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The origin of orbital order in correlated transition-metal compounds is strongly debated. For the paradigmatic
e, systems KCuF; and LaMnOs, it has been shown that the electronic Kugel’-Khomskii mechanism alone is
not sufficient to drive the orbital-ordering transition up to the high temperatures at which it is experimentally
observed. In the case of #,, compounds, however, the role played by the superexchange interaction remains
unclear. Here we investigate this question for two representative systems, the 3d tzlg Mott insulators LaTiO; and
YTiO;. We show that the Kugel’-Khomskii superexchange transition temperature 7xx is unexpectedly large,
comparable to the value for the eg fluoride KCuF;. By deriving the general form of the orbital superexchange
Hamiltonian for the tzlg configuration, we show that the GdFeOs-type distortion plays a key part in enhancing Txk
to about 300 K. Still, orbital ordering above 300 K can be ascribed only to the presence of a static crystal-field

splitting.
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I. INTRODUCTION

Orbital order in strongly correlated materials can arise
from different types of microscopic mechanisms [1]. The first
is the classical Jahn-Teller instability; in this scenario, the
electron-lattice coupling produces lattice distortions which re-
move the orbital degeneracy. The crystal-field splitting arising
via such distortions can lead to large differences in orbital
occupations and regular patterns of mostly occupied orbitals,
i.e., to orbital ordering. Remarkably, even if the crystal-field
splitting is relatively small in comparison to the bandwidth,
the orbital polarization can be large since it is strongly en-
hanced by the Coulomb interaction [2—4], making orbital
ordering stable even at very high temperatures. The second
mechanism that can lead to orbital ordering phenomena is the
electronic superexchange introduced by Kugel’ and Khomskii
[5]. In this mechanism the ordering arises even in the absence
of crystal-field splitting and is due to the orbital superex-
change interaction. The strength of such a purely electronic
mechanism has been investigated in detail for the case of the
paradigmatic e, systems KCuF; and LaMnOs. It has been
shown that the associated transition temperature Txg is too
small to explain the presence of orbital ordering well above
1000 K [4,6-8], as observed experimentally. In the case of
KCuF; it was shown that even the electron-phonon coupling
alone does not explain experimental findings; instead, a new
mechanism was identified in which the Born-Mayer repulsion
plays a key role [9]. This new mechanism is particularly
relevant for ionic systems. Finally, for layered perovskites
yet another mechanism, the orbital superexchange field, was
shown to be at work in addition [10].

In this complex scenario, it remains to be established
how strong superexchange effects are in #,, materials. Rep-
resentative systems are the 3d tzlg orthorhombic perovskites
LaTiO; and YTiOs3, two strongly correlated insulators with
GdFeO;-type structure (see Fig. 1) [12,13]. Both compounds
are paramagnetic insulators in a wide temperature range. For
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YTiO; the magnetic transition temperature to the ferromag-
netic ground state is as low as 40 K. Orbital ordering has been
detected via various experimental techniques ranging from
nuclear magnetic resonance [14] to polarized neutron diffrac-
tion [15,16], x-ray magnetic diffraction [17], the joint refine-
ment method [18], resonant x-ray scattering [19], and soft
x-ray linear dichroism [20]. For LaTiOj3 the situation is more
complex. In 15, perovskites the gain in superexchange energy
from static Jahn-Teller orbital ordering is expected to be much
smaller than in e, systems, where orbitals are bond oriented.
It was therefore suggested that in LaTiO3 the proximity to the
metal-insulator transition could make the (dynamical) orbital
liquid state stable instead [21]. Later, however, evidence in
favor of orbital ordering accumulated, as it became clear that,
although the Jahn-Teller distortion is very small, a sizable
static crystal-field splitting is generated by the GdFeOs-type
distortion and the associated deformations of the cubic cation
cage [2,3,22-28]. While it is now accepted that LaTiOs is
orbitally ordered, it still remains to be established what role
the superexchange interaction actually plays in the genesis
of such ordering, which, for LaTiOs as for YTiOs3, persists
well above the magnetic ordering temperature. This is what
we investigate and clarify in this work.

