has
a stable character reflecting the topological chirality of the
nodes.

After presenting the results on the differential cross sec-
tion, this paper focuses on finding good ways to interpret
the neutron scattering as a function of spin and momentum,
especially given that there are many unknown parameters.
The paper proceeds as follows: The scattering process (under
circumstances we discuss in Sec. II) can be mapped to a rela-
tivistic process. The cross section can thus be determined by
using Lorentz invariance (with details of the calculation given
in Appendix C). The scattering rate for neutrons is equivalent
to the rate of excitation of relativistic Weyl fermions with an
applied field of a certain polarization determined by g factors
(see Sec. III) of the WSM-neutron coupling. In particular, we
discuss the size of these in materials in which the two Weyl
nodes have very close momenta. Here, the g factors can be
very large, so that the effective magnetic moment is much
greater than that of an ordinary electron. The cross section (see
Sec. V), while affected by the material-dependent g factors,
still has properties that capture Weyl fermion physics solely.

Our main findings are as follows:
(1) By varying the energy and looking at the correspond-

ing range of the nonzero cross section, one can indirectly
measure the dispersion of the Weyl excitations, their velocity,
and principal directions (see Sec. V A).

(2) The spin-momentum locking manifests itself as de-
pendence of the cross section on the angle of momentum
transfer. It is readily observable in a fully unpolarized ex-
periment (see Sec. V B) because an unpolarized beam acts
as if it is polarized thanks to the anisotropy of the neutron
coupling parameters. Furthermore, one can obtain quantitative
identities that are “universal” in that they are satisfied by the
cross section independently of the coupling constants.

(3) If the initial neutron beam is perfectly polarized (see
Sec. V D) with maximum momentum transfer, then the scat-
tered beam is rotated in a definite direction by the interaction
with the spins of the Weyl fermions, so the neutrons deflected
by any given amount remain perfectly polarized.

(4) With both beam (initially) and detector polarized, one
can measure the chirality for inversion-symmetric nodes.

II. KINEMATICS AND SPIN-MOMENTUM LOCKING

Let us consider scattering between two Weyl nodes, at
momenta k0,1 and k0,2. Suppose that the Hamiltonians near
these can be put into the idealized form

H0,i(k) = χivFσ · (k − k0,i ), (1)

by changing coordinates if necessary. Here, vF is the velocity
of Weyl particles and χi = ±1 their handedness that we will
be interested in measuring. The vector of pseudospin Pauli
matrices is σ. The Weyl equation has two solutions corre-
sponding to the conduction and valence band, labeled by η =
±1. These solutions have the form ψi,η(r) = eik·r/h̄|p; χiη〉,
where it is convenient to introduce p = k − k0,i, the mo-
mentum measured relative to the Weyl point. Here, |p; χiη〉
represents the two-component spinor pointing either parallel
or antiparallel to the momentum, according to χiη = ±1.

In general, the Hamiltonians may have a more complicated
form (described below); however, as we show at the end of this
section, most of the asymmetries of the Hamiltonian may be
eliminated under assumptions about inversion or time-reversal
symmetry. There is just one Lorentz-violating term that cannot
be eliminated, which causes certain characteristics of our
results to break down. But, the conceptual picture of how
neutron scattering reflects spin-momentum locking does not
change.

If the material is initially in the ground state, a neutron with
initial momentum qi can scatter an electron from one Weyl
node to another, exciting a Weyl fermion with momentum k f ,
and creating a hole below the Fermi energy with momentum
ki near the other Weyl point (see Fig. 1). As a result of this
scattering process the neutron loses energy and its momentum
is changed to q f . For a neutron momentum transfer q = qi −
q f and change in Weyl momentum �k = k f − ki, the mo-
mentum conservation is represented by a factor δ3(q − �k) =
δ3(p − �), where it is convenient to introduce new variables
� and p. The first is defined by � = �k0 − q, i.e., the
deviation between the transferred momentum and the vector
connecting the exact positions of the nodes �k0. The second
is defined by p = p f − pi where the variables pi, p f are the
parts of the momenta that appear in the Weyl equation, i.e., the
deviation of each momentum from the corresponding Weyl
point. These momenta may be regarded as a sort of “kinetic
momentum” because they determine the direction the particle
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FIG. 1. Low-energy region of two isotropic Weyl nodes located
at k0,2 = −k0,1 with chirality χ2 and χ1, respectively. At zero tem-
perature, the filled Fermi sea (gray) is half-filled.

moves and the spin state, while k0,1 and k0,2 are just constant
offsets. In this paper, we consider only absorption processes,
where neutrons transfer energy h̄ω = (|qi|2 − |q f |2)/2mn to
the WSM with accordingly a change in energy �ξw of the
electrons.

The most basic thing one can measure using neutron
scattering is the region of q, ω space in which the cross
section is nonzero. Because the neutron scattering produces
two excitations, there are a range of ω’s for each q rather
than a sharp dispersion, similar to the two-particle part of
the structure factor in a magnon system, for example. The
change in energy of the electron, due to scattering from a
negative-energy state at the first node to a positive-energy state
at the second node, is �ξw = vF|p f | − (−vF)|pi| so energy
conservation is described by δ[h̄ω − vF(|p f | + |pi|)]. Graphi-
cally, the transferred “kinetic momentum” −� is represented
by a vector connecting the end points of p f and pi and the
energy is proportional to the sum of their lengths. Thus, by
the triangle inequality h̄ω � vF|�|. Suppose one plots the
scattering cross section at a fixed energy transfer. Then, the
inequality says that the scattering cross section is nonzero only
inside of a sphere; the sphere is expected to appear with a
strong relief as the cross section jumps sharply from zero at its
surface. In an actual experiment, if one plots the cross section
at a fixed h̄ω as a function of the momentum transfer q, one
will see two spheres of radii h̄ω/vF centered at ±2k0 as in
Fig. 2, which corresponds to transitions (see Fig. 1) from the
first Weyl node to the second, or vice versa, which we call M±

transitions. The M± transitions are displaced in momentum
because the physical momentum differs from p by offsets
±2k0. The way the cross section varies within these spheres
is interesting to understand in detail because it is connected to
spin-momentum locking (see Sec. V B).

A. Conditions for Lorentz invariance and its consequences

We will see below that Lorentz invariance leads to some
special properties of the cross section. First, there is a disconti-
nuity of the cross section at the surface of the spherical regions
in momentum space where the cross section is nonzero.
Second, the variation of the cross section as a function of
momentum can be found using Lorentz transformations.

FIG. 2. Region of nonzero scattering between two nodes at
k0,2 = −k0,1 = k0 ẑ. The cross section as a function of momentum
transfer q varies within spheres |�| � h̄ω/vF for nodes on form
Eq. (1). For anisotropic nodes, Eq. (2), the nonzero regions would
be ellipsoids centered on �k0. Such a system can be reduced to an
isotropic system (provided v(i)

0 = 0) by applying a transformation T
to reshape the regions into spheres |T �| � h̄ω/vF.

In contrast to a relativistic description of Weyl fermions,
a condensed matter WSM manifestly breaks [25] Lorentz in-
variance because nodes are separated in momentum space and
the ith Weyl node expanded to linear order in the momentum
has the general form

H0,i(k) = σ0v(i)
0 · p + vFσlλ

(i)
l mpm, (2)

where σ0 is the identity matrix and λl m is an arbitrary real
matrix of parameters [26] (we use Einstein’s summation
convention). Unlike Eq. (1) which describes idealized Weyl
nodes, Eq. (2) is the most general form of Weyl nodes aligned
with the chemical potential. This includes [27] the possibility
of a term independent of spin and anisotropy described by v(i)

0
and λ(i), respectively.

Now, we will focus on scattering between a pair of nodes
that are related by either time-reversal or inversion symmetry.
By this symmetry, we may assume the nodes are at k0,2 =
−k0,1 = k0. Transforming the momentum by a linear trans-
formation p̃ = T p as well as the spin (see Appendix A), we
can remove the anisotropy of Eq. (2). This transforms the
Hamiltonian of the ith (i = 1, 2) low-energy region into

H0,i(k̃) = σ0ṽ(i)
0 · p̃ + χivFσ · p̃, p̃ = k̃ − k̃0,i, (3)

where ṽ(i)
0 is v(i)

0 in the new coordinates. The type of symmetry
connecting the Weyl nodes determines their relative chirality;
for time-reversal and inversion symmetry, the chiralities are
equal and negative of one another, respectively.

This form of the Hamiltonian makes it clear that the only
term which breaks Lorentz symmetry is the term ṽ(i)

0 . In this
paper we will focus on the cross section in the Lorentz-
invariant case ṽ(i)

0 = 0. This case is a good starting point
for understanding neutron scattering off WSMs, although
the term ṽ(i)

0 is not just a minor detail. Many WSMs have
such a term and it can change some of the predictions made
here. Section V A describes qualitatively what happens when
|ṽ(i)

0 |/vF is nonzero but small.
The transformation T was chosen such that the second

term in Eq. (2) transforms into the standard isotropic form
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of Eq. (3). If the term ṽ(i)
0 is negligible, then the Hamiltonian

is clearly isotropic and even has a relativistic symmetry. Im-
portantly, because of the time-reversal or inversion symmetry,
the transformation T is the same for both nodes; i.e. the
nodes have their principal axes aligned and are isotropic in
a single coordinate system. This is crucial for our calculation
of the cross section; without it we would not be able to
use Lorentz symmetry, and the contour of constant energy
would not have the simple ellipsoidal shape that is found in
Sec. V. As a consequence, the regions of nonzero scattering
would not end sharply. In order to compare experimental
results to this theory, it will be necessary to determine the
transformation. We show in Sec. V A that it is easy to see the
form of T experimentally from a plot of the structure factor
at fixed energy. The transformation must be chosen to have
a determinant of 1 to ensure that the density of states for
exciting Weyl fermions does not change. Thus, vF will be the
geometric mean of the three principal velocities of the original
anisotropic dispersion.

Following are the precise conditions under which Lorentz
invariance can be assumed:

(1) The nodes involved in the scattering are aligned (or
nearly aligned) with the chemical potential. This requires
careful doping for the materials discovered so far, but in a
material where all the Weyl nodes are at the same energy, due
to symmetry, it can be an automatic property of a compound
with an even number of electrons per unit cell.

(2) Scattering is between two nodes connected by either
time-reversal or inversion symmetry.

(3) The three components of ṽ(i)
0 in Eq. (3) vanish. Al-

though this condition would not usually be satisfied exactly,
we will assume it to be, in order to be able to use Lorentz
invariance. A small nonzero ṽ0 does not change the predic-
tions too much and, in fact, any type-I WSM |ṽ0| � vF is
analytically tractable as will be discussed in Sec. V A.

Under these conditions, the dynamics of the excitations of
the material are entirely Lorentz invariant, but their interac-
tion with neutrons is not. Thus, the cross section will not
be Lorentz invariant, but it can be predicted using Lorentz
symmetry. It turns out that the cross section for a given
initial and final neutron polarization is a certain component
of a relativistic tensor (see Sec. IV); the tensor for any net
momentum �̃ can be obtained by applying a Lorentz trans-
formation to that in the rest frame. The cross section is not
Lorentz invariant for the same reason that the lifetime of a
particle depends on its velocity, namely, the lifetime is only
one component of a 4-vector while the cross section is one
component of a 4-tensor. In the case of a moving particle,
the Lorentz invariance can be proven by using a detector that
is moving at the same speed as the particle, in which case
the lifetime is the same as the rest lifetime of the particle. In
our case, the neutrons are not Lorentz invariant, so there is no
way to accelerate the “detector”; we can only measure certain
components of the scattering tensor in one reference frame.

B. Kinetic limitations on scattering between
nodes at the same momentum

Consider now the case of intranode scattering, i.e., a
transition within a single Weyl node. In this case, �k0 = 0.

The conservation of energy and momentum give the same
conditions on the transferred momentum and energy as above.
However, in contrast to the case of distinct nodes where
qi − q f = �k0 − �, there is no offset to the momentum, and
this makes it much more difficult to see anything using neu-
tron scattering. The same conclusion will apply to scattering
between two Weyl nodes at the same point (e.g., in a Dirac
material). First, it is clearly impossible to access the center of
the spherical region described above because |�| = 0 implies
that no momentum is transferred; therefore, the neutron’s
momentum is unchanged, and so no energy is transferred
either. For internode scattering, |�| = 0 only implies that the
transferred momentum is �k0, and so the neutron’s energy
can change, allowing it to create excitations in the material.

Second, there are no possible scattering events at all (with
any transferred momentum) if the neutron has too small an
energy. We initially assume an isotropic system, so that trans-
formed and untransformed coordinates are the same, e.g. qi =
q̃i, q f = q̃ f . Using h̄ω � |�̃|vF, the triangle inequality |�̃| �
|q̃i| − |q̃ f |, and conservation of energy h̄ω = h̄2

2mn
(q2

i − q2
f ),

we obtain |qi| + |q f | � 2mnvF, a restriction on the neutron
momenta. Since the neutron loses energy and momentum,
this relation constrains the velocity of the incident neutron
vn = |qi|/mn to

vn � vF. (4)

In the more general case where the electron’s speed is direc-
tion dependent, the neutron’s speed must exceed the maxi-
mum possible speed of the electron if one is to see the full
region of scattering |�̃| � h̄ω/vF.

Hence, the Fermi velocity of the node determines a char-
acteristic velocity scale for the neutrons [28], implying that
only neutrons moving faster than vF can scatter on a single
Weyl node. For example, ARPES measurements of tanta-
lum phosphide [29] indicate a velocity of about vF ≈ 1.5 ×
105 m s−1, which greatly exceeds the speed [30] of a thermal
neutron vthermal

n = 2 × 103 m s−1. In order to reach a speed of
105 m s−1 a neutron has to be rather hot, carrying an energy of
the order of 102 eV, which is far beyond what thermal neutron
sources can offer and belongs within the resonance energy
range. However, with the advent of ever-new WSMs, ones
that allow observation of intranode scattering may be found
[31]. Hence, although we focus in this paper on scattering
between separated Weyl nodes, Appendix D points out some
differences that appear for intranode scattering and its cross
section is given by Eq. (D4).

III. OPERATORS FOR NEUTRON WEYL
FERMION INTERACTION

A Weyl fermion has two internal states, similar to a spin,
but these do not necessarily correspond to spin: we call them
pseudospin instead. The two states could, for example, be two
orbitals of atoms with positive and negative orbital angular
momentum Lz, or could differ in both spin and orbital degrees
of freedom, or they could differ in some other way (they do
not have to correspond to atomic orbitals of single atoms
in fact). Because of this, the operator that interacts with the
magnetic field of the neutron is not simply proportional to σ.
In this section, we will derive the most general form that this
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operator takes. It differs from the ordinary magnetic moment
in an additional way, namely, it induces transitions between
two different Weyl nodes.

A. Magnetic moments of Weyl fermions

The interaction [32,33] of a neutron with the WSM is
treated in the Born approximation, where the vector potential
[34] operator A(r) of the neutron’s magnetic moment interacts
with the currents of the electronic system. If a full band
structure is available, a direct way to calculate the structure
factor would be to evaluate the matrix elements of the exact
current operator (including spin and orbital parts) between
the Bloch states. Near a Weyl point, one can focus on a few
parameters from this calculation, which can be represented
as an effective anomalous magnetic moment operator. See
Appendix D for a discussion of why the interaction cannot
be found by the minimal substitution in this case.