This paper is organized as follows. In Sec. II we describe
the model and method used. The technique we adopt is
based on the dynamical mean-field theory (DMFT). It is
augmented with the approach we established in Ref. [4] for
studying superexchange-driven orbital-ordering transitions. In
Sec. III we present the main results. We calculate the order
parameter, the orbital polarization p(T'), as a function of
temperature. We obtain the transition temperature Txx, which
marks the onset of the orbitally ordered phase for the pure
superexchange mechanism, and identify the most occupied
natural orbital. We show that in both LaTiO3 and YTiO3 the
critical temperature Tk is surprisingly large with respect to
some early assumptions. We find Txx ~ 300 K, comparable

©2020 American Physical Society


http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.035113&domain=pdf&date_stamp=2020-07-06
https://doi.org/10.1103/PhysRevB.102.035113

ZHANG, KOCH, AND PAVARINI

PHYSICAL REVIEW B 102, 035113 (2020)

FIG. 1. The GdFeOs-type perovskite structure [11] of LaTiOs.
The pseudocubic axes are x ~ (a+b)/2, y~(b—a)/2, z~c.
Point symmetry transformations with respect to site Ti; are ( <> )
for site Tip, (Z <> —%) for site Tis, and (X <> ), (Z < —2) for site Tiy.

to the case of the eg perovskite KCuF3;. We show that this
is mostly due to the GdFeOs;-type distortion. Remarkably,
our results show that the superexchange interaction alone
favors a very similar orbital ordering in YTiO; and LaTiOs3.
There is, however, an important difference between the two
compounds. In YTiOs;, where the GdFeOs-like distortion
is larger, the superexchange interaction cooperates with the
static crystal-field splitting in determining the orbital which is
actually occupied; the most occupied natural orbital obtained
without crystal-field splitting is very close to the one obtained
in the presence of the static crystal-field splitting and observed
experimentally. In contrast, for LaTiO3, a system with a much
smaller GdFeO;-like distortion, it substantially differs; that
is, the superexchange interaction partially competes with the
static crystal-field splitting. The conclusions are summarized
in Sec. IV. In the Appendix we present the general orbital
superexchange Hamiltonian for the #) . configuration, used in
the discussion presented in Sec. III.

II. MODEL AND METHOD

In the first step we perform local density approximation
(LDA) calculations using the full-potential linearized aug-
mented plane-wave method as implemented in the WIEN2K
code [29]. The LDA bands are shown in Fig. 2. Next, we
construct localized #,,-like Wannier functions using projectors
and, when needed, the maximal localization procedure [30].
The Wannier orbitals obtained in this way for the experimental
structures are shown in Fig. 3. Finally, we build the associated
t, Hubbard model with full local Coulomb interaction
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FIG. 2. Light gray: LDA band structure of YTiOs (left) and
LaTiOs (right). Dark lines: #,, bands from the Wannier orbitals on
top of the original LDA bands.

Here t,’;;f;l, is the LDA hopping integral from orbital m on site
i to orbital m’ on site i’. The operator C,'Tma (Cims) creates
(annihilates) an electron with spin o in Wannier state m at
site i, and nj,, = cjmacimg. The parameters U and J are the
direct and exchange screened Coulomb interactions; we use
U =5¢eV and J =0.64 eV, values which were established
in previous works [2,3,31]. As a quantum impurity solver
we adopt the generalized hybridization-expansion continuous-
time quantum Monte Carlo method [32] in the implementa-
tion presented in Ref. [8]. In order to describe the orbital-
ordering transition we adopt the approach we introduced in
Ref. [4] and used with success for several representative
e, systems [4,6,7,10]. To extend this to the case of the t2'g
configuration we define the orbital polarization (the order
parameter) as p(T') = n; — (ny + n3)/2, where n; are the oc-
cupations of the natural orbitals, ordered such that n; > n;4 ;.
In the high-temperature paraorbital phase p(7) ~ 0, while
in the 7 — O limit, i.e., well inside the orbitally ordered
phase, p(T) — 1. For the experimental structure, we find
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FIG. 3. The t),-like Wannier basis for YTiO; (top) and LaTiO3
(bottom).
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FIG. 4. Superexchange-driven orbital-ordering transition in YTiO; (left) and LaTiO;5 (right). The plots show the orbital polarization
p(T) as a function of temperature. Darker symbols correspond to lower temperatures. For each temperature, the most occupied state,
|9, @), = sin ¥ cos ¢|xz), + cos ¥ |xy), + sin ¥ sin @|yz),, is indicated on the sphere in the inset, where the two dark lines correspond to
¥ = 90° (equatorial) and ¢ = 0° (vertical). Open circles: LDA+DMFT results with full crystal-field splitting. Solid circles: results in the
zero-crystal-field splitting limit. Triangles: lowest-energy crystal-field orbital from LDA calculations for the experimental structure measured
at 2 and 293 K for YTiO; (crystal structures from Refs. [11,33]) and 8, 293, and 747 K for LaTiO; (crystal structures from Refs. [11,22]).

that the orbital polarization is close to its maximum value
already at temperatures as high as 1000 K and changes
little with temperature. In the orbitally ordered phase we
identify the most occupied natural orbital at site Ti; as
the state |, ¢) = |0, @), = sin ¥ cos p|xz); + cos ¥ |xy), +
sin ¥ sin ¢|yz),. The corresponding occupied orbitals at sites
2, 3, and 4 can be obtained using point-group symme-
tries: |9, @), = |0, 90° — @), while |?, )3 = | — ¥, ), and
|9, @)y = | — U, 90° — @),. The conclusions so far are in
line with established LDA+DMEFT results for these materials
[2,3].

In order to extract the transition temperature Txg for the
transition due to only superexchange, we calculate p(T) for
idealized structures. These are obtained by progressively de-
creasing the effects of the distortions on the on-site energies.
We already showed in the past [4,6-8,10] that this approach
reliably determines the upper bound for the critical tempera-
ture Txg, the temperature which determines the onset of the
superexchange-driven orbital-ordering transition. The results
are discussed in the next section.

III. RESULTS

The main results obtained via LDA+DMFT calculations
are shown in Figs. 4 and 5. Let us start with Fig. 4. Here we
display the order parameter p(T) and, on the sphere, the an-
gles ¥, ¢ identifying the most occupied natural orbital |, ¢).
These quantities are plotted as a function of temperature for
both YTiO3 and LaTiO;. Figure 4 shows that in the pres-
ence of crystal-field splitting (open circles) orbital ordering
p(T) ~ 1 persists until very high temperatures. This means
that, if the structure does not change, no order-to-disorder
transition occurs until basically the melting temperature. Also,
for both systems the most occupied natural orbital |, ¢) is
essentially temperature independent. This can be seen from
the positions of the open symbols on the spheres in Fig. 4.
Furthermore, |, ¢) is close to the corresponding lowest-
energy crystal-field state |9cp, ¢cr), shown in the top panels
of Fig. 5. The different orbital orderings obtained in the two
systems are in good agreement with experiments [34] and can

explain also the fact that LaTiO3, at low temperatures, orders
antiferromagnetically, while YTiO3 orders ferromagnetically
[3,8]. So far, the conclusions are similar to those for e,
materials [4,6-8]. In order to quantify the strength of the
superexchange interaction, however, we have to analyze the
results obtained in the limit of zero crystal-field splitting (solid
circles). Figure 4 shows that the superexchange transition
occurs at Tgg ~ 300 K. This is a remarkably large value given
that the titanates are 5, systems, comparable [4] to the one
for the e, system KCuF3, although still about half the value
of the more covalent system LaMnO;3 [6-8]. There is another
important result emphasized in Fig. 4. For YTiO3, well below
the transition temperature Txk, the most occupied natural
orbital |9k, ¢kk) is identified by the angles dxx ~ 60° and

&r=0

ecr=0

FIG. 5. Top: Lowest-energy crystal-field orbital at site Ti,
|9ck, @cr)- It is very close to the most occupied natural orbital in the
presence of the full static crystal-field splitting ecp. Bottom: Most
occupied natural orbital |Jkk, gkk) for idealized structure with no
static crystal-field splitting in the 7 — O limit. Left: YTiO;. Right:
LaTiO3.
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ok ~ 90°. We therefore obtain |9kx, ¢xk) ~ |Y9cF, ¢cr);
this can be seen by comparing the orbitals shown in the top
and bottom left panels of Fig. 5. For LaTiO; the situation
is quite different; the natural orbital |9gk, ki) is close to
the one we find for YTiOs, although with a slightly larger
pkk ~ 100°. It, however, differs sizably from |Ycg, @cp), with
@cr ~ 50°. This can be seen by comparing the orbitals shown
in the top and bottom right panels of Fig. 5 or solid and open
symbols on the sphere in the right panel of Fig. 4. The state
[9kk, ¢xk) also differs from predictions based on superex-
change models for the idealized cubic perovskite structure
[25,27,35-37]. As we will show later, for the ideal cubic
structure, the favored orbital in the paramagnetic phase is
approximately either %|—xz+xy+yz) ~ |55°, 135°) or one
of the states obtained using the (cubic) symmetry transforma-
tions: (¥, ¢) = (180° — &, ), (¥, ¢ — 180°), and (180° —
¥, ¢ — 180°).