The basic idea is that the Weyl Hamiltonian in the vicinity
of k0,i can be developed just from information about the
degenerate states exactly at these points by using degener-
ate perturbation theory. The Hamiltonian at a nearby point
H0,i(k0,i + p) can be understood by treating p as a pertur-
bation. We project it into the twofold-degenerate subspace
Di = {|s; k0,i〉} exactly at the nearby Weyl point, enumerated
by arbitrary pseudospin label s = ±. These are not necessarily
different spin states; they are just any two degenerate states,
and could differ in orbital structure instead of spin, for exam-
ple. For momenta p �= 0 away from the node, the projected
Hamiltonian can be expanded to first order as w(i) · p which
removes the degeneracy, where w(i) = ∂H0,i(p + k0,i )/∂p|p=0
is a vector of 2 × 2 matrices. Expanding in terms of Pauli
matrices gives the effective low-energy Weyl Hamiltonian
(2), under the assumption that the nodes are aligned at
the chemical potential. Note that the states |s, k0,i〉 are not
eigenstates at a nonzero p; the energy eigenstates take the
form

∑
s cs(p)|s; k0,i〉, where the cs’s form the eigenvector of

w(i) · p in its representation Di. In other words, the cs’s are
just the components of the eigenspinor |p; ηχ〉 of the Weyl
equation.

As mentioned above, neutron scattering depends on the
matrix elements of the electronic current operator. These ma-
trix elements have a complicated dependence on the “kinetic
momenta” p of the states involved. However, this dependence
can be derived from a simple effective description. There is
an effective operator, a simple 2 × 2 matrix that describes
the electronic current within the low-energy subspaces. This
matrix has no momentum dependence (to a good accuracy)
because it is defined with respect to the basis |s; k0,i〉 which
are not energy eigenstates. The momentum and polarization
dependence of the neutron cross section arises from the func-
tions c(p), as is explained intuitively in Sec. V B.

For an M+ transition, we need only the current’s overlaps
between states of the degenerate subspaces D1 and D2. The
current J forms a vector J (2k0) of 2 × 2 matrices. The
dependence on p can be neglected since the basis states
are constant within the first-order approximation aside from
multiplication by eip·r to change the crystal momentum. (The
basis states are nearly constant by the perturbation theory ap-
proach discussed above; the eigenstates vary strongly because

p acts as a perturbation to a degenerate Hamiltonian.) Within
the effective Weyl fermion description, J (2k0) is the first
quantized operator corresponding to the current; it has the
same matrix elements for corresponding states in the effective
and more realistic descriptions. Conservation of momentum
gives

〈s; k0,2+ p2|J(q)|k0,1+ p1; s′〉 = δ3(q − 2k0+ �)J (2k0)ss′ ,

(5)
without any dependence of the matrix elements on �, which
is valid for |�| � |2k0| as is considered in this paper [35].
The electron-neutron coupling can now be reduced to

HA = −
∫

V
dr Jeff (r) · A(r − rn), (6)

where the Weyl-fermion current is given by

Jeff (r, t ) = �
†
2 (r, t )J (2k0)�1(r, t ) + H.c. (7)

and A(r − rn) is the vector potential of a neutron at rn.
This current can be interpreted as a magnetic moment. We

first need a crucial fact that can be obtained by using conserva-
tion of charge ∂ρ/∂t + ∇ · J = 0 and Heisenberg’s equation
of motion ∂ρ/∂t = (i/h̄)[H, ρ] for the local electronic parti-
cle density operator. One finds that 2k0 · J (2k0) = 0 since
the matrix elements of [H, ρ] are 0 between degenerate states.
Hence, the transition current density is purely transverse with
respect to 2k0 and can therefore be expressed as J (2k0) =
−i2k0/h̄ × M(2k0). This operator has the interpretation of a
magnetization operator. Substituting for J in Eq. (7) in terms
of M and replacing i2k0/h̄ by the gradient (which is valid for
momenta near the nodes), we find J = curl M where

M(r, t ) = �
†
1 (r, t )M†�2(r, t ) + �

†
2 (r, t )M�1(r, t ). (8)

This allows one to express the interaction between the neutron
and the electrons, Eq. (6), as the standard form for the energy
of a dipole in a magnetic field:

HB = −
∫

V
dr M(r) · B(r − rn). (9)

Furthermore, the magnetization M, being a 2 × 2 matrix, can
be expanded as

M = μBσμFμ, μ = 0, 1, 2, 3. (10)

Defining the jth component of Fμ ∈ C3 to be Fμ, a 4 × 3
matrix which describes the coupling between the “magnetic”
degree of freedom j and the “pseudospin” degree of freedom
μ. Since these indices transform differently (one with spatial
rotations and one with redefinition of the pseudospin basis),
Fμ

j is not a geometrical object. It is merely a collection
of complex coupling coefficients which relate the magnetic
moment to the spin, similar to the factor g

2 for an electron
spin- 1

2 magnetic moment (g/2)μBσ which Eq. (10) is a gen-
eralization of. Roughly, Fμ can be interpreted as the “anoma-
lous” components of a “Weyl magnetic moment.” However,
it is not completely right to use this analogy. The reason is
that the interaction involves a transition between states of
two different nodes. Hence, the presence of the “anomalous
magnetic moment” coupling Fμ is a quantum effect from the
bands, which acts like a force on the pseudospin.
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The parameters Fμ can be determined numerically if one
has developed a realistic band-structure model. Evaluating the
current operator (including the currents associated with the
spin) between the pair of degenerate wave functions gives a
2 × 2 matrix from which one can obtain the F’s. With respect
to k0 these can be divided into longitudinal and transverse
parts Fμ = Fμ

‖ + Fμ

⊥. We have the freedom to set Fμ

‖ = 0 and
by Eq. (10) and the relation between M and J , F⊥ can be
found in two stages as

Fμ

� = k̂0 × Fμ = ih̄

2|2k0|μB
Tr[J (2k0)σμ], (11a)

Fμ

⊥ = Fμ

� × k̂0. (11b)

Contrary to conventional purely magnetic scattering, the
coupling (11) is determined by 16 real numbers without
invoking constraints from symmetry. These contain informa-
tion from bands solely, so without a specific band model
these are unknown. Thus, the coupling is structurally much
more complicated than the bare coupling of neutrons with
matter, which is just a single number with magnitude g/2 = 1.
That is, F0

⊥ �= 0 generally and Fi
⊥ · ĵ �= δi j always (by the

constraint 2k0 · Fi
⊥ = 0), and can even be very asymmetric

with either a larger or smaller value than the bare coupling.
Furthermore, Fμ

⊥ may become divergent upon approaching
|2k0| → 0 a topological phase transition. An example of these
features is illustrated in Sec. III B for a toy model.

B. Example: Minimal four-band toy model of
inversion-invariant WSM

Analogous to Ref. [36], a minimal time-reversal breaking
and inversion-invariant WSM can be obtained by starting with
a material that is tuned to the transition between a topological
and normal insulator and introducing magnetic impurities.
In a time-reversal-symmetric material that is tuned to the
transition point, the gap is closed producing three-dimensional
(3D) Dirac points, which we suppose to be at momentum
0. The Dirac points are described by a Hamiltonian H3 D =
vDk · στ z. These may be regarded as two Weyl nodes, labeled
by τ z = ±1, and they have opposite chiralities, also given by
τz. The σ’s correspond to the spin of the state, while τ labels
different bands. As one moves away from the topological tran-
sition, a hybridization term appears Hδ = δσ 0τ x that couples
the nodes with strength δ and produces a gap. Returning to
the transition point and introducing magnetic impurities HZ =
−mσ zτ 0 that are assumed to order ferromagnetically along
the z direction and interact equally with both orbitals breaks
time-reversal symmetry and separates the nodes in momentum
space. If the hybridization term is present as well and not too
large, then it will not open a gap and the Weyl points will
remain stable as long as m > |δ| assuming that m > 0. This
yields a basic minimal four-band toy model whose Hamilto-
nian H0

4 = H3 D + Hδ + HZ has nodes at k0,2 = −k0,1 = k0ẑ,
where vDk0 = √

m2 − δ2, and its energy spectrum is plotted
in Fig. 3. Each node i = 1, 2 has a degenerate subspace Di =
{|s; k0,i〉} enumerated by pseudospin s = ±. The Hamiltonian
is inversion symmetric, i.e., PH0

4 (k)P−1 = H0
4 (−k), where

inversion is P = σ 0τ x. As explained in Appendices A and
B, in order to be sure that the effective Hamiltonian can be

FIG. 3. Energy spectrum of four-band model for |δ|/m = 0.5.
The half-energy gap (blue line) E1/2 = m − |δ| is indicated.

transformed into an isotropic form, the inversion symmetry
must act as the identity; this is true within the space of
degenerate states since P|s, k1〉 = |s, k2〉. As expected, the
effective low-energy Hamiltonians at the two Weyl points
have the form of Eq. (2) with v(i)

0 = 0 and λ(1) = −λ(2) =
diag{+�−1/6,+�−1/6,−�1/3} where � = 1 − (δ/m)2.

As we consider only scattering within the low-energy
sector of the nodes, the coupling (10) is determined by eval-
uating the matrix elements of the current exactly at the Weyl
node positions, i.e., evaluating the left-hand side of Eq. (5)
for the eigenfunctions of our model with p1 = p2 = 0, and
comparing to the right-hand side evaluated using the effective
description, Eq. (10). Note that in the effective model, the
spin operators σ i are redefined to act on the two-dimensional
subspace, e.g., σ z|s; k0,i〉 = s|s; k0,i〉, whereas the eigenstates
are not eigenfunctions of the original σz. The Fμ can then be
solved for [giving Eq. (11)]. The current operator in this model
is J = evDστz; this is obtained by introducing a coupling to
the vector potential into H0

4 by a minimal substitution (see Ap-
pendix D for justification) and then comparing the term linear
in A with Eq. (7). Consequently, Fμ

⊥ has nonzero components
Fx

⊥,x and Fy
⊥,y, which both have the same magnitude,

F⊥
x x = evD

μB

δ

m

h̄

|2k0| = ±mev
2
D

vDk0

(vDk0)2 − E2
1/2

(vDk0)2 + E2
1/2

, (12)

where E1/2 = m − |δ| � vDk0 is the half-energy gap at k = 0
indicated in Fig. 3. The second expression is written in terms
of parameters of the bands’ dispersion; the sign just depends
on the sign of δ which cannot be seen from the dispersion.

For example, for a Fermi velocity of order vD = c/300,
the magnetic moment per Bohr magneton for the internode
coupling, i.e., its g/2 factor, is plotted in Fig. 4 as a function
of node position and half-energy gap. Hence, the coupling of
a neutron to nodes is comparable to, smaller, or even much
larger than that of the electron and may diverge upon ap-
proaching the topological phase transition. The cross section
will be estimated in Sec. V A. The above features hold, at
least for this toy model, which does not represent a realistic
model. However, these features could be more generic in
nature and hence present in real WSMs, but this question
is left unanswered here. Alternatively, some Weyl materials
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FIG. 4. Coupling of neutron to Weyl fermions. The coupling,
Eq. (12), for vD = c/300 is plotted (red) as a function of node
position k0 and half-energy gap E1/2 of spectrum in Fig. 3. The bare
coupling of neutron to electrons, i.e., g/2 = 1, is the (green) plane.

will be found that can actually be described as topological
insulators with magnetic impurities.

IV. INELASTIC CROSS SECTION AND FORMALISM

We will now present the formulas for scattering cross
sections. These results apply if the scattering is between two
nodes that are related either by inversion or time-reversal sym-
metry and that are aligned at (or near) the chemical potential.
Furthermore, we need to assume that the three parameters v0

of Eq. (3) are negligible. These conditions allow the results to
be obtained and interpreted in a relativistic way, as discussed
above.

We will give the cross section in detail, for arbitrary initial
and final neutron polarization and arbitrary momentum and
energy transfer. To be more precise, consider incident neu-
trons of a given momentum qi and spin state represented by a
spinor |τi〉. Suppose a detector filters the neutrons according to
their final momentum and spin eigenvalue ± 1

2 along a specific
direction and counts only the neutrons with eigenvalue + 1

2 ,
described by the state |τ f 〉, say. Then, the counting rate is
proportional to the rate of transitions from the initial neutron
state |in〉 = |qi; τi〉 via interactions with the WSM, defined by
the Hamiltonian H0,1 + H0,2, to the final state | fn〉 = |q f ; τ f 〉.
The WSM begins in the ground state |iw〉 and ends in | fw〉
upon absorbing neutron momentum q = qi − q f and energy
h̄ω. The total differential cross section is then

d2σ (q, ω)

d� dE f

∣∣∣∣τ f

τi

≈ q f

qi

(
mn

2π h̄2

)2
μ2

0

2π h̄

3∑
l,m=1

μ
i f
⊥,lμ

f i
⊥,mSl m(q, ω),

(13)
where the matrix element of the perpendicular component
(with respect to the internode direction) of neutron magnetic
moment [37] is μ

f i
⊥ = 〈τ f |μ⊥|τi〉.

The dynamic structure factor Sl m(q, ω) is the frequency
and momentum Fourier transform of the scattering func-
tion Sl m(r, t ), which can be decomposed into Sl m(r, t ) =
S(−)

l m (r, t ) + S(+)
l m (r, t ) (the contributions of the two processes

M± defined in Fig. 2), since we can ignore intranode

scattering. For the M+ process

S(+)
i j (r, t ) ≡ V 〈M(−)

i (r, t ) M(+)
j (0, 0)〉0,

which expresses the fact that it is a van Hove type correlation
function of magnetization operators (8). The structure factor
of an M− transition follows trivially from that of an M+

transition simply by interchanging Weyl node labels [38]
1 ↔ 2.

The structure factor Sl m(q, ω) considered as a function
of neutron momentum transfer q = ±2k0 − �, will be con-
centrated in small spheres centered at ±2k0, as illustrated in
Fig. 2, only if the nodes are on the form (1). However, if nodes
are on form of Eq. (2), then Sl m(q, ω) will be ellipsoids for
each ω centered on ±2k0. A linear transformation q̃ = T q is
necessary to transform these ellipsoidal regions into spheres
centered on ±2k̃0. Thereby will Sl m(q̃, ω) plotted in isotropic
q̃ coordinates look like Fig. 2 with �̃ replacing �. To focus
on the spherical region for an M+ transition, it is convenient
to describe the cross section in a coordinate system of �̃.

The previous expression can be written as

S(+)
i j (r, t ) = μ2

BFμ,∗
i Fν

jσ
(+)
μν (r, t ), (14)

where the intermediate scattering function

σ (+)
μ ν (r, t ) = 〈�†

1 (r, t )σμ�2(r, t )�†
2 (0, 0)σν�1(0, 0)〉0V

(15)
is a particle-hole correlator of the relativistic Weyl fermions.
It can be related to the absorptive part of the generalized
susceptibility χ (+)

μ ν by the fluctuation-dissipation theorem. For
conventional neutron scattering, the neutrons interact mainly
with the spin degrees of freedom and, hence, σ (+)

μν (q, ω)/2h̄
describes the spin susceptibility. In this case, the states of
the Weyl fermions are pseudospin states, so σ does not
correspond to the spin. Instead, σ (+)

μν (q, ω)/2h̄ describes the
full magnetic susceptibility including both orbital and spin
contributions to the magnetic moments since we determined
the magnetization operator in a way that includes all these
contributions.