In order to better understand these results, we derive the
most general superexchange Hamiltonian for the t21g configu-
ration (paramagnetic phase) and extract its parameters from
our LDA+DMEFT calculations. To this end, it is convenient to
split the superexchange interaction into its irreducible cubic
tensor components,

L S LD 3) 30 S I T
ij

ij up nr

The operator £ is the component p of the tensor operator
with rank r (in this specific case, r = 0, 1, 2); for convenience
we normalize them such that Tr(r”‘ )> = 1. The general an-
alytic expression of the Hamiltonian and the superexchange
tensor D'/ is given in the Appendix.

In the ideal cubic perovskite case, if one exclusively takes
into account the two dominant r bonds, only two orbitals are
active in each direction; we define ¢ as the associated hopping
integral, identical for all bonds. In this approximation, for two
neighboring sites along Z, labeled with i and j =i+ Z, the
superexchange Hamiltonian takes the simple form

i, j=iE2
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where T'sg = 4t>/U is the energy scale. The parameters
w;, with i =0,...,3, can be expressed in terms of the

function
C1 (&) c3
wien ) = o rm T a oy T a =300
4)
More speciﬁcally, wy = w(%, —%, 0), w;= w(%, % 0),
wy = w(O, 1 4), and w3 = w(0,0, 1). The corresponding

Hamiltonian for neighbors along the % direction is
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where s = 1. The superexchange Hamiltonian in the y direc-

tion A5/~ can be obtained from the expression for A=
by settmg s = —1. In this idealized case, under the local

constraint ny,+n+ny, = 1, the superexchange Hamiltonian
given above can be recast into a simpler form in terms of spin-
1/2 pseudospin operators [21,36,37]. For a supercell compat-
ible with the GdFeOs;-type distortion the associated classical
orbitally ordered ground state is associated with a D3, octahe-
dral distortion [25], i.e., approximately the \/%|—xz+xy+yz)
state. In the formalism just introduced, this type of ordering
arises from the terms 7 ”sz Ry =* and Ay~ =,

The general form of the 1nteract1on given in Eq 2) allows
us to go from simple models to realistic superexchange Hamil-
tonians with general hopping integrals. The full expression
for the coupling constants in Eq. (2) can be found in the
Appendix.

In Fig. 6 we show AE (¥, ¢), the classical superexchange
energy gain per cell for orbital ordering compatible with the
space group of the titanates. It is defined as

1 nii y
v 2 (Wil i) -E). ©

j>i

AE(W, ¢)=

where |\Ilgo) |9, 9)ilY, @); and the energy zero E0 is the
superexchange energy for the paraorbital state. The terms of
Hamiltonian (2) which can give rise to an orbital-ordering
transition are those which are quadratic in the operators
with rank r > 0. The linear terms instead yield an orbital
Zeeman effect [10], and their contributions cancel out in the
ideal cubic limit; this can be seen by comparing the top and
bottom right panels of Fig. 6. Figure 6 also shows that in
the cubic perovskite limit the superexchange energy gain for
a classical orbitally ordered state AE (¥, ¢) is, as expected,
very small even for the optimal angles. This is because all
superexchange terms except the one arising from £>*£7% are
either frustrated or cancel out (see the Appendix for details),
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FIG. 6. Superexchange total energy gain AE (¢, ¢) for a classi-
cal orbitally ordered ground state compatible with the GdFeO;-type
distortion. The energy zero is the energy of the paraorbital state. In
each panel, the different lines correspond to the values of ¢ specified
in the top right panel. Top: all superexchange terms. Bottom: only
quadratic terms. Left: YTiO;. Middle: LaTiO;. Right: For compari-
son, we show the result for the cubic case. We chose ¢ ~ 150 meV,
which is a value representative for LaTiO; and YTiO;, see Table 1.
Black lines: ¢ values that yield the energy minimum, indicated
in each case. The results are invariant under the transformation
(0, ¢) — (180° — ¥, ¢ — 180°); hence, we show only results for ¢
and ¢ between 0° and 180°. In the cubic limit an additional symmetry
is present, (¥, ¢) — (180° — &, ).

so that
Wo

AE(I?, (p) 211)2 — W1 2 w3 —
- 14 3cos20)24 B0
2lsp aq (I 3cos20)+ ——

1
X |:sin2 29 sin 2¢ + Z(l — CosS 219)2 sin? 2@]. (7)

Furthermore, it has been pointed out that in such a limit quan-
tum fluctuations might even completely prevent ordering at
finite temperature [38]. These considerations are completely
in line with known results for the pseudospin-1/2 model
[21,22,25,35-37].

In the presence of the GdFeOs-type distortion, however,
the hopping integrals couple different orbitals, and the simple
pseudospin-1/2 picture no longer applies in general. Earlier
modelizations for the magnetic phase [27,28,35,39] already
showed that the GdFeOs-type distortion can introduce new su-
perexchange paths, e.g., in a simple tight-binding description,
via the coupling of atomic e, and #,, states, thus influencing
spin-orbital ordering phenomena. Thanks to the general su-
perexchange Hamiltonian, Eq. (2), and the realistic estimates
of the superexchange parameters obtained in this work via the

TABLE I. Hopping integrals —t;f;?/ /meV from site i of type Ti;
to site i’ = i + [x + my + nz of type Ti, or Ti;. YTiOs, LaTiO3, and
the ideal cubic limit are given from left to right. In the notation
adopted, the (xz, yz, xy) Wannier basis changes from site to site due
to symmetries. Point symmetry transformations with respect to site
Ti; are (X < ¥) for Ti, and (Z < —2) for Tis.

YTiO3 LaTiO3 Cubic

Imn Imn Imn
m; m, 001 010 100 001 010 100 001 010 100
xy; xyz =5 —151 —151 —16 —174 —174 0 —t —t
xzy xzp 162 —43 —-43 198 -39 -39 —«+ 0 O
yzi yzr 46 63 63 180 77 77 -t 0 O
xy; xzzy 82 —64 70 51 —60 73 0o 0 o0
xzp xyr 82 70 —64 51 73 —60 0o 0 o0
xy; yzz —66 —18 —-50 —-61 —-29 -39 0O 0 O
yz; xyr —66 =50 —18 —-61 -39 =29 0O 0 o0
xzy yzr 13 30 —182 52 12 —176 0 0 —t
yzi xzy 13 —182 30 52 —176 12 0 —r O

expressions given in the Appendix, we can now quantify this
effect and specify its nature. Furthermore, this can be done
specifically for the paramagnetic phase, the one relevant for
unraveling the role of the superexchange interaction in the
genesis of orbital ordering at the temperatures where it sets in.

In the left and middle panels of Fig. 6 we show AE (¥, ¢)
for realistic hopping integrals; the values of the latter can
be found in Table I. The top panels show the total energy
gain, and the bottom panels show the contribution of only the
quadratic terms, those that can give rise to a phase transition.
The angles 9y, ¢y that maximize the energy gain, yield-
ing AE (U, p) = AEy, are basically the same with and
without linear terms. Furthermore, $y; and ¢y are in accord
with Yxk and ¢k obtained in LDA+DMFT calculations.
The energy gain at the optimal angles is AEy ~ 40 meV,
also in line with the critical temperature of about 300 K
obtained in LDA+DMFT calculations, taking into account
that AEy is overestimated due to the neglected dynamical
quantum effects. This energy gain is about 5 times larger than
the corresponding result in the cubic limit (right panels). By
analyzing these results we find that it is the off-diagonal hop-
ping integrals that enhance the superexchange energy gain,
favoring a Jahn-Teller-like natural orbital with kg ~ 90°
over the %I — Xz 4+ xy 4 yz) natural orbital with pgg = 135°.
The superexchange terms that turn out to contribute most,