The susceptibility can be calculated by integrating over
all possible Weyl particle-hole pairs. At zero temperature we
exploit Lorentz invariance to evaluate this analytically (see
Appendix C). When the nodes are related by time-reversal
symmetry, they have the same chirality, say χi = χ f = χ . The
susceptibility for the scattering process is

χ
′′μ ν
(+) (q, ω) = σ

μ ν
(+) (q, ω)/2h̄. (16)

For time-reversal-symmetric nodes it is a Lorentz-invariant
rank-2 tensor with components

a−1χ ′′0 0
(+) (q, ω) = |�̃|2, (17a)

a−1χ ′′0 i
(+) (q, ω) = a−1χ ′′i 0

(+) (q, ω) = χ (h̄ω/vF)�̃i, (17b)

a−1χ
′′i j
(+) (q, ω) = �̃i�̃ j + δi j[(h̄ω/vF)2 − |�̃|2] (17c)

with

a = π2

3

V

vF(2π h̄)3
. (18)
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When the symmetry between the nodes is inversion, they have
opposite chiralities, which we take to be χi = −χ f = χ . In
this case, Eq. (16) breaks up into different tensors:

a−1χ ′′0 0
(+) (q, ω) = (3/2)[(h̄ω/vF)2 − |�̃|2], (19a)

a−1χ ′′0 i
(+) (q, ω) = a−1χ ′′i 0

(+) (q, ω) = 0, (19b)

a−1χ
′′i j
(+) (q, ω) = δi j[(h̄ω/vF)2 + |�̃|2]/2 − �̃i�̃ j

+χ i εi j k (h̄ω/vF)�̃k. (19c)

Clearly, χ ′′0 0
(+) is a Lorentz scalar. The other tensor does not

look Lorentz covariant since it has only spatial indices, but it
actually is a usual type of tensor (see Appendix C). Notice that
χ

′′μ ν
(+) (q, ω) is a function of the physical q momentum implicit

through �̃ = T � = T (2k0 − q).
Now, by combining Eqs. (13) and (14) with either the

time-reversal or inversion-symmetric susceptibility, Eq. (17)
or (19), we get the general expressions for scattering with both
a polarized beam and a polarized detector. All these results are
in the isotropic coordinate system obtained from the physical
one by applying the transformation �̃ = T �. Section V A
explains how to find the appropriate transformation T experi-
mentally.

In realistic neutron scattering experiments, the initial neu-
tron beam of N neutrons has an average polarization vec-
tor P, which can be described by a density matrix ρ =
(τ0 + P · τ)/2, where τ is a vector of Pauli matrices and τ0

the identity matrix in neutron spin basis. The inelastic cross
section (13) of the scattered beam measured by an unpolarized
detector is given by [33,39]

d2σ (+)(q, ω; P)

d� dE f
= q f

qi

(
gr0

4

)2

[�(+)(q, ω) + P · �′(+)(q, ω)],

where g is the neutron g factor and r0 is the classical electron
radius. By using Eq. (14) we have

�(+)(q, ω) ≡ 〈M(−)
⊥ (−q,−ω) · M(+)

⊥ (q, ω)〉/2π h̄μ2
B

= Fμ,∗
⊥ · Fν

⊥χ (+)
μ ν (q, ω)/π, (20a)

�′(+)(q, ω) ≡ i〈M(−)
⊥ (−q,−ω) × M(+)

⊥ (q, ω)〉/2π h̄μ2
B

= iFμ,∗
⊥ × Fν

⊥χ (+)
μν (q, ω)/π. (20b)

The coefficients Fμ,∗
⊥ · Fν

⊥ and Fμ,∗
⊥ × Fν

⊥ select which
components of χμν are measured by neutron scattering. The
(μ, ν) = (0, 0) component gives rise to no angular �̃ depen-
dence. However, the remaining Hermitian (i, j = 1, 2, 3) parts
do and can be written in their spectral decompositions

Fi,∗
⊥ · F j

⊥ =
2∑

l=1

αl âl
j âl∗

i , (21a)

Fi,∗
⊥ × F j

⊥ = −îk0

2∑
l=1

βl b̂l
i b̂l∗

j , (21b)

where αl (βl ) and âl (̂bl ) are the lth eigenvalue and normalized
eigenvector of matrix Fi,∗

⊥ · F j
⊥ (îk0 · Fi,∗

� × F j
�). To prove

these, we used the fact that Fi
⊥ · k̂0 = 0 for each i, hence,

det[Fi · ĵ] = 0 and therefore Eq. (21) will have a zero eigen-
value.

V. EXPERIMENTAL PREDICTIONS AND
INTERPRETATION

The results of the last section have several conceptually and
experimentally interesting special cases. Although there are
many parameters describing the coupling of neutrons to Weyl
fermions, there are some universal predictions contained in
these formulas. In addition, one can observe spin-momentum
locking even without using polarized neutron beams or mea-
suring the polarization of the scattered neutrons. Furthermore,
with a polarized measurement, it is possible to determine the
chiralities of the Weyl fermions in the inversion-symmetric
case, without knowing the coupling parameters.

The scattering process is distinguished by whether the
symmetry relation between the two nodes involved is inver-
sion or time reversal. While the density of states is the same
for either type of symmetry, the cross sections differ, for two
reasons. First, the chiralities are different in the two cases and
hence the relativistic susceptibilities have different forms [see
Eqs. (17) and (19)]. Second, the symmetry constraints on the
coupling between neutrons and Weyl nodes are different for
time-reversal and inversion symmetry. Appendix B shows that

F0 = 0, F j ∈ C3 with j = 1, 2, 3 (22)

for time-reversal-symmetric nodes, whereas

Fμ ∈ R3 with μ = 0, 1, 2, 3 (23)

for inversion-symmetric nodes. As the predictions will be
different for time-reversal and inversion-symmetric nodes,
they will be discussed separately.

A. Measurement of dispersion, principal axes, and velocities

The rate of neutron scattering depends on what final
electron-hole states can be produced in the material. This
is determined by the number of final states and the matrix
element for creating the particle-hole pair. We will begin by
describing the possible final states and estimating the density
of states (DOS). Understanding the density of states will help
to understand a few features of the scattering cross section,
and in particular will show how one can measure the linearity
of the Weyl fermion dispersion and determine its principal
axes and the velocities along them.

The DOS is defined as an integral over all internal states
that conserve energy and momentum:

D(�̃, ω) =
∫∫

d3p̃id3p̃ f

(2π h̄)3
δ3(p̃ − �̃)δ(h̄ω − �ξw). (24)

The set of allowed momenta have a simple geometric de-
scription (see Fig. 5). Plot a point at the origin and a point
displaced from this by �̃. If the initial electron momentum
is represented by a point P displaced from the origin by p̃i,
then the final momentum is the vector from �̃ to P, accord-
ing to conservation of momentum. The change in energy is
vF(|p̃ f | + |p̃i|), so conservation of energy forces P to lie on
a prolate ellipsoid with foci at 0 and �̃. When |�̃| = 0, the
ellipsoid turns into a sphere; when |�̃| = h̄ω/vF, the ellipsoid
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FIG. 5. Contour of constant energy transfer h̄ω for Weyl exci-
tations produced in a scattering event: a prolate spheroid (brown
line) in the p̃x, p̃z plane with symmetry axis (black arrow) along
�̃ and foci at origin of initial p̃i (red arrow) and final p̃ f (blue
arrow) excitations for a given |�̃|. Full (dottted) lines are for |�̃| =
0.25h̄ω/vF (|�̃| = 0.95h̄ω/vF).

degenerates into a line segment connecting the two foci; and
for any smaller ratio of h̄ω/vF to |�̃| there are no final
states compatible with conservation laws. Hence, the region
of nonzero DOS is defined by |�̃| � h̄ω/vF and within this
region the density of states is found to be

D(�̃, ω) = π

2vF(2π h̄)3
[(h̄ω/vF)2 − (1/3)|�̃|2]. (25)

We remark, first of all, that this shows that the scattering cross
section scales as the square of the transferred energy like
the DOS for a single node. This makes the scattering cross
section small at low energies. This can be problematic since
experiments must be restricted to energies small enough that
the Weyl Hamiltonian is correct. In particular, the momentum
transfer can be at most of order |k0| since beyond that distance
from one Weyl point, the other Weyl Hamiltonian becomes
a better approximation. Luckily, the small size of the cross
section at small energies can be compensated by the possibil-
ity that the coupling to the neutrons is larger than the usual g
factor of the electrons. To illustrate this, we employed a WSM
toy model in Sec. III B. The factors F are enhanced and even
diverge as the spacing between the Weyl nodes approaches
zero, which can compensate for the small DOS. Now, we will
explain the origin of the divergence, which suggests that it is
more general than this specific model. However, one really
needs to investigate realistic band models to know if other
factors could reduce it. In Eq. (11), the current matrix element
J (2k0) depends on two contributions to the current [32],
orbital, and spin currents. The orbital Schrödinger current
is proportional to the velocity, represented by the operator

h̄
mei ∇R where R is the position of the electron, and hence

the current at a specific point is Jorbital(r) = eh̄
2mei {∇R, δ(r −

R)}. (Here, {a, b} represents the anticommutator of the two
operators.) The spin current is described by an infinitesimal
spinning sphere, which can be represented by the gradient of
a delta function Jspin(r) = gμB

2 σ × ∇rδ(r − R). The matrix
element of the spin current comes out to be the structure
factor that usually determines neutron cross sections: taking
the Fourier transform causes the delta function to be replaced

by e−2ik0·R and the gradient gives a factor of 2k0 that cancels
the factor in the denominator of Eq. (11). However, in the
orbital current, the gradient acts on the electron position R
rather than r, hence, this produces a factor of 1/d where d is
the length scale for variation of the phase of the electronic
wave functions, which, if the imaginary parts of the wave
functions, due to spin-orbit coupling for example, are large,
can be the same as the size of an atom. Thus, Fx,x;⊥ is of
order 1/k0d , so if accidentally the two Weyl points happen
to be close to one another, the coupling is large. Even if the
Weyl points are separated by an amount on the order of the
Brillouin zone, 1/k0d will be large if a unit cell contains
many atoms. To get a real estimate, one needs to know in
detail the form of the wave functions; in particular, the wave
functions might have small imaginary parts, or the orbitals at
the two Weyl points might be separated in space, and then F
would be small because of the small overlap integral of the
orbitals.

To give a concrete estimate of the unpolarized cross section
[Eq. (20a)], we return to the four-band model. For internode
scattering it has magnitude

1

V

qi

q f

d2σ (+)(q, ω)

d� dE f
=

(gr0

4

)2 π

3

(h̄ω)2

(2π h̄vF)3
Fx

x,⊥Fx
x,⊥, (26)

� 5 × 10−2 vF

c

mb

meV Å3 sr
. (27)

The expression (26) is a generally applicable expression with
coupling given by Eq. (12), whereas Eq. (27) is an estimate
for the four-band model. We made the following substitutions.
Since χμν was derived in the isotropic coordinate system,
the factor of vF is not the physical velocity. The physical
Weyl nodes have three eigenvelocities: the two perpendicu-
lar to the internode direction are equal to vD whereas that
parallel is smaller, and vF should be the geometric mean
of all three. In the above, we conservatively took all three
velocities to be identical, i.e., vD = vF. The intensity would
be higher than Eq. (27) if one took account of the anisotropy.
Furthermore, the energy transfer h̄ω has been expressed in
terms of the displacement of the momenta of the excitations
from the Weyl point. We have taken the value k0, which
is the largest possible as explained above. Since the result
scales as ω2, the cross section decreases quickly for mo-
menta below this optimistic value. Finally, F2

x,x;⊥ is taken
as (mevD/k0)2. Despite the fact that χμν is suppressed by a
factor (h̄ω)2/v3

F ∝ p2/vF from the DOS, the coupling squared
F2

x,x;⊥ partly cancels this suppression, leaving the product
to have an order �vF resulting in Eq. (27). This implies
that a higher node velocity leads to a higher intensity of
the cross section. For a typical Fermi velocity vF = c/300
Eq. (27) is �1.7 × 10−4 mb/meV Å3 sr. Now, assuming a
typical unit cell has volume V = (5 Å)3, the intensity qi/q f ×
d2σ (+)(q, ω)/d� dE f � 2 × 10−2 mb/meV sr f.u.. As antic-
ipated for a semimetal the intensity is low, but much higher
than the early estimates [19] of the neutron cross section for
one-electron metallic band structures, which were of order
10−4–10−3 mb/meV sr. Our estimate for the four-band model
is only of order 10−2–1 smaller than what has been observed
in scattering off spin- 1

2 particle-hole pairs [20–24,40]
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FIG. 6. Sketch of cross section including background scattering
along q̃z in Fig. 2 for the M+ process. The intensity jumps discon-
tinuously at the boundary between the region describing internode
scattering (black curve) and that which does not (gray curve), while
there might be background scattering (red curve) in the region of
interest.

In any real experiment, aside from the Weyl node scat-
tering there will always be other background scattering
channels (see Fig. 6) whose magnitudes will vary from com-
pound to compound depending on the band structure and
elemental/isotope composition. The magnitude of Weyl node
scattering is proportional to the squared coupling of neutrons
to Weyl fermions. This coupling will likely depend on the
given compound, as illustrated with the four-band toy model
(see Sec. III B). However, the extent of this variation is at
present uncertain because we only used a toy model. This
toy model served as a proof of principle that the coupling
between neutrons and Weyl fermions can be larger than
the bare coupling of neutrons to electrons. For a real esti-
mate of a coupling, one needs to know in detail the form
of the material’s wave functions. In this way, the coupling can
be calculated for any type-I WSM from Eq. (11) for any given
band structure.

In order to isolate the Weyl fermion scattering component
from background, the experimentalist’s prior knowledge of
the position of the Weyl fermion scattering in energy and
momentum space is immediately useful. Furthermore, it may
be possible to use polarized neutrons (see Secs. V C and
V D), applied fields, or energy discrimination, etc., to either
single out Weyl node scattering and/or reduce background
contributions. However, the particular techniques that will
be needed will vary with compound and also depend on the
experimental facility [41].

One other property of the Weyl scattering cross section
may also help it to be visible, namely, at the maximum
momentum transfer the DOS is still nonzero, and then there
is a sharp jump down to zero (see Figs. 6 and 7). A sharp
jump can be separated out from a smooth background by
differentiating. The edge of Weyl fermion scattering would
have to be significantly larger than the square root of the
background intensity due to counting statistics.

Let us understand why the DOS has a sharp jump. Imagine
fixing the transferred momentum and lowering the energy.
The set of final states is always a prolate ellipsoid with the
same foci 0 and �̃, that eventually degenerates to a line
segment at the minimum possible energy transfer. Because
there is a whole line segment rather than a single final state,
the DOS is larger than usual in this limit. To be more pre-

FIG. 7. Cuts of the cross section for a coupling F0 = 0 and Fi j =
δi j . The cross section is plotted as a function of |�̃| for scattering
between nodes of chirality χ f = −(+)χi in blue (red) along θ�̃ =
π/2 (θ�̃ = 0) in full (dashed) lines.

cise, let �ξw(p̃i ) be the change in energy of the electron
as a function of the initial momentum (p̃ f = p̃i − �̃ since
�̃ is fixed), �ξw(p̃i ) = vF(|p̃i| + |p̃i − �̃|). The DOS of the
particle-hole pair is given by (2π h̄)−3

∫
d3p̃i δ[�ξw(p̃i ) −

h̄ω], which is the same formula used to calculate the DOS
of a single particle whose dispersion happens to be given by
�ξw(p̃i ). We will use this analogy to understand the behavior
of the particle-hole pair DOS at the surface of the spherical
scattering region. Here its behavior corresponds to a van Hove
singularity. To see this, notice that the function �ξw has a
minimum value �ξw

min = vF|�̃|. Increasing |�̃| with a fixed
ω, beyond the surface of the scattering region, is equivalent
to letting h̄ω fall below this minimum value. Generically,
in three dimensions the DOS close to a minimum should
have the van Hove dependence of

√
h̄ω − �ξw

min. This as-
sumes that the minimum is at an isolated point. However,
for the pair of Weyl excitations, there is a line which �ξw is
minimum on, the line connecting the foci of the ellipsoid. The
DOS may be found by integrating over layers perpendicular
to the line connecting foci. For example, if �̃ is parallel
to the z axis, D(ω) = ∫ d p̃z

2π h̄ D⊥( p̃z ) where D⊥ is the DOS
in one of these planes. For each fixed p̃z, D⊥ has the van
Hove singularity one expects in two dimensions (this function
is quadratic near its minimum except in the planes passing
through the foci), that is, it should jump from 0 to a nonzero
value. Since the minimal values of ω are equal for all planes
between the foci, there is still a discontinuous jump after
integrating over p̃z and thus also in D(ω).

If the transferred energy is fixed, the region of nonzero
scattering is a sphere [42] of radius h̄ω/vF. Thus, by mea-
suring the radius of this sphere as a function of the transferred
energy one may deduce the dispersion velocity of the Weyl
fermions. Furthermore, the linear relationship between the
radius of the sphere and the energy reflects the linear disper-
sion of the Weyl fermions. Now, this region is spherical only
because we began by rescaling all momenta to make the dis-
persion isotropic. In general, the dispersion of Weyl fermions
is likely to be anisotropic; it has the form

√∑
i j (v

2)i jpip j
where v2 is a certain matrix. Indeed, when one diagonalizes
Eq. (2), one finds that the energy of the excitation has this
form, with v2 = v2

Fλ
T λ. By the inversion or time-reversal

symmetry, both Weyl particles have the same dispersion. One
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can then show that the region of allowed momentum and
energy transfers is h̄ω � vF

√∑
i j (λ

T λ)i j�i� j , which is an
ellipsoid for each fixed ω rather than a sphere. It has the same
shape as the equal-energy contours of a single particle. The
directions and lengths of the principal axes give the eigenvec-
tors and eigenvalues of v2, from which one can construct the
linear transformation T that distorts this ellipsoid to a sphere
given by h̄ω � vF|�̃| upon redefining �̃ = T �. Likewise,
the anisotropic Weyl equation then takes the form [43] in
Eq. (1). In this way, one can measure from the cross section
the principal axes, velocities of the dispersion, as well as the
transformation T that will be important to be able to see the
“universal” predictions of this theory below.

The discontinuous jump is unique to the case where v(i)
0 =

0 in Eq. (2). When the vector v(i)
0 is nonvanishing, then its

values at the two nodes are negative of one another by symme-
try (either inversion or time reversal), i.e., v(1)

0 = −v(2)
0 = v0.

By transforming the coordinates, one can still make λ
(1)
i j =

±λ
(2)
i j = δi j and additionally make v0 parallel to any direction

one prefers. One then sees that there is only one parameter
in the Hamiltonian that is important: the ratio |v0|/vF ≡ α,
which for a type-I WSM [44] takes values [27] 0 � α < 1.
The parameter α upsets Lorentz invariance more seriously
than the coupling parameters Fμ. It changes the kinematics,
such that the constant energy contour is not an ellipsoid any
longer [45]. It also appears in a nontrivial way in the structure
factor (15). A specific effect is that the cross section will
not jump suddenly to zero at the edge (see Figs. 6 and 7);
it vanishes continuously. If α is small, this jump happens in
a layer of a thickness proportional to α, so when α is very
small, it seems to be a sharp jump. On the other hand, the
spin-momentum locking could still be observed; it would still
cause the cross section to vary strongly as a function of the
angle around the center of the region. The formula for the
variation would not be so simple as that given here.

B. Probing spin-momentum locking in a
fully unpolarized experiment

We have previously just quoted the susceptibility. Now,
we turn to an intuitive explanation of it in terms of simple
concepts of spin matrix elements and spin-momentum lock-
ing, thereby enabling us to understand how a fully unpo-
larized measurement can probe the spin-momentum locking
of Weyl spinors, which at first seems like a contradiction.
Appendix C gives a different interpretation of the results in
terms of Lorentz transformations of spinors.

To guide our intuition, we will explain it here for the
case of coupling strengths that most closely resemble con-
ventional purely magnetic scattering [46], i.e., F0 = 0 and
Fi j = δi j . We will assume that the nodes are on the z axis,
k0,2 = −k0,1 = k0ẑ. Then, the cross section (20) becomes
π�(+)(q, ω) = ∑2

i=1 χ
′′(+)
i i (q, ω). This clearly highlights the

fact [see Eq. (11)] that neutrons couple only to components
of the coupling vectors that are perpendicular to the internode
direction. This has the desirable consequence that the cross
section will have angular �̃ dependence, which is a signa-
ture of probing spin-momentum locking of Weyl spinors. To
understand the angular dependence of the cross section, note

that it is given by multiplying the DOS integrand by the matrix
element between initial and final states 〈 fw, fn|Hint|in, iw〉.
Here, | fn〉, | fw〉, |in〉, |iw〉 are the final and initial states of the
neutron and Weyl fermions. The neutron states do not depend
strongly on momentum, but the Weyl fermion states do: their
components are the solutions to the Weyl equation [called c(p)
in Sec. III A]. This is the origin of the momentum dependence
of the cross section.

A consequence of momentum conservation is that initial
|iw〉 = |̂p̃i; −χi〉 and final | fw〉 = |̂p̃ f ; +χ f 〉 Weyl states are
related by p̃ f = p̃i − �̃, and energy conservation dictates that
any pair p̃i and p̃ f are restricted to the ellipsoid constant
energy contour in Fig. 5. In the limit �̃ = 0, the allowed
initial and final states are pairs p̃ f = p̃i on a sphere of radius
h̄ω/2vF, and the polarization vectors of the Weyl spinors are
thus related by

〈 fw|σ| fw〉 = ∓〈iw|σ|iw〉 for χ f = ±χi, (28)

i.e., initial and final spinors are antiparallel (parallel) for same
(opposite) chirality. (To understand this, remember that the
initial state has a negative energy and the final state has a
positive energy.) All these different spinors just contribute to
the cross section at a single point, so there is no signature that
distinguishes between χ f = ±χi apart from a constant factor
of 2 (which cannot be measured anyway unless one knows the
values of the F’s).

For increasing |�̃| the energy-conserving contour takes a
more extreme prolate spheroid form and the cross section will
have angular �̃ dependence because the Weyl state contribu-
tions depend on the direction of �̃.

In the extreme limit |�̃| ≈ h̄ω/vF the energy-conserving
contour becomes an extremely slim, elongated prolate
spheroid, which degenerates to a line at maximum |�̃| =
h̄ω/vF. The initial and final unit vectors along the mo-

menta are therefore approximately ̂̃pi ≈ ̂̃� ≈ −̂̃p f , so states

are |iw〉 ≈ |̂̃�; −χi〉 and | fw〉 ≈ |̂̃�; −χ f 〉, which means that
spinors are related as

〈 fw|σ| fw〉 = ±〈iw|σ|iw〉 for χ f = ±χi, (29)

which is the reverse of Eq. (28). Because of this, the momenta
of the particle and hole are opposite to each other while the
spins (29) are parallel or antiparallel to one another depending
on the type of symmetry.

We saw above that only the transverse components of the
neutron and of the Weyl fermion are coupled. To understand
how this causes the cross section to become anisotropic,
we note that the interaction of electrons and neutrons is
proportional to σxτx + σyτy where τ is the Pauli spin matri-
ces of the neutron. The cross section is proportional to the
integral of the interaction matrix element |〈τ f ; χ f ;̂̃p f |σxτx +
σyτy |̂p̃i; −χi; τi〉|2 over all possible final states of the electron.
Even for the unpolarized neutrons, averaging this over all
initial and final neutron states gives |〈χ f ;̂̃p f |σx |̂p̃i; −χi〉|2 +
|〈χ f ;̂̃p f |σy |̂p̃i; −χi〉|2 which is still asymmetric. The effect
of this interaction, in which σx or σy are applied to the
Weyl fermion’s pseudospin, is different depending on the
initial direction of the pseudospin: for some directions it is
more likely to flip it and for others more likely not to. This
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FIG. 8. Comparison of cross sections for different couplings. The cross section �(+)(−�̃, ω) for scattering between inversion-symmetric
nodes is plotted in isotropic coordinates �̃ for a given energy transfer h̄ω. Columns are cuts of |�̃| with the left, middle, and right columns
at |�̃|vF/h̄ω = 0.2, 0.5, and 0.95, respectively. All rows are the same case of coupling eigendirections [Eq. (21a)] â1 = x̂ and â2 = ŷ but
different eigenvalues α1 and α2 and constant F0

⊥. The upper row [(a), (d), (g)] is for F0
⊥ = 0 and α1 = α2 = 1, The middle row [(b), (e), (h)] is

for F0
⊥ = 0 and α1 = 2α2 = 1. The lower row [(c), (f), (i)] is for F0

⊥ = 1
2 and α1 = 2α2 = 1. Intensity is given by the temperature scale in (j).

causes the cross section to oscillate over the surface of the
sphere. This oscillation has a different form for the time-
reversal and inversion-symmetric cases. For example, in the
time-reversal-symmetric case, the spin directions before and
after scattering must be parallel, so the cross section is zero
when �̃ → ±h̄ω/vFẑ (in which case both σx and σy flip the
spin), while the cross section is maximum on this axis in the
inversion-symmetric case.

Figure 7 illustrates the variation of the cross section as a
function of |�̃| on the z axis θ�̃ = 0 and the xy plane θ�̃ =
π/2 for the two types of symmetry. Figures 8(a), 8(d) and
8(g) plot the full �̃ dependence of the cross section centered
around 2k̃0 for the case of inversion-symmetric nodes.

In summary, due to energy and momentum constraints
of the excitations, the scattering channels are effectively
those of a polarized measurement for any |�̃| > 0 with the de-
gree of polarization being maximum for maximal momentum
transfer |�̃| = h̄ω/vF. Hence, by sweeping �̃, i.e., by sweep-
ing external neutron momentum transfer q, one indirectly
performs a polarized experiment despite not using polarized
neutrons.

The angular dependence of the cross section of unpolarized
neutrons results from a combination of two facts: first, the
electron polarization is dependent on the transferred mo-
mentum and, second, the F⊥

i j is anisotropic so it is possible
to see the variation of the electron polarization even with
unpolarized neutrons. If, hypothetically, it had been the case
that F⊥

i j = δi j , then the cross section would have no angular �̃

dependence, but would be spherical symmetric as a function
of |�̃| for a given ω. However, F⊥ can never be diagonal

because in a coordinate system where k̂0 = ẑ, F⊥ would have
two columns orthogonal to k̂0 because Fi

⊥ · k̂0 = 0 holds
always. This generally implies angular dependence. However,
although this condition rules out F⊥

i j = δi j , there is a way
that the spin-momentum locking could be hidden in the time-
reversal-symmetric case. The coupling

F⊥ =
⎛⎝1 0 0

0 1 0
i 0 0

⎞⎠ (30)

gives a cross section π�(+)(q, ω) = ∑3
j=1 χ

′′(+)
j j (q, ω),

which has the same effect as if F⊥
i j = δi j . Such a coupling

is allowed, though probably not very likely to occur since it
is very specific. Consequently, any angular dependence of the
cross section implies probing spin-momentum locking. The
reverse statement is necessarily true for inversion-symmetric
nodes, whereas it is not necessarily true for time-reversal-
symmetric nodes. The strong angular �̃ dependence of the
cross section reflects that the spherical harmonics (17) and
(19) change rapidly as a function of �̃. When ω is small,
the cross section varies just as strongly with the angle on the
surface of the sphere |�̃| = h̄ω/vF. This is a large variation
for a small change in momentum. That is because the Weyl
particle and hole have their momentum locked to spin or,
equivalently, it reflects the singularity of the wave functions
|p̃; ηχ〉 at p̃ = 0. This differs from scattering between two
pockets of a narrow-gap semiconductor, where there would
be no angular �̃ dependence because the wave functions are
continuous.
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C. Universal features of the cross section
with an unpolarized detector

The form of the cross section can change a great deal
depending on the values of the coupling parameters, sug-
gesting in particular that it might not be possible to observe
the chiralities at the two Weyl nodes, or even whether they
are the same or different. With an unpolarized detector one
loses information about how the neutron’s spin is affected by
coupling to the electron, so the situation is worse.

To understand the situation better, both theoretically and
experimentally, a result that is independent of sample pa-
rameters is desirable (e.g., a sum rule). However, the usual
sum rules involve sums over all bands, obscuring the relevant
low-energy physics of a WSM. However, by taking the ratio
of spherically averaged cross sections we will get a prediction,
which for time-reversal-symmetric nodes (see Secs. V C 1
and V C 2) is a universal expression capturing only the rele-
vant relativistic Weyl fermion physics measured in internode
scattering. Hence, this expresses exactly the information we
seek from a sum rule. For inversion-symmetric nodes (see
Sec. V C 3), the averaging method does not lead to a com-
pletely universal expression because of the coupling F0 may
be present in this case. However, there is another universal
property of the cross section.

1. Time-reversal-symmetric Weyl nodes:
Unpolarized incident neutrons

Time-reversal symmetry has two consequences: the chi-
ralities of the Weyl nodes are the same, and the couplings
are restricted by Eq. (22). The inelastic cross section (20)
is determined by Eq. (17). In spite of the large number of
coupling parameters, the averaging method mentioned above
gives some universal predictions, and these reflect the two
nodes’s handedness being identical. On the other hand, the
chirality cannot be measured. The chirality appears only in the
χ ′′i 0

(+) (i = 1, 2, 3) components of the susceptibility, but since
F0

⊥ = 0, such terms do not appear in the cross section.
For unpolarized incident neutrons Eq. (20a) is

�(+)(q, ω) = a

π
Fi,∗

⊥ · F j
⊥[{(h̄ω/vF)2 − |�̃|2}δi j + �̃i�̃ j].

(31)
The tensor χ

′′i j
(+) has no antisymmetric part, so it consists only

of terms that transform as a spherical tensor with angular
momentum l = 0 and 2.