in addition to %iz’“sz’“, are fjl’zfz’“ and %j]*z%jl"‘, as well as

%iz’”f.l’x. This can be understood from Table 1, which shows
the changes in hopping integrals with respect to the cubic
limit, and Tables II and III, which show the superexchange
tensor elements as a function of the hopping integrals. This
conclusion applies to both LaTiO3 and YTiO3, with the angle
@kk being slightly smaller than 90° in the case of YTiO3; and
slightly larger for LaTiO3. Figures 5 and 6, however, also
emphasize the main difference between YTiO3; and LaTiOs:
while superexchange effects are rather similar in the two
systems, in YTiO3; they reinforce the effect of the static
crystal-field splitting. Instead, in LaTiO3, which has a smaller

GdFeOs;-type distortion, they partially compete with it.
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TABLE II. Tensor elements different from zero in the

case in which the hopping integrals are only diagonal.

;o ij /o, ij
ru rp Drp.,r’p.’ ru T D”‘-”/M’
4 witdwy .2 2 2 4 2wp—wy (.2 2
0s 0s 3 0 Wttty y) Lz 1z T ety
2 2 4 2wy —w; 2 2 2 4 wi+wy 2 2
2z 2z +7 5t (g Tyt 1) 0s 1z ~T % (1 e ye)
2 4 witwy 2 2 2 2 4 2wp—wy (.2 2
0s 2z ~U 3 (fz ez ye =2 ) 1z 2z +o5A (e y2)
4 wi— 4 wot
1x Ix +7 w (FrexzHyzye xyay ly ly +5 % (FrenzHyzye xyxy
4 w3— 4 wot
2 Xz 2 Xz +U = zwo (txz,xz+tyz,yz )txy,xy 2 yz 2 yz +U wozug (txz,xz+t)rz.)'z )txy,xy
2 2 2 2 8 — W 8 +
2x -y 2x -y +U = 211.0 txz,xztyz.yz 2 Xy 2 Xy +U w02W3 txz,xztyz.yz
4 wi—w 4 wot
1x 2 xz +3 w3 2uo (frz,xz—tyz,y My xy 1y 2 xz +3 % Bz vz —tyzy My xy

Summarizing, in both LaTiO3 and YTiO3, our results show
that pure superexchange effects leading to orbital ordering are
much larger than expected from idealized cubic perovskite
models. Still, the upper limit for the superexchange critical
temperature, although large, is, at most, Txx ~ 300 K. Orbital
order at higher temperature can thus be ascribed only to the
presence of a static crystal-field splitting. In this respect, a sys-
tematic experimental study of the evolution of distortions with
increasing temperature well above 300 K would be essential to
finally settle the question of the role of superexchange in the
genesis of orbital ordering. Some high-temperature data are
available for LaTiO3. They indicate that all distortions (Jahn-
Teller, tilting and rotation angles, and the D3, distortions)
either remain unchanged or slightly decrease with increasing
temperature. The available structural data have been obtained
with different techniques [11,22,33], and their accuracy might

not be directly comparable; nevertheless, based on them, we
find that the lowest-energy LDA crystal-field orbital does not
change much with increasing temperature. The corresponding
LDA+DMEFT results are shown in Fig. 4. This indicates that
orbital ordering stays almost unchanged well above 300 K. If
this is experimentally confirmed in both materials, it would
show that the superexchange interaction, although unexpect-
edly strong, cannot drive orbital-order alone in the titanates.
This conclusion would then be close to the one we previously
obtained for LaMnO; and KCuF; and other representative
e, cases [4,6-10]. It is reinforced by the fact that, while the
superexchange interaction appears to cooperate with crystal-
field effects in YTiO;, in LaTiOs; it partially competes with
them, with both being orbitally ordered. Finally, the fact
that the classical superexchange energy gain for static orbital
ordering is enhanced by about a factor of 5 in the presence

TABLE III. Additional quadratic (r # 0, ' # 0) and linear terms (r = 0, r’ # 0) present if the off-diagonal hopping integrals are nonzero.
Only relevant contributions are listed; here we assume for simplicity that the hopping integrals are real, as in the case considered in this paper.

ru o Di{w’/ﬂ
1z 1z —%zwz% (7 )
12 22 R T vl LN A G )
272 27 +% 211*2% [txzz,yz + I)gz,xz - 2(tx2z,xy+tx2yvxz +t,3:,xy+txzyy.\'z)+4txzy,xy]
1z 1x +% MH;# [Erzxe oz y zny — (yzne sy )z ay]
1z 2 xz %w% [tz e —tazy ey — (yzxe—tyzy vz xy]
1z 2 x2—y? A BRI (f ot e — Bzaalyye)
222 1x i PRI [ (1 Aty e+ (e ey ey — 20 ]
22z2 2 xz -‘r% wﬂ [(Feeve—trzy Mazy + (e bz y Myzxy — 2(Eeye—layye Moayry ]
222 2 32—y 3 B (1, ibirye + Dby — Lbeyactiye)
1x 1x 5B [(fz ey My + (eznyHyzony ) ey gy
1x 2xz 5 B (e e ayory + ey ey (Cayoxz—Tapyz)]
2 xz 2 xz —% BT [(tezyeHyz e My — (ezoy—tyzory) (Fry ez —Hryyz)]
2x%—y? 2x2—y? +5 95 f ety
1x 2 x? —y2 +% w;:/lzfo [z xottyr x xyyz + (Gezyz iz y2 My ]
2 xz 2 x2—y? g w;j/g"’ [tz e —tyzx ayyz F (tezye—tyzye Mayxz ]
0s 1x —% Wrw;% [Fezxe ez y azny + Gz xa iz y tyzay + Gz ]
0s lz - % % (Z&XZ—FI)?)X., _txzz,yz _txzyvyz)
0s 2 xz —% W [Fezxe =tz y ezny + Gz =tz y yzxy + Gz —eyy My
Os 2 x? —y2 —g W bz, xzbazyz Hyz xalyz,ye Ty azbayyz)
Os 27 _% w;j%}z (t)?z,xz+lfy,xz+[xz,yz+tﬁwz_Zt.rzz,)r)'_ztfz,xy)
035113-6



ORIGIN OF ORBITAL ORDERING IN YTiO; AND ...

PHYSICAL REVIEW B 102, 035113 (2020)

of the GdFeOs-type distortion so that Txg 1is, surprisingly,
about as large as in KCuFj3 supports the view that processes
involving dynamical orbital fluctuations are not likely to play
arole in determining the orbital physics of either system.

IV. CONCLUSIONS

We have studied the role of superexchange in the origin
of orbital ordering in representative f,, materials, YTiO3 and
LaTiO3. We adopted an approach that we previously estab-
lished and successfully used for e, systems [4,6-8]. We find
that the superexchange transition temperature is, surprisingly,
as large as in the case of KCuF3, a paradigmatic e, orbitally
ordered material. We show it is strongly enhanced by the
GdFeO;-type distortion. While in the case of YTiO; the
superexchange most occupied orbital |dxk, ¢kk) is similar
to the lowest-energy crystal-field state |Jcp, ¢cp), in LaTiO3
they differ substantially. This indicates that in YTiO3 lattice
distortions reinforce superexchange effects, while in the case
of LaTiO3 the two effects compete. High-temperature struc-
tural data are, to the best of our knowledge, available for
only LaTiO3 so far. They indicate no substantial change in
the occupied orbital up to 700 K, i.e., well above Txk. Orbital
ordering persisting until that temperature cannot be explained
by the superexchange mechanism alone and needs the explicit
presence of static crystal-field splitting. This conclusion is
reinforced by the fact that in LaTiOs; the superexchange
most occupied natural orbital differs substantially from the
experimental one.
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APPENDIX: ORBITAL SUPEREXCHANGE
FOR t}, SYSTEMS

Here we give the general form of the superexchange in-
teraction, expressed as a function of orbital irreducible cubic
tensor operators %" of rank r =0, I, 2, with components

H=—-I...,F,

HSE__ZZZ%WDNHMA;#'

ij pu rnr

(AD)

We obtain the superexchange Hamiltonian from second-order
perturbation theory and project it into its irreducible tensor
components. For convenience we chose the normalization
of the tensor operators such that Tr("*)> = 1 and split the
expression of the tensor elements appearing in Eq. (Al) in
two terms,