As previously stated, we can extract information by av-
eraging the cross section (31) over the solid angle [47].
One must do this average with respect to �̃ = T �, in
which the dispersion is isotropic. In terms of the original
coordinates this is an average over an ellipsoid. Averaging
gives 〈π�(+)(q, ω)〉 = a[(h̄ω/vF)2 − 2

3 |�̃|2](α1 + α2) where
all the sample-specific information α1,2 factors out. Hence,
we can divide by 〈�(+)(q′, ω′)〉4π for any arbitrary reference
(within the low-energy window) q′ = 2k0 − �̃

′
and ω′ to get

a result independent of α1,2, i.e.,

〈�(+)(q, ω)〉4π

〈�(+)(q′, ω′)〉4π

= (h̄ω/vF)2 − (2/3)|�̃|2
(h̄ω′/vF)2 − (2/3)|�̃′|2

, (32)

FIG. 9. Universal predictions. The solid-angle averaged cross-
section ratios (33), (38), and (39) in blue, red, and green, respectively,
as a functions of isotropic coordinate �̃.

which is a universal function of �̃, �̃
′
, ω, and ω′ that are all

controlled in experiment. For example, choosing the reference
cross section to be of same energy but with �̃ = 0, the ratio
of averaged cross sections in �̃ coordinates centered on 2k̃0 is

〈�(+)(−�̃, ω)〉4π

〈�(+)(0, ω)〉4π

= 1 − 2

3

( |�̃|
h̄ω/vF

)2

, (33)

which is a universal function of �̃ and ω plotted in Fig. 9.
In particular, the averaged cross section before the jump is 1

3
the cross section at �̃ = 0. This is a combined result of the
density of states decreasing by a factor of 2

3 with increasing
�̃ and the interaction matrix elements decreasing when the
spins go from being antiparallel to parallel. This has to do
with the fact that the interaction is more likely to flip than not
to flip the electron spin, as explained in Sec. V B for the case
Fi

j ∝ δi j . Note that the result surprisingly applies to any F after
averaging.

2. Time-reversal-symmetric Weyl nodes:
Polarized incident neutrons

For polarized incident neutrons Eq. (20b) is

πP · �′(+)(q, ω) = ia (P · k̂0 )̂k0 · (Fi,∗
⊥ × F j

⊥)

× [{(h̄ω/vF)2 − |�̃|2}δi j + �̃i�̃ j]. (34)

The cross section for any material depends only on the
component of P along k0; in fact, in any neutron scattering
experiment the cross section at low energies depends only on
the component of P in the direction of the momentum transfer
because of the condition J · �k = 0. We can take a ratio
between any two solid-angle averages of Eq. (34) to get a
result independent of β1,2, i.e.,

〈P · �′(+)(q, ω)〉4π

〈P′ · �′(+)(q′, ω′)〉4π

= P · k̂0

P′ · k̂0

〈�(+)(q, ω)〉4π

〈�(+)(q′, ω′)〉4π

, (35)

which is a universal function of P, P′, �̃, �̃
′
, ω, and ω′ that

are controlled in experiment. This function is that of Eq. (32)
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FIG. 10. Angular variation of cross section for different cou-
plings. The cross section for scattering between inversion-symmetric
nodes at a given energy transfer h̄ω is plotted as a function angles
φ�̃ and θ�̃ on a sphere with radius |�̃| = 0.95h̄ω/vF. The green,
blue, and red curves correspond to that of Figs. 8(g), 8(h), and 8(i),
respectively, as a function of θ�̃ at φ�̃ = π/4, whereas the dashed
curves are functions of φ�̃ at θ�̃ = π/4.

weighted by the ratio of polarization vectors’ projection onto
the internode direction.

3. Inversion-symmetric Weyl nodes:
Unpolarized incident neutrons

For the inversion-symmetric case, the inelastic cross sec-
tion (20) is determined by Eq. (19) and the coupling is
restricted by Eq. (23). Two differences from the time-reversal-
symmetric case are that F0 can be nonzero which makes it
more complicated to obtain a “universal prediction.” Further-
more, the chirality of the node where a hole is created can
enter the cross section through the antisymmetric part of the
susceptibility χ

′′i j
(+) (i, j = 1, 2, 3), which allows the chirality

to be measured, although polarized neutrons and detectors are
required for this. In this section, we will illustrate the use of
the spectral decomposition of the effective coupling (21).

For unpolarized incident neutrons Eq. (20a) is

π�(+)(q, ω) = α0
3a

2
[(h̄ω/vF)2 − |�̃|2]

+ a

2

2∑
m=1

αm [(h̄ω/vF)2 + |�̃|2 − 2|�̃ · âm|2],

(36)

where â1,2 are the two orthogonal, real unit vectors from the
spectral decomposition [48] of F, and α1,2 are the correspond-
ing parameters as in Eq. (21a). In this expression appears a
term α0 = F0

⊥ · F0
⊥ which is generically nonzero. This term

gives a χ ′′0 0
(+) contribution to the cross section with no angular

�̃ dependence. As χ ′′i 0
(+) = 0 and Fi

⊥ · F j
⊥ is symmetric in

spin indices, only the symmetric part of χ
′′i j
(+) contributes,

which we have seen does not depend on χ . It is therefore not
possible to measure the chirality of the nodes with unpolarized
neutrons [49].

The cross section (36) is plotted in Fig. 8 as a function of
�̃ for the case where coupling eigendirections of Eq. (21a) are
â1 = x̂ and â2 = ŷ for various values of α0,1,2. Figure 10 plots
cuts of the cross section plotted in Figs. 8(g), 8(h), and 8(i),
from which one sees that the intensity variation is substantial.
The four-band toy model (see Sec. III B) corresponds to

couplings with â1 = x̂, â2 = ŷ, α1 = α2 = F2
⊥,xx, and α0 = 0,

the cross section of which therefore has the same angular
dependence as the top row of Fig. 8 but the intensity is a factor
2F2

⊥,xx amplified by the value in Fig. 4.
The angular average of Eq. (36) is

〈π�(+)(q, ω)〉4π = α0
3a

2
[(h̄ω/vF)2 − |�̃|2]

+ a

2
[(h̄ω/vF)2 + |�̃|2/3](α1 + α2),

(37)

where the sample-specific information α0,1,2 does not factor
out. Hence, we cannot divide by 〈�(+)(q′, ω′)〉4π for any arbi-
trary reference q′ and ω′ to get a universal result independent
of α0,1,2. However, if the coupling Fi

⊥ = 0 vanishes for all
i = 1, 2, 3, then α1,2 = 0 and we can get a result independent
of α0. For example, choosing the reference cross section to
be of same energy but direct internode scattering, the ratio of
averaged cross sections in �̃ coordinates centered on 2k̃0 is

〈�(+)(−�̃, ω)〉4π

〈�(+)(0, ω)〉4π

= 1 −
( |�̃|

h̄ω/vF

)2

, (38)

which is a monotonically attenuating function plotted in
Fig. 9. If, on the other hand, the coupling F0

⊥ = 0 vanishes,
then α0 = 0 and we can get a result independent of α1,2. For
example, choosing the reference data set to be the same as
above, the ratio of averaged cross sections in �̃ coordinates
centered on 2k̃0 is

〈�(+)(−�̃, ω)〉4π

〈�(+)(0, ω)〉4π

= 1 + 1

3

( |�̃|
h̄ω/vF

)2

, (39)

which is a monotonically increasing function plotted in Fig. 9.
Hence, the ratio with α1,2 = 0 can be distinguished from the
ratio with α0 = 0. In the general case with α0,1,2 �= 0 one
does not obtain a universal ratio of solid-angle-averaged cross
sections. Although Eq. (37) is nonuniversal, the functional
dependence c1(h̄ω/vF)2 + c2|�̃|2 with constants c1,2 is very
specific.

In fact, there is a more quantitative universal prediction as
well. Equation (36) can be written as

π�(+)(q, ω) = ᾱa

2

[
(h̄ω/vF )2 +

3∑
m=1

cm(�̃ · âm)2

]
, (40)

where ᾱ and ci’s are certain parameters and â3 is a unit vector
completing a basis with â1 and â2; i.e., it is the direction
in pseudospin space that is not coupled to the neutron spin.
That such a direction exists follows from the fact that there is
a direction in neutron spin space that is not coupled to the
pseudospin, as seen more formally in the derivation of the
spectral decomposition (see Sec. IV). Equation (40) follows
from |�̃|2 = ∑3

m=1(�̃ · âm)2. The �̃ dependence of this ex-
pression is a quadratic function of �̃; although with respect
to the â basis it is diagonal, in the coordinate system of the
experiment, it could be an arbitrary quadratic function of �̃.
Consider the cross section at the maximum possible transfer
momentum |�̃| = h̄ω/vF. A quadratic form on the surface of
a sphere has two maxima, two minima, and two saddle points
(at diametrically opposite pairs of points). The prediction is

035122-14



NEUTRON SCATTERING OFF WEYL SEMIMETALS PHYSICAL REVIEW B 102, 035122 (2020)

that the cross section always has the property that the value
at the maximum is the sum of the value at the saddle point
and the minimum. In fact, the extrema always correspond
to the eigendirections of the quadratic form, namely, â1, â2,
and â3. The values of the cross sections at these points are
2α2(h̄ω/vF)2, 2α1(h̄ω/vF)2, and 2(α1 + α2)(h̄ω/vF)2, respec-
tively. The last is the largest since α1, α2 � 0. This prediction
can be understood qualitatively by noting that the initial and
final spins of the electron are antiparallel to one another.
Hence, there is no contribution to the cross section at maximal
|�̃| due to the F0 coupling, which does not cause spin flips,
while the cross section due to the other interactions is greatest
when the momentum is along â3 because the neutron couples
to both components of the spin perpendicular to this, namely,
â1 and â2, and so each term in the interaction [50] induces the
spin and also the momentum to flip.

4. Inversion-symmetric Weyl points: Polarized incident neutrons

For polarized incident neutrons, Eq. (20b) is

πP · �′(+)(q, ω) = −χa(h̄ω/vF)P · (Fi
⊥ × F j

⊥)εi jk�̃k . (41)

Despite the possibility that F0
⊥ �= 0, there is no χ ′′0 0

(+) con-

tribution because k̂0 · F0
⊥ × F0

⊥ = 0. As χ ′′i 0
(+) = 0 and Fi

⊥ ×
F j

⊥ is antisymmetric in spin indices, only the antisymmetric
part of χ

′′i j
(+) contributes, which is a term that transforms

as a spherical tensor with angular momentum l = 1. From
the antisymmetric part of χ

′′i j
(+) one sees that this measures

“chiral” fluctuations 〈σ(q, ω) × σ(−q,−ω)〉 · �̃ originating
in the axial vector of the interaction.

Now, Fi
⊥ × F j

⊥ is always parallel to k0. This implies (Fi
⊥ ×

F j
⊥) · P depends only on the component of P in the internode

direction k0; further, it is antisymmetric between i and j,
hence, it can be written εi jkγk (P · k̂0), for some numbers γk .
For example, γ3 = k̂0 · F1 × F2, etc. Hence,

πP · �′(+)(q, ω) = −χa(h̄ω/vF)(γ · �̃)(P · k̂0). (42)

This part is linear in �̃, so the angular average is

〈P · �′(+)(q, ω)〉4π = 0. (43)

Now although this result depends on the chirality, the coef-
ficients γi are not known a priori because they depend on
F, so it is not possible to measure the chirality even with
polarized neutrons when the detector is unpolarized. The next
section explains that the polarization-independent and depen-
dent cross sections �(+),�′(+) are not enough to determine χ ;
there is always at least one choice of F that matches the data
for each of χ = ±1.

D. Polarized measurement

We will now consider polarized neutrons and detector; the
main result is that it is possible to measure the chirality for
inversion-symmetric WSMs.

1. Pure states of scattered neutrons

Consider directing an incident fully polarized beam of
neutrons with polarization vector Pi on a WSM and mea-
suring the polarization vector P f of the scattered beam. The

Blume-Maleyev polarization matrix describes the relationship
between them. Instead of calculating this, we simplify the
discussion and consider, for the moment, a single incident
neutron in spin state |τi〉 and measuring whether the scattered
neutron is in the state |τ f 〉 or in the orthogonal one.

The Weyl states are not eigenvectors of σz, but are depen-
dent on the direction and magnitude of �̃. For a given scat-
tering process, i.e., a fixed initial and final neutron state, the
cross section (13) sums up all internal particle-hole pair Weyl
states which fulfill the energy and momentum constraints of
the system (see Fig. 5). Intuitively, one expects that each of
these pairs affects the scattered neutron in a different way.

For small amounts of transferred momentum it is correct
(as the above reasoning suggests) that the scattered neutron
will be in a mixed state. However, consider the case where the
momentum transfer is the maximum that is possible for the
given energy transfer |�̃| = h̄ω/vF. For a given pure initial
spin state of the neutron and a fixed momentum transfer,
the cross section can be shown (see below) to take the form
d2σ (q,ω)
d� dE f

|τ f
τi

∝ |〈τ f |φ〉|2 where the auxiliary state |φ〉 depends

on the initial neutron state |τi〉 and direction �̃. In other
words, the scattered neutron is in a pure state |φ〉. This can
be demonstrated experimentally by measuring that there is a
certain final state for which the scattering rate into that state is
zero. This final neutron state is the time-reversed ket [51] of
|φ〉, i.e., |τTR

f 〉 = T |φ〉, since 〈τTR
f |φ〉 = 0.

The fact that there is only one transition available for
a given momentum transfer is direct evidence of spin-
momentum locking. The reason for the perfect polarization, in
more detail, is that in the extreme limit |�̃| ≈ h̄ω/vF, the set
of possible internal momenta degenerates from an ellipsoid to
a line. All the possible values are parallel and thus the electron
and hole spin states are the same throughout the particle-hole
continuum. The current matrix element is the same for all
pairs, so the integral over the state of the electrons and holes
just gives a multiplicative factor and the cross section is
proportional to

dσ

d�
∝ |〈τ f ; χ f ; −̂̃�|τ · M|̂̃�; −χi; τi〉|2, (44)

where the magnetization M is given by Eq. (10) and τ

is, as above, the neutron spin operator. The dynamics of
the neutron spin may be understood as a precession of the
neutron in a magnetic field that depends on how the elec-
tron transitions. To see this, we factor this expression as

|〈τ f |τ|τi〉 · 〈χ f ; −̂̃�|M|̂̃�; −χi〉|2, then define the c number

M f i = 〈χ f ; −̂̃�|M|̂̃�; −χi〉. The transition probability can
now be written as dσ

d�
∝ |〈τ f |τ · M f i|τi〉|2 Thus, we may

define |φ〉 = M f i · τ|τi〉, and the cross section is given by
|〈τ f |φ〉|2 as claimed above. Intuitively, when the electron’s
spin flips in a particular way, the scattered beam ends up
in a fully polarized state if the beam was initially fully
polarized; the final state is obtained by applying the operator
M f i · τ to the initial state. This mechanism is due to the
constant energy contour degenerating into a line and to perfect
spin-momentum locking; if there were curvature, the electron
spinors would not be all aligned and the final neutron beam
would not be fully polarized.
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In a neutron experiment, in which a beam of N � 1
neutrons having a polarization Pi is incident to the target,
all neutrons scattered to a certain momentum have the same
available scattering channel |φ〉 = M f i · τ|τi〉 if the initial
neutron beam is fully polarized. This state has an expansion

c1 = 〈↑ |φ〉/|φ|, c2 = 〈↓ |φ〉/|φ|. (45)

The emitted neutrons in this direction are fully polarized and
specified by P f · τ|τ f 〉 = |τ f 〉 where the polarization vector
has the components

P f
x = 2 Re[c∗

1c2], P f
y = 2 Im[c∗

1c2], P f
z = |c1|2 − |c2|2.

(46)

The polarization vector (46) is to be understood as a field
P f (�̃/|�̃|) on the surface of the sphere of transferred max-
imum momentum. The matrix element of the magnetization
can be evaluated explicitly for time-reversal- and inversion-
symmetric nodes M f i = ̂̃�iFi

⊥ and M f i = (û j + iχ v̂ j )F
j
⊥,

respectively. Here û, v̂ are some pair of vectors making a
right-handed coordinate system [52] together with �̃. The
total cross section is proportional to |φ|2, which gives

|φ|2 = ̂̃�i
̂̃� j (F

i,∗
⊥ · F j

⊥ + Pi · k̂0 îk0 · Fi,∗
⊥ × F j

⊥), (47a)

|φ|2 = (δi j − ̂̃�i
̂̃� j )Fi

⊥ · F j
⊥ − χPi · k̂0

̂̃�kεk i j k̂0 · Fi
⊥ × F j

⊥
(47b)

for time-reversal- and inversion-symmetric nodes, respec-
tively, in agreement with our general expressions [see
Eqs. (31), (34), (36), and (41)] for the cross section in the case
where |�̃| = h̄ω. Notice that |φ〉 is not of unit norm.

Notice that in this result, the chirality χ appears only for
inversion-symmetric nodes, suggesting that it is possible to
measure the chirality for inversion-symmetric but not time-
reversal-symmetric materials. This is true as shown in the next
section, but it is not possible to determine the chirality from a
measurement of the total cross section, although this formula
seems to suggest it. The problem is that the F parameters are
unknown. It is possible to compensate for a change in sign of
χ by changing the F’s. If two materials have scattering cross
sections as a function of �̃ that look the same except that the
cross-section pattern is reflected through the z axis (whenever
neutrons polarized in the same way are passed through the
material), then it looks as if the materials have the opposite
sign of χ . However, there is an alternative explanation: sup-
pose k0 is parallel to the z axis, ẑ · Fi = 0. If one material has
Fi = Fi

xx̂ + Fi
yŷ while the other has Fi = Fi

xx̂ − Fi
yŷ for each

i, this would also explain the reflection of the cross section in
the xy plane.

To summarize, the scattering (47) is dependent on the ini-
tial neutron beam polarization vector, the scattering direction,
and the a priori unknown coupling constants. Measuring the
polarization vector of the final neutron beam at |�̃| = h̄ω/vF,
one finds that |P f | = 1 for all scattering directions and any in-
cident fully polarized neutron beam. This is quite remarkable
and counterintuitive as one is probing particle-hole Weyl pairs
and not conventional magnetic excitations.

2. Measuring chiralities

It is possible to measure the chirality of the nodes in an
inversion-symmetric WSM, although it is not straightforward
because of the unknown F parameters. First, it is clear that
it is not possible to measure the chirality for scattering be-
tween two nodes related by time-reversal symmetry since
the chirality does not appear in the cross sections (17) and
(47a). This seems at first surprising since the two Weyl points
are either both left handed or right handed, which should
be distinguishable. One can understand why, nevertheless,
it is impossible to distinguish them with neutron scattering
from the following point of view: the scattering produces a
particle-hole pair. The hole and particle at a Weyl point have
the opposite handedness. So, the two cases are essentially the
same, with one excitation of each handedness in both cases.
The only difference is how the charges of the excitations are
correlated to their handedness. This does not affect the cross
section since the sign of the charge does not appear in the cross
section, which depends on the square of the matrix elements.
On the other hand, in the inversion-symmetric case, either two
left-handed excitations are produced (if the Weyl point at −k0

is right handed and the excitation at +k0 is left handed) or
two right-handed excitations are produced, explaining why
χ enters into the cross section. We will now explain how to
measure the chirality in this case.

We will focus on the case discussed in the last section,
where |�̃| = h̄ω. Because the spin and momentum of the
electron are locked, we may ignore the momentum of the elec-
tron. We can simply consider the electron as fixed in space
with a neutron scattering off of it. The expression for the
cross section (44) is then interpreted as the cross section for
scattering in which the electron’s spin changes from −χi�̃

to −χ f �̃, which is always a spin-flip scattering since χi =
−χ f . The interaction operator can be written τ · M = τx(a ·
σ ) + τy(b · σ) where ai = x̂ · Fi, bi = ŷ · Fi. No z component
appears because k0 · Fi = 0. The F0 term of M is omitted
because it does not contribute to the matrix element for an
event in which the electron’s spin flips.

One can do an experiment where one focuses on events
where the neutron’s spin changes from a given |τi〉 to another
|τ f 〉. If one could measure how the spin of the electron
changes, one would expect (because of the form of the inter-
action above) a certain correlation of this measurement to the
way the spin of the neutron has changed. Now, an experiment
actually measures how the momentum of the electron changes
(by measuring momentum transfer), which is locked to the
spin of the electron up to the sign that we wish to find.
If the way the electron’s momentum changes is reversed from
the behavior one expects from the spin, it must be because
χ f = −χi = −1 so that the spin is antiparallel to the momen-
tum. If the interaction were σxτx + σyτy, this is clear; it is easy
to work out how the electron’s spin is affected by scattering.
With the arbitrary a and b the expectation of how the electron
spin should flip would be distorted and it is not clear that it is
possible to determine the sign of χ f , χi if they are unknown.

In principle, we could prepare the neutron in any initial
state and measure its final state along any axis. However,
to trim the problem down, we will focus on just the rate of
spin-flip scattering of the neutron. So, consider an experiment
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where the neutron is prepared with a certain polarization

direction N̂ and one measures the cross section fN̂(̂̃�) that
it flips to −N̂ as a function of the direction of �̃. First
consider the case where |a| = |b| and they are orthogonal
to one another for simplicity. We will calculate the proba-
bility as a function of the direction of the initial spins of
the neutron and electron N̂ and Ê, respectively (rather than

momentum); the relation is Ê = −χi
̂̃�. One can evaluate

|〈−N̂,−Ê|a · στx + b · στy|Ê, N̂〉|2 by means of the formula
given in the previous section 〈−n̂|σ|n̂〉 = u + iv, where |n̂〉 is
a spinor oriented along the n̂ direction of the Bloch sphere,
and û and v̂ are any unit vectors that make a right-handed
coordinate system together with n̂. We apply this formula to
both the electron and neutron by introducing vectors
ûe, v̂e, ûn, v̂n. The probability of the electron flipping from Ê
to −Ê and the neutron flipping from N̂ to −N̂ comes out [53]
to be

fN̂(̂̃�) ∝ (NxEa + NyEb)2 + (Nz − Ec)2, (48)

where Ea, Eb, Ec are the components of Ê along the direc-
tions of a, b and a third direction making a coordinate system
with them, ĉ = â × b̂.

A striking effect is that for any direction of the initial neu-
tron spin, there are two initial spin directions of the electron
for which spin flips of the neutrons have zero probability.
Thus, in an experiment, one can map out the cross section for
a neutron spin flip with a fixed N̂ as a function of momentum
transfer and then search for these nodes. If the initial spin
of the neutron is in the xy plane, the two nodes of f̂̂N are
in the ab plane at opposite points of the equatorial circle.
As the neutron spin rotates in the xy plane, the nodes of the
electron spin rotate in the ab plane. The corresponding nodes
of the electron spin are related to N̂ as follows. Rotate the xy
plane onto the ab plane so that x̂ maps to â and ŷ maps to
b̂. The initial neutron spin maps to a certain point on the great
circle in the ab plane and the two points 90◦ away from this
point on the great circle are the nodes. This follows from
Eq. (48) by noting that f is zero if Ea = ±Ny; Eb = ∓Nx,
Ec = 0. Comparing this prediction to experimental data would
allow one to determine the directions of the â and b̂ vectors
up to a common sign.

Now, if the neutron spin is moved out of the xy plane, the
nodes for the electron move out of the ab plane, as f = 0
when Ec = Nz and Ea/Eb = −Ny/Nx. Note that these nodes
are not antipodal to one another: they both move into the same
hemisphere, toward the ĉ axis.

To describe this in a geometrical way that is independent
of knowing â, b̂, ĉ and their signs correctly, return to the first
case where the neutron spin is rotating around the xy plane and
the electron nodes are rotating around the ab plane. Find from
which hemisphere of the electron’s Bloch sphere the nodes
can be seen rotating with the same handedness as the neutron’s
initial spin rotates when seen from the positive z axis. That is
the hemisphere the nodes will move into. Figure 11 illustrates
the following: if the neutron’s initial spin follows a helix
starting on the great circle in the xy plane and spirals in toward
the z axis, the two nodes for the electron’s initial spin both
form a helix of the same handedness contracting toward one
of the poles of the Bloch sphere.

FIG. 11. How to measure chirality. Consider scattering with a
maximal |�̃|. For each initial spin of the neutron find the momentum
transfer direction where spin-flip scattering has zero cross section.
There are always two such nodes. At the left is a sphere representing
the possible initial spin directions of the neutron; as the spin moves
along a spiral from the equator perpendicular to k0 up to one
of the axes parallel to k0, the corresponding nodes (shown on the
right) also spiral in some direction, with an arbitrary rotation and
possibly a distortion due to the interaction parameters. However, no
matter what the parameters are, if the nodes form a double spiral with
the same handedness as the neutron spin’s spiral, then the scattering
is from a right-handed to a left-handed Weyl point, and if with the
opposite handedness, then the scattering is from a left-handed to a
right-handed Weyl point.

Now, in the neutron scattering experiment one measures ̂̃�
rather than σ. ̂̃� is parallel to the initial spin if χ f = 1 and to
the final spin if χ f = −1. Hence, if χ f = 1, the helix formed
by the nodes has the same handedness as the helix which the
neutron’s spin is made to rotate along, and it has the opposite
handedness if χ f = −1.

The fact that the nodes move into the same hemisphere
when the neutron’s spin moves out of the xy plane can be un-
derstood by noting that τxσa + τyσb is an ordinary “easy-axis”
coupling of two spins, except that each is measured relative to
its own coordinate system. So, the sum of the component of
each spin along the axis perpendicular to the plane where the
coupling is σc + τz should be conserved; if the neutron flips
from up to down, it is not possible for the electron spin to also
flip from up to down since then the net spin would change by
2h̄. It is surprising that there is a correlation between flips of
the neutron’s spin along the z axis and flips of the electron’s
spin along the c axis since these components of spin do not
appear in the interaction Hamiltonian. The direction of the c
axis is determined, however, by the relation σc = iσaσb.

As a brief remark on how to carry out such an experiment,
it might seem as if measuring the nodes in the cross section as
a function of momentum transfer for three polarizations of the
neutrons, along the x, y, and z axes, should be sufficient. This
seemingly allows one to determine the momentum directions
that are locked to the a, b, and c axes of spin and whether they
are right or left handed. However, the nodes for initial neutron
spin x̂, ŷ are at ±b̂ and ±â, so it is not possible to determine
the signs of these axes, leaving the handedness indeterminate.
This is solved by identifying the nodes for a few additional
spin directions intermediate between x̂ and ŷ.

If a and b are more general (not orthogonal and with
different magnitudes), the same routine would allow one to
measure the chirality; the only difference is that the nodes of
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the electron’s spin do not slide all the way to the c axis when
the spin of the neutron moves to the z axis: they still spiral
with the same handedness though [54].

VI. CONCLUSION

In this paper, we have shown that INS can probe bulk
excitations of type-I Weyl nodes. These where assumed to
be aligned at (or near) the chemical potential [55–60] with
realistic anisotropy, but a negligible scalar term α. Reference
[44] outlines how any |α| < 1 is analytically tractable.

The analysis separated the cross section into a Lorentz-
invariant susceptibility and a symmetry-breaking coupling of
neutrons to Weyl fermions determined by material specific g
factors. This had advantages: first, Lorentz-invariant proper-
ties of the susceptibility, describing the excitations’ dynamics,
are reflected in the cross section. This leads to several univer-
sal quantitative predictions and, furthermore, the possibility
of measuring chirality for inversion-symmetric nodes despite
arbitrary material parameters. Noticeably, the chirality of a
Weyl point can be seen through the distortions produced by
the unknown form of the neutron-electron interaction, which
reflects its topological character. Second, anisotropy of these
g factors is actually helpful, as they render spin-momentum
locking observable even in a fully unpolarized experiment.
Furthermore, the g factors can enhance the cross-section
intensity as they, in principle, can take any value from zero
to diverging, which differs from the bare coupling value
g/2 = 1. As a proof of concept, we estimated the intensity
under optimistic conditions qi/q f × d2σ (+)(q, ω)/d� dE f �
2 × 10−2 mb/meV f.u. sr for a toy model. This is low but
remarkably only of order 10−2–1 smaller than what has been
observed in scattering off spin- 1

2 particle-hole pairs [20–24].
INS can thus provide a platform to understand the intrinsic

behavior of WSMs, for example, the spin and orbital effects
discussed here. It can test the form of the Weyl equation in
materials, including monitoring changes in it such as reloca-
tion in energy and momentum space, distortion of dispersion,
redistribution of occupation numbers, due to applied fields,
currents or elastic and magnetic deformations as predicted
Refs. [61–66].

Some of the details that have appeared in this study could
give new information about Weyl materials. For example, the
many g factors describing the emergent magnetic moment
of the Weyl fermions induced by an external magnetic field
(which does not have to be from a neutron). In particular, it
would be interesting to know how these parameters evolve as
a magnetic Weyl semimetal approaches the transition point
[4,67–70]. The four-band model above shows that they depend
on the strength of the spontaneous magnetic ordering and
hybridization between bands. Such an endeavor can be done
theoretically by use of numerically realistic band-structure
calculations and experimentally be measured by neutron scat-
tering.

Aside from the specific problem of neutron scattering,
particle-hole correlators (as calculated here) are relevant to
WSMs’ intrinsic properties. For example, particle-hole bound
states (like plasma waves) might form, and their self-energy
is closely related to the spin susceptibility. If a particle-hole
bound state from excitations at distinct Weyl points can form,

we would expect angle-dependent properties, for example, it
should have an effective mass that is proportional to the matrix
elements between the two Weyl points and hence would
be strongly momentum dependent. Also, just as there is an
emergent magnetic moment of Weyl excitations, there could
be an emergent electric dipole moment, which is not ruled
out by symmetry unlike the case of an electron in free space
[71]. This could influence the bound state through pseudospin
dipole-dipole interactions. It is necessary to understand care-
fully what properties of Weyl fermions are universal for such
analyses, and the relativistic method developed here should be
useful.