DY =B T Colr (A2)
The first term is
BY .=-2Y( a|f’”|c)(b|f’“|d> "U Lb

abcd

X [wi (804 8,0) + wo(2 — 80— 8,0,
(A3)

and the second is

ij
Cru,r’u’
_ AT ar
= —4) (alt/"e)(d|t] " |b)
acbd
o YRS
tc mlta m tml,btml,d
Z w'r',Os + aur,Os
o U
ij i
Loalab

[mww+%w+3a—%wwmﬂ}
(Ad)

where a,b,c,d are tp, states. The parameters w;, with
i=0,...,3, can be expressed as wy = w(%, —1.0), wy =
w(3, 3,0) wy = w(O, 1 4), and w3 = w(0, 0, 1), where
C1 2 C3

+ + .
1+2J/U 1-J/U 1-3J/U
In the special case of diagonal hopping integrals the only
terms which are nonzero are those given in Table II. For bonds
in the % direction we thus have, for j =i £ X,

w(cy, ¢z, ¢3) = (AS)

2
yij 4( Xz xz+tx} xy) wi+4w; fO,sAO,s

SE = U 3 i L
2
4txz,xz 2wy —w) %l,zfl,z
U 2
4( Xz xz+4txyxy) 2w2—w1 ~2.22 22,7
U 6
2
4(2t XZXZ) w1+w2( OsAZZ +T212A0,s)

+ Xy,Xy
U 3.2
2t2  2wy—w
+ s, xz,x7 4W2 1
TN
4tx2z,xz wi+ws (

Sx
Uu e

Az xzbry.xy W3—Wo -
,Xzbxy,xy (Al_xfl,x_’_i_?,xzf'lxe)
U 2

i

~1,222,22 | 2722412
(858" +177 1)

20,521,z 1,z20,s
— T T )

i vj i J

Az xzbry,xy W3—Wo A2xz2a01,x | alxa2xz
Sx (2758 48,2 0)
U 2 J J

4txz,xztxy,xy w3+wo ( 1 yAl y_I_AZ yzAZ) )
U 2

4txz,xztxy,xy w3+wWo /1 yA2 vz | A2 Vi aLy
sl WAEUD (3103207 52075 12). - (6)

X
where s, = 1. The superexchange Hamiltonian Hé’é:’ﬂ can
be obtained using symmetries, i.e., by exchanging in the
prefactors x <> y and setting s, = —s,. Next, we define p,.,, =
A0, <p|fl.r’“ |, @);. The relevant nonzero terms are, for i corre-
sponding to site Ti; (see Fig. 1),

pre = (1 = cos28) cos 2¢/2v/2, (A7)
P1.x = sin 29 (cos ¢ + sing)/2, (A8)
pa2 = —(1 4 3cos20)/2/6, (A9)
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D2x; = sin2v(cos ¢ — sing)/2, (A10)

Prey = (1 —cos 209) sin 2¢/2/2.

If only diagonal hopping integrals are present, the classical
energy associated with orbital order compatible with the
space group of the titanates is thus AE (¢, ¢) = AEp(?, @) +
AE; (U, ¢), where the quadratic term is

4(t% A1y A ) 2w —wy

AEQ(ﬁ" (P) = i }%l}))z 3 2,72

4(txz,xz+tyz,yz )txy,xy w3—wo , » >
U 2 ( l,x_pz,xz)
Stxz,xztyz,yz w3—wo ,
U 2 Pawy
2 2
4(txz,xz_tyz,yz) 2wy —wy 1D
_ 1:D2.22
U ﬁ P2,z
8(txz,xz_tyz,yz )txy,xy w3+wo
U 2

(A11)

pl,po,xza

(A12)

and the linear term is

16 l)? . +l; —2l§ ) witws
A0 = — (e i o) T
S(tzz z_tg ) wi+w;
4 K . (A13)
U 13 Pi.z

In the cubic limit, in which all nonzero hopping integrals are
identical, all linear and some of the quadratic terms cancel,
and this further simplifies to

AE(D, ¢) 2
Ty Cwr—w1)p;

W3—wo , »

+— (Pl,x_p%,xz_'_pgvxzﬂ’z)’

5 (A14)

_ 4 . : pi A
Where Isg = 7. Hence, in this case, only the %, %, term
yields an actual energy gain.
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