Furthermore, it would be interesting to extend our method
to derive the cross section for scattering between emergent
Bogoliubov–de Gennes Weyl nodes induced in a monopole
superconducting WSM [72].
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APPENDIX A: PRINCIPAL AXIS TRANSFORMATION

When the three parameters v(i)
0 of Eq. (2) are negligible, the

total Hamiltonian is

H0 =
∑
i=1,2

∑
k

c†
k;iH0,i(p)ck;i, H0,i(p) = vFσlλ

(i)
l mpm, (A1)

with p = k − k0,i. The Hamiltonian has to be Hermitian,
which means that λ

(i)
l m ∈ R for both nodes i = 1, 2. Now

the symmetry, either time-reversal or inversion symmetry
exchange the nodes. This symmetry takes a particle at the
second Weyl point in the first-quantized state ψ2 to ψ1 =
θKψ2 or ψ1 = θψ2 at the first Weyl point, in the case of
time reversal and inversion, respectively, where θ is a unitary
matrix and K is complex conjugation. The matrix θ can be
chosen arbitrarily since the two states at each Weyl point are
pseudospin states. One can choose them in some way at the
second Weyl point and define the two states at the first Weyl
point by the transforms of these states under the appropriate
symmetry combined with a convenient θ [73]. We choose
θ = σ0, σy for inversion and time reversal, respectively. With
this choice, the requirement that the Hamiltonian be invari-
ant under inversion or time-reversal symmetry dictates that
λ

(1)
l m = ±λ

(2)
l m with + (−) for the latter (former) symmetry.

Hence, in order to transform the nodes into isotropic form,
it is sufficient to perform a singular value decomposition on
λ

(2)
l m only. A singular value decomposition is a generalization

of diagonalization of matrices; it is a representation in the
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form λ(2) = ODRT with orthogonal matrices O and R and a
diagonal matrix Da b = σ 0

a bdb the elements of which are the
singular values, i.e., the square root of the eigenvalues of
λ(2),Tλ(2). To get the Hamiltonian in an isotropic form, one
then transforms both momentum and spin degrees of freedom.
The new coordinate for momentum p̃ = T p is obtained from
the original p by a transformation

Tab = Rbada. (A2)

This is a coordinate rotation RT and a scaling da > 0. If spin
is transformed by a unitary matrix such that Oa iσi = U †σaU ,
then the transformation H0,2(p) → UH0,2(T −1p̃)U † brings
the second node into isotropic form. The same transformation
must be applied to the momentum near the other node as
well (since the momenta from the two nodes are subtracted
from another in the momentum conservation). In fact, this
transformation is just the right one to bring the other node into
an isotropic form as well because of time-reversal or inversion
symmetry relating the two nodes. The two Hamiltonians are
then simultaneously transformed into isotropic forms:

H0,i(p) → H0,i(p̃) = χivFσ · p̃ . (A3)

Here, chirality is χ1 = χ2 for time-reversal symmetric nodes,
and χ1 = −χ2 for inversion-symmetric nodes, or alternatively
χi = sign|λ(i)|. There is one additional point that has to be
considered in defining the transformation of the nodes. This
transformation must be chosen to have a determinant of one
to ensure that the density of states for exciting Weyl fermions
is the same in both coordinate systems. We can ensure that
this happens if we choose the dimensionless anisotropy matrix
λ of Eq. (A1) such that it has determinant of one (since T
differs from λ only in the matrix O which automatically has
determinant of one). Now, λ is defined as the matrix coupling
σ and p with a factor vF removed. This parameter is arbitrary,
and if we choose it to be the geometric mean of the three
principal velocities of Eq. (A1), then |λ| = 1.

For example, the effective low-energy Hamiltonian of the
four-band toy model (see Sec. III B) will be transformed
to isotropic nodes by Tab = daσ

0
ab where d1 = d2 = �−1/6 �

d3 = �1/3 > 0 where � = 1 − (δ/m)2.

APPENDIX B: INTERACTION FOR
SYMMETRY-RELATED NODES

In second quantization, the Hamiltonian of the ith Weyl
node is Hi = ∫

dr �
†
i (r, t )H0,i(−i∇r )�i(r, t ), where �i(r, t )

is the second-quantized Weyl fermion field, and H0,i has
the first-quantized isotropic form (A3). The interaction for
scattering between nodes is given by HB = ∫

drHB(r, t ),
where interaction density is HB(r, t ) = −M(r, t ) · B(r) with
Eq. (8). For scattering between nodes related by either time-
reversal or inversion symmetry, the coupling is constrained, as
will be explained in Appendices B 1 and B 2, respectively.

1. Time-reversal-symmetric Weyl nodes

Let τ̂ denote the antiunitary time-reversal operator acting
[74] on �i. Time-reversal symmetry transforms the spinors
at the two Weyl points via [75] τ̂�2τ̂

−1 = θ†�1, τ̂�1τ̂
−1 =

−θ∗�2. The standard isotropic form of the Hamiltonian

occurs only if θ = σy as shown in the previous Appendix.
Time symmetry implies that HB = τ̂H−Bτ̂−1, which implies
that the couplings are restricted to Eq. (22).

2. Inversion-symmetric Weyl nodes

Let ρ̂ denote the unitary inversion operator acting on �i.
Inversion symmetry transforms the spinors via ρ̂�2ρ̂

−1 =
θ†�1, ρ̂�1ρ̂

−1 = θ�2. The standard isotropic form of the
Hamiltonian occurs if θ = σ0 as shown in the previous Ap-
pendix. Inversion symmetry, i.e., HB = ρ̂HBρ̂−1, implies that
the couplings are restricted to Eq. (23).

APPENDIX C: PARTICLE-HOLE WEYL PAIR

The Weyl fermion correlator

σ (+)
μν (r, t ) = V 〈σ (−)

μ (r, t )σ (+)
ν 〉0 (C1)

is an intermediate scattering function of non-Hermitian
operators σ (+)

μ (r, t ) = �
†
2 (r, t )σμ�1(r, t ) and σ (−)

μ (r, t ) =
σ (+),†

μ (r, t ). These excite an occupied state from the vicinity
of one Weyl node to an empty state in the vicinity of the
other Weyl node. According to the fluctuation-dissipation
theorem, the scattering function and the absorptive part of
the generalized susceptibility are related by σ (±)

μ ν (q, ω) =
κ (ω, T )χ ′′(±)

μ ν (q, ω) where κ (ω, T ) = 2h̄/[1 − exp(−β h̄ω)]
with β = 1/kBT . The susceptibility is decomposed into
χ (±)

μ ν (q, ω) = χ ′(±)
μν (q, ω) + iχ ′′(±)

μν (q, ω). By standard spec-
tral decomposition [76] at zero temperature and infinite-
volume limit, we get, for noninteracting Weyl fermions, that

χ ′′(±)
μ ν (q, ω) = πV

(2π h̄)3

∫
dp̃i

∫
dp̃ f δ(p̃ − �̃) δ(h̄ω − �ξw)

×〈−χi; p̃i|σμ|p̃ f ; χ f 〉〈χ f ; p̃ f |σ ν |p̃i; −χi〉,
(C2)

with change in internal energy �ξw = ξ+
p̃ f

− ξ−
p̃i

. The energy

of the occupied state ξ−
p̃i

is negative, and the excited state ξ+
p̃ f

is positive. This is the Lindhard function weighted by a pseu-
dospin correlation between the Weyl fermion ejected from
the Fermi sea, and that scattered into the empty state. Now,
we do a particle-hole transform, mainly for the reason that
it makes the expressions more symmetric and the relativistic
symmetry easier to see. A neutron transfers energy h̄ω to the
WSM and creates a particle-hole Weyl pair. The change in
energy can be rewritten �ξw → ξ

p
p̃ f

+ ξ h
p̃i

= vF(|p̃ f | + |p̃i|)
by reinterpreting −ξ−

p̃i
as the energy ξ h

p̃i
of the created hole.

In order to make this picture consistent, we need to also
redefine p̃i → −p̃i, i.e., a sign change on p̃i with respect to
the definition in Sec. II. In this particle-hole picture, Eq. (C2)
becomes

χ ′′(±)
μ ν (q, ω) = πV

vF(2π h̄)3

∫
dp̃i

2 p̃0
i

∫
dp̃ f

2 p̃0
f

δ(4)(Q − P)2 p̃0
i 2 p̃0

f

×〈χi; ˆ̃pi|σμ| ˆ̃p f ; χ f 〉〈χ f ; ˆ̃p f |σ ν | ˆ̃pi; χi〉, (C3)

where now the solutions at Weyl point 1 have chirality +χi

[77]. In this expression, the energy and 3-momentum delta
functions have been combined into an energy-momentum
4-delta function. The neutron energy-momentum 4-vector
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is Qμ = (Q0, Q) with Q0 ≡ h̄ω/vF and Q ≡ �̃ = �k̃0 −
q̃, while the particle-hole Weyl pair energy-momentum 4-
vector is Pμ = (P0, P) with P0 ≡ �ξw/vF and P ≡ �p̃ =
p̃1 + p̃2. The integration measure and 4-delta are Lorentz
invariant, but the integrand is not yet written in a relativistic
form. In order to do this, we will transform from 2-spinors
| ˆ̃p; χ〉 to 4-spinors uχ

p̃ , while simultaneously transforming
Pauli matrices to gamma matrices whose Lorentz transfor-
mation properties are more transparent. We use the Weyl
representation in which γ 0 = σ x ⊗ σ 0, γ i = iσ y ⊗ σ i, γ 5 =
−σ z ⊗ σ 0. With these definitions, we find that a 4-spinor
φ = (φ1, φ2)T satisfies γ μ∂μφ = 0 if φ1 and φ2 satisfy the
left- and right-handed Weyl equations, respectively. Equation
(C3) can now be written in terms of 4-vectors by introduc-
ing special solutions up̃ = (| ˆ̃p; L〉, | ˆ̃p; R〉)T, uL

p̃ = (| ˆ̃p; L〉, 0)T,

uR
p̃ = (0, | ˆ̃p; R〉)T, and ūχ

p̃ = uχ,†
p̃ γ 0. We have to do further

calculations to rewrite the 2 × 2 Pauli matrices in terms of
γ ’s, in order to determine the correct transformation rules. We
will temporarily rename χ

′′μν
(±) (q, ω) → T μ ν

χ→χ (Q) or Iμ ν
χ→χ̄ (Q)

for time-reversal- and inversion-symmetric nodes, although
these are not necessarily tensors. These are calculated in
Appendices C 1 and C 2, respectively.

Introducing projectors helps to carry out the calculations
and determine the Lorentz transformation properties. Because
we have performed a particle-hole transformation, all states
have positive energy and, therefore, the only relevant projec-
tors are

2 p̃0uχ
p̃ ūχ

p̃ = pχ p+( p̃)γ 0, (C4)

which project into positive-energy states with chirality χ =
(L, R) by p+ and pχ , respectively, given by p+( p̃) = p̃0 +
γ 0γ · p̃, pL = (1 − γ 5)/2, and pR = (1 + γ 5)/2. Note that
the projector is a Lorentz scalar since p+( p̃)γ 0 = pμγμ.
(What we call a projector is not technically a projector, but
once adjusted slightly to give a Lorentz-invariant form.)

1. Time-reversal-symmetric Weyl nodes

For time-reversal-symmetric nodes, the matrix element
(C3) connects only nodes with same chirality, i.e., χi = χ f ≡
χ . One now seeks 4 × 4 operators with the same prop-
erties and finds that γ 0γ μ also connects modes with the
same chirality. The susceptibility can be rewritten in terms
of this operator. Transform the susceptibility T μν

χ→χ (Q) →
(−1)ξχ T̃ μν

χ→χ (Q) with

T̃ μ ν
χ→χ (Q) = c

∫
d3 p̃i

2 p̃0
i

∫
d3 p̃ f

2 p̃0
f

δ(4)(Q − P) ˜̃T μν
χ→χ .

Here, ˜̃T μν
χ→χ = 2 p̃0

i 2 p̃0
f ūχ

p̃i
γ μuχ

p̃ f
ūχ

p̃ f
γ νuχ

p̃i
, constant c = π

V/[vF(2π h̄)3], ξR = 0 for any μ, ν, whereas ξL = 0 if μ =
ν = 0 or μ, ν �= 0, otherwise 1. The matrix element T̃ μν

χ→χ (Q)
is a Lorentz-invariant rank-2 tensor and by dimensional
analysis is quadratic in Q, thus the most general form
it can have is T̃ μ ν

χ→χ (Q) = aχ (Q · Q)gμ ν + bχQμQν . The
scalars aχ and bχ can be determined from the two contrac-
tions gμ ν T̃ μ ν

χ→χ (Q) = (4aχ + bχ )Q · Q and QμQν T̃ μ ν
χ→χ (Q) =

(aχ + bχ )(Q · Q)2, evaluated in a frame where Q is timelike

Q̃
μ = (Q̃

0
, 0), i.e., the center-of-momentum (COM) frame of

the particle-hole pair. Using the projection operators (C4)

gives −aχ = bχ = a, the result (17), where

a = π2

3

V

vF(2π h̄)3
. (C5)

In this frame, the conservation laws lead to a simple integral
over the surface of a sphere.

2. Inversion-symmetric Weyl nodes

For inversion-symmetric nodes the matrix element (C3)
connects only nodes with opposite chirality, i.e., χi ≡ χ and
χ f ≡ χ̄ = −χ . As the amplitude corresponding to various
μ, ν = 0, 1, 2, 3 transforms differently, we will treat them
case by case in the following.

a. For μ = ν = 0

The I0 0 component of the susceptibility in 2-spinor space
transforms into 4-spinor space according to I0 0

χ→χ̄ (Q) →
Iχ→χ̄ (Q), where

Iχ→χ̄ (Q) = c
∫

d3 p̃i

2 p̃0
i

∫
d3 p̃ f

2 p̃0
f

δ(4)(Q − P) Ĩχ→χ̄ ,

with Ĩχ→χ̄ = 2 p̃0
i 2 p̃0

f ūχ
p̃i

uχ̄
p̃ f

ūχ̄
p̃ f

uχ
p̃i
. Since Iχ→χ̄ (Q) is a scalar,

the most general form it can have is Iχ→χ̄ (Q) = fχ (Q · Q).
The constant fχ can be determined by evaluation in the
neutron COM frame by using Eq. (C4). This gives f ≡ fχ =
(3/2)a with a given by Eq. (C5) and the result (19a).

b. For μ �= 0, ν �= 0

The I i j component of susceptibility in the 2-spinor space
transforms into a rank-4 tensor according to I i j

χ→χ̄ (Q) →
I0 i 0 j
χ→χ̄ (Q), where

Iα β γ δ
χ→χ̄ (Q) = c

∫
d3 p̃i

2 p̃0
i

∫
d3 p̃ f

2 p̃0
f

δ(4)(Q − P) Ĩα β γ δ
χ→χ̄ ,

with Ĩα β γ δ
χ→χ̄ = 2 p̃0

i 2 p̃0
f ūχ

p̃i
σα βuχ̄

p̃ f
ūχ̄

p̃ f
σγ δuχ

p̃i
, which is a

Lorentz rank-4 tensor. Here, σμ ν = i
2 [γ μ, γ ν]. The expense

of this transformation is that the tensor has many extra com-
ponents aside from the ones we need. However, the additional
entries are actually redundant due to the fact that σ 2 3 =
iσ 0 1γ5 and γ 5 can be replaced by its eigenvalue. Because
this tensor is antisymmetric in αβ and in γ δ, the most general
form it can have is

Iα β γ δ
χ→χ̄ (Q)

= Aα β γ δ
χ→χ̄ (Q)+ Bα β γ δ

χ→χ̄ (Q)+ Dα β γ δ
χ→χ̄ (Q)+ Eα β γ δ

χ→χ̄ (Q),
(C6)

with

Aα β γ δ
χ→χ̄ (Q)

= aχ (gα δQβQγ − gα γ QβQδ + gβ γ QαQδ − gβ δQαQγ ),

(C7a)

Bα β γ δ
χ→χ̄ (Q) = bχ (QQ)(gα γ gβ δ − gα δgβ γ ), (C7b)

Dα β γ δ
χ→χ̄ (Q) = dχ (εα β γ τ Qτ Qδ − εα β δ τ Qτ Qγ ), (C7c)

Eα β γ δ
χ→χ̄ (Q) = eχ (εα γ δ τ Qτ Qβ − εβ γ δ τ Qτ Qα ). (C7d)
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Notice that a term Cα β γ δ
χ→χ̄ (Q) = cχ (QQ)εα β γ δ is a linear

combination of Dα β γ δ
χ→χ̄ (Q) and Eα β γ δ

χ→χ̄ (Q) and should there-
fore not be included. Now, the coefficients can be related with
the help of the redundancy, essentially,

ūχ̄
p̃ σα β uχ

p̃′ = ūχ̄
p̃ i

χ

2
εα β γ δσ

γ δ uχ

p̃′ . (C8)

There turns out to be only one independent scalar bχ =
aχ/2, dχ = −eχ = iχ (aχ/2). This can be determined by the
contraction QαQγ gβ δIα β γ δ

χ→χ̄ (Q) = − 3
2 aχ (QQ) evaluated in

the COM frame by using Eq. (C4). This gives aχ = a with
Eq. (C5), and the result (19c).

Notice that Eq. (C8) is an antisymmetric tensor F with
the extra symmetry property (χ̄/2)εα β γ δFγ δ = iFα β , which
reduces the six independent components to 3, since there are
F 0 1, F 0 2, F 0 3, and the other components are all either −1
or ±i times these. The amplitude is thus an “electromagnetic
field tensor”

Fα β =

⎛⎜⎝ 0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎞⎟⎠, (C9)

which transforms as a Lorentz rank-2 tensor, but with an
additional symmetry property B = iE, which is incidentally
satisfied by the electromagnetic field of circularly polarized
radiation. This is called a self-dual tensor.

c. For μ �= 0, ν = 0 and μ = 0, ν �= 0

This case starts in the same way as the previous one. This
tensor is found to be a component of an antisymmetric Lorentz
rank-2 tensor quadratic in Qμ, so without calculation (since
this type of tensor does not exist), we conclude the result
(19b).

The fact that in the time-reversal-symmetric case, all four
values of μ are united in a single 4-vector while in the
inversion-symmetric case, they separate into a scalar and
another covariant tensor, can be understood with the help of
representations of the Lorentz group [78]. These are labeled
by two spins (s1, s2); in particular, left- and right-handed
Weyl spinors transform under ( 1

2 , 0) and (0, 1
2 ). The matrix

elements for transitions between two left-handed spinors (for
example) ψ1, ψ2 are products of the components ψ∗

1αψ2β ,

which form the representation ( 1
2 , 0) ⊗ ( 1

2 , 0) where the bar
corresponds to the fact that the first spinor is complex con-
jugated, and exchanges representations of types (s1, s2) →
(s2, s1) (physically, an antiparticle of a left-handed particle is
right handed). This becomes ( 1

2 , 1
2 ), a 4-vector. For a transition

from a left-handed to a right-handed node, the representation

is (0, 1
2 ) ⊗ ( 1

2 , 0) = (0, 0) ⊕ (1, 0), where (1,0) is represented
by the self-dual 2-rank tensor.

APPENDIX D: INTRANODE SCATTERING

The argument in Sec. II shows that the neutron speed must
be high relative to the Weyl fermion speed if one wishes
to measure intranode scattering, so we focused on scattering
between nodes at different momenta. However, for a material
with a low Weyl fermion speed it would be possible to

study intranode scattering without very high-energy neutrons.
In case intranode scattering is possible, some of the theory
described above applies to intranode scattering, but there are
a few interesting differences. An important issue is the role
played by minimal substitution in finding the coupling of the
Weyl fermions to the magnetic field of the neutrons, which we
will begin by discussing.

In Sec. III, we suggested that the J operator that couples
two distinct Weyl nodes should be found just by evaluating the
current operator matrix elements, and interpreting the matrix
elements among the low-energy states as a 2 × 2 effective op-
erator, which can also be written in terms of a magnetization
by using J = curl M to deduce J = − 2i

h̄ k0 × M. The actual
parameters can be worked out only if one knows the detailed
band structure, where J(r), the current at r is represented in
first quantization by

J(r) = h̄

2mi
{δ(r − R),∇R} + ∇rδ(r − R) × μ, (D1)

which is the Schrödinger current and the spin current. Here, r
is the position where one is measuring the current (a c number)
and R is the electron position operator. If spin-orbit coupling
is important, there is an additional contribution that can be
found using J = − δH

δA . Taking the matrix element between
two Bloch states and then taking Fourier transforms with
respect to r gives the matrix elements connecting states at
certain momenta.

On the other hand, in the four-band toy model, we began
by introducing the vector potential into the effective four-band
Hamiltonian via minimal substitution, and then differentiating
with respect to A to find the current, which is not equivalent
to starting from a microscopic model of the system. The
reason this is approximately correct is the following: The
Hamiltonian in the presence of a vector potential must be
gauge invariant, and this is automatically true when the vector
potential is added by minimal substitution. However, this does
not rule out other terms as long as they are gauge invariant,
like B · ψ

†
2Mψ1 + H.c. Now, applying minimal substitution

to a single Weyl node as in Eq. (2) or a single node as in the
four-band model gives

Hmin = −evFλlmAm · ψ†σlψ. (D2)

This generates transitions within a single node only, so it does
not generate the intranode scattering in Eq. (8). To understand
such transitions, one has to just add the term mentioned above
explicitly.

Now either for intranode scattering or for the four-band
model the minimal substitution can be justified. Although
there can be other terms present, the minimal substitution
term has to be included for gauge invariance, and it is larger
than the others at low momenta. The vector potential of a
neutron of spin τ is given by An(q) = −iμ0(τ × q̂)/|q| which
diverges at small values of q = |q|, so this will cause stronger
scattering than a term like BiFi jψ

†σ jψ , where B is the
magnetic field, whose Fourier transform is μ0(τ − (τ · q̂)q̂),
as long as q is low enough. Now, when m and δ are nonzero, q
does not tend to zero for scattering between the nodes. But
the coupling to neutrons is still dominated by the minimal
substitution contribution, as long as the Weyl nodes are close,
which happens when m and δ are small.

035122-21



BJERNGAARD, GALILO, AND TURNER PHYSICAL REVIEW B 102, 035122 (2020)

Now, let us consider scattering between the Weyl fermions
of a single node. We have just seen that up to a certain
energy we can focus on minimal substitution. Thus, there are
not all the free F parameters that break Lorentz invariance.
However, Lorentz invariance is still broken by the coupling to
the neutrons. Equation (D2) says that neutron coupling will
still be determined by the susceptibility χ ′′

i j (q, ω), but it will
be multiplied by A, more precisely,

d2σ (q, ω)

d� dE f

∣∣∣∣τ f

τi

∝ (τ f i × q)mλlm(τ i f × q)m′λl ′m′χ ′′
mm′ (q̃, ω)

q4
,

(D3)

where τ i f are the matrix elements of the neutron spin oper-
ators and q̃i = ∑

j λi jq j . Note that q and q̃ both appear in
this equation. The susceptibility is evaluated at q̃ because it
was derived above for Lorentz-invariant coordinates, and it
is in terms of q̃ that the velocity is isotropic. Note that the

“kinetic momentum” appearing in the Weyl fermions’ cross
section is the same in this case as the momentum appearing in
the vector potential from the neutron since there is no offset
between the initial and final Weyl points. In Eq. (D3) both the
dipole field of the neutron and the Weyl fermion dynamics
contribute to the angular variation of the cross section. This
leads to a more complicated breaking of Lorentz invariance
than in internode scattering, resulting from the fact that the
momentum with respect to both coordinate systems appears
in the equation. Using the equal-chirality formula for the
susceptibility, Eq. (17c), and using the fact that v2

Fλ
T λ = v2,

the squared velocity matrix of the Weyl fermions, we obtain

d2σ (q, ω)

d� dE f

∣∣∣∣τ f

τi

∝ 1

q4
(|l∗ · h|2 + l∗ · l[(h̄ω)2 − h∗ · h]), (D4)

where we have defined the two vectors h = vq and l =
v(τ f i × q). This is a quartic function of q̂, which (by intro-
ducing polar coordinates) is seen to be the sum of spherical
harmonics with l = 0, 2, and 4.
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mâ′ j
m for a certain pair of orthonormal vec-

tors â′
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not normalized. This follows from Ref. [50]. To show that there
are two nodes of Eq. (44), we must find for which electron
and neutron spin directions the scattering cross section or, more
simply, the matrix element that it is the square of, vanishes.
We use a representation for the electron and neutron spinors
that leads to simple expressions, e.g., for the electron ψe =
Ae(1, λe)T . The orientation of the spinor in space is determined
by the complex parameter λe via λe = tan θe

2 eiφe , and Ae is a
normalization constant that cancels out. The condition that the
matrix element vanishes is a quadratic polynomial in λe, λn.
Thus, for each neutron direction there are two nodes λe, which
spiral when represented on a sphere as described.

[55] J. Ruan, S.-K. Jian, H. Yao, H. Zhang, S.-C. Zhang, and D.
Xing, Symmetry-protected ideal Weyl semimetal in HgTe-class
materials, Nat. Commun. 7, 11136 (2016).

[56] M. Buchhold, S. Diehl, and A. Altland, Vanishing Density of
States in Weakly Disordered Weyl Semimetals, Phys. Rev. Lett.
121, 215301 (2018).

[57] R. Nandkishore, D. A. Huse, and S. L. Sondhi, Rare region
effects dominate weakly disordered three-dimensional Dirac
points, Phys. Rev. B 89, 245110 (2014).

[58] Z. Huang, T. Das, A. V. Balatsky, and D. P. Arovas, Stability of
Weyl metals under impurity scattering, Phys. Rev. B 87, 155123
(2013).

[59] B. Skinner, Coulomb disorder in three-dimensional Dirac sys-
tems, Phys. Rev. B 90, 060202(R) (2014).

[60] S. V. Syzranov, V. Gurarie, and L. Radzihovsky, Unconven-
tional localization transition in high dimensions, Phys. Rev. B
91, 035133 (2015).

[61] C.-K. Chan, P. A. Lee, K. S. Burch, J. H. Han, and Y. Ran,
When Chiral Photons Meet Chiral Fermions: Photoinduced
Anomalous Hall Effects in Weyl Semimetals, Phys. Rev. Lett.
116, 026805 (2016).

[62] S. A. A. Ghorashi, P. Hosur, and C.-S. Ting, Irradiated three-
dimensional Luttinger semimetal: A factory for engineering
Weyl semimetals, Phys. Rev. B 97, 205402 (2018).

[63] A. Cortijo, Y. Ferreirós, K. Landsteiner, and M. A. H.
Vozmediano, Elastic Gauge Fields in Weyl Semimetals, Phys.
Rev. Lett. 115, 177202 (2015).

[64] M. P. Ghimire, J. I. Facio, J.-S. You, L. Ye, J. G. Checkelsky,
S. Fang, E. Kaxiras, M. Richter, and J. van den Brink, Creat-
ing Weyl nodes and controlling their energy by magnetization
rotation, Phys. Rev. Res. 1, 032044 (2019).

[65] Y. Araki, Magnetic textures and dynamics in magnetic Weyl
semimetals, Ann. Phys. (Berlin, Ger.) 532, 1900287 (2020).

[66] A. Sekine, D. Culcer, and A. H. MacDonald, Quantum kinetic
theory of the chiral anomaly, Phys. Rev. B 96, 235134 (2017).

[67] L. Crippa, A. Amaricci, N. Wagner, G. Sangiovanni, J. C.
Budich, and M. Capone, Nonlocal annihilation of Weyl
fermions in correlated systems, Phys. Rev. Res. 2, 012023
(2020).

[68] P.-Y. Chang and P. Coleman, Parity-violating hybridization in
heavy Weyl semimetals, Phys. Rev. B 97, 155134 (2018).

[69] V. Ivanov, X. Wan, and S. Y. Savrasov, Topological Insulator-
To-Weyl Semimetal Transition in Strongly Correlated Actinide
System UNiSn, Phys. Rev. X 9, 041055 (2019).

[70] A. Sekine and K. Nomura, Electron correlation induced spon-
taneous symmetry breaking and weyl semimetal phase in a
strongly spin–orbit coupled system, J. Phys. Soc. Jpn. 82,
033702 (2013).

[71] S. L. I. B. Khriplovich, CP Violation Without Strangeness:
Electric Dipole Moments of Particles, Atoms and Molecules
(Springer, Berlin, 1997).

[72] C. Sun, S.-P. Lee, and Y. Li, Vortices in a monopole supercon-
ducting Weyl semimetal, arXiv:1909.04179.

[73] It is required that T 2 = −1 and I2 = 1, but rather than con-
straining θ , they determine the way that T and I transform the
first Weyl point back to the second. For example, for inversion
symmetry θ does not have to square to 1; as long as ψ1 → ψ2 =
θ †ψ1, I2 = 1.

[74] A. W. W. Ludwig, Topological phases: Classification of
topological insulators and superconductors of non-interacting
fermions, and beyond, Phys. Scr. T168, 014001 (2015).

[75] The transformation of �1 follows from the transformation of �2

and the fact that τ̂ 2�2τ̂
−2 = −�2.

[76] J. Jensen and A. Mackintosh, Rare Earth Magnetism: Structures
and Excitations, The International Series of Monographs on
Physics (Clarendon, Oxford, 1991).

[77] Note, however, that the hole actually does have chirality −χi;
there is an additional complex conjugation involved in exchang-
ing the created and annihilated states.

[78] P. Ramond, Field Theory: A Modern Primer, 1st ed. (Ben-
jamin/Cumings, San Francisco, 1981).

035122-24

https://doi.org/10.1038/ncomms11136
https://doi.org/10.1103/PhysRevLett.121.215301
https://doi.org/10.1103/PhysRevB.89.245110
https://doi.org/10.1103/PhysRevB.87.155123
https://doi.org/10.1103/PhysRevB.90.060202
https://doi.org/10.1103/PhysRevB.91.035133
https://doi.org/10.1103/PhysRevLett.116.026805
https://doi.org/10.1103/PhysRevB.97.205402
https://doi.org/10.1103/PhysRevLett.115.177202
https://doi.org/10.1103/PhysRevResearch.1.032044
https://doi.org/10.1002/andp.201900287
https://doi.org/10.1103/PhysRevB.96.235134
https://doi.org/10.1103/PhysRevResearch.2.012023
https://doi.org/10.1103/PhysRevB.97.155134
https://doi.org/10.1103/PhysRevX.9.041055
https://doi.org/10.7566/JPSJ.82.033702
http://arxiv.org/abs/arXiv:1909.04179
https://doi.org/10.1088/0031-8949/2015/T168/014001

