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We apply a stochastic version of an optimally tuned range-separated hybrid functional to provide insight on
the electronic properties of P- and B-doped Si nanocrystals of experimentally relevant sizes. We show that we
can use the range-separation parameter for undoped systems to calculate accurate results for dopant activation
energies. We apply this strategy for tuning functionals to study doped nanocrystals up to 2.5 nm in diameter
at the hybrid functional level. In this confinement regime, the P and B dopants have large activation energies
and have strongly localized states that lie deep within the energy gaps. Structural relaxation plays a greater role
for B-substituted dopants and contributes to the increase in activation energy when the B dopant is near the
nanocrystal surface.
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I. INTRODUCTION

Understanding the properties of dopants in semiconductor
nanostructures is a crucial issue for technological applica-
tions since it is often the dopants that functionalize a device
and control its desired properties [1–7]. In particular, doped
silicon quantum dots have shown promise in photovoltaic
and photonic applications due to their size tunability and
processability [8–10]. A key dopant property is its activation
energy, which often behaves differently in the nanoscale. For
example, when P (phosphorus) and B (boron) dopants are
introduced to bulk Si, they create shallow impurity states that
can act as donors/acceptors of charge carriers. However, in
nanocrystals such dopant impurities become deep states due
to quantum confinement and dielectric mismatch.

Numerous tools are available to describe dopant properties
for extended systems with periodic boundary conditions in a
supercell. The state-of-the-art approach is based on a com-
bination of density functional theory (DFT) with many-body
perturbation theory (MBPT), typically within the so-called
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“GW” approximation [11,12]. However, the application of the
GW method to large confined systems such as nanocrystals is
limited by the steep scaling and the slow convergence with
respect to empty states [13]. Furthermore, the description
of optical excitations requires the use of the Bethe-Salpeter
equation (BSE), which scales even steeper with system size,
limiting its application to small systems.

In recent years, we have developed a set of stochastic
orbital techniques [14–26] which significantly reduce the
scaling and computational costs of both the GW and BSE
approaches by introducing a controlled statistical error in the
calculated observables. This enables the application of both
methods to extremely large, experimentally relevant system
sizes containing thousands of electrons [18,21,22]. Some
applications, such as those involving linear response time-
dependent DFT for optical excitations [21,27,28], require
the use of a quasiparticle model Hamiltonian, which is not
available through the GW method.

Density functional theory has been a major tool for quasi-
particle electronic structure calculations, but its local and
semilocal approximations poorly predict electronic proper-
ties such as the fundamental gaps, ionization energies, and
electron affinities. This is especially a problem for dopant
properties since local approximations can erroneously predict
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shallow dopant levels when they are in fact deep [29–31].
Optimally tuned range-separated hybrid (OT-RSH) function-
als offer a solution to this problem [32,33]. Specifically, the
optimally tuned Baer-Neuhauser-Livshits (BNL) functional
[32,34] has been shown to provide an accurate description
of the fundamental band gaps for molecules, nanocrystals,
and bulk materials [35–37]. One of the major strengths of
this approach [38] is that it can be tuned to the system
of interest based on a physical constraint, avoiding the use
of empirical fitting parameters that might not reproduce the
correct physics. In fact, it has been suggested that hybrid
functionals tuned to physical constraints give some of the
most reliable electron densities within DFT [39].

One of the questions in applying OT-RSH functionals to
study dopant properties is this: How do we tune the functional
to correctly calculate dopant energies and at the same time
maintain accuracy in describing the band structure? Often-
times, we want to study many different dopant types and
locations. Here, the system-specific tunability that is one of
OT-RSH’s strengths becomes a liability. Having to repeat the
tuning procedure for every dopant structure would quickly
become cumbersome and resource intensive.

In this paper, we apply a stochastic formulation of the
optimally tuned BNL range-separated hybrid functional [20]
to study dopant properties in silicon nanocrystals of up to
1600 electrons. We show that the range-separation parameter
for undoped systems also gives accurate results for dopant
activation energies. We thus provide a strategy for tuning
functionals for doped systems. This strategy may be general-
izable for many different dopant types and positions within the
nanocrystal. We demonstrate the usefulness of this strategy in
conjunction with stochastic techniques to provide insight on
dopant properties for nanocrystals of experimentally relevant
sizes.

II. THEORY AND COMPUTATIONAL DETAILS

We summarize the main points in the theory of optimally
tuned range-separated hybrid functionals and its stochastic
formulation. Consider a zero-temperature ensemble for a sys-
tem with an average number of electrons equal to N − x,
where N is an integer and x ∈ (0, 1). For this system, the
energy curve E (N − x) should be linear in x, so the slope
is equal to the negative of the ionization energy, i.e., to
E (N ) − E (N − 1). A similar condition holds for E (N + x)
which should be linear in x with a slope equal to the negative
of the electron affinity, E (N + 1) − E (N ).

In exact Kohn-Sham (KS) DFT the ionization energy cor-
responds to the negative of the highest occupied molecular
orbital (HOMO) energy. Thus, the line E (N − x) should have
a slope equal to the HOMO energy of the N electron system,
and the line E (N + x) should have a slope of the HOMO for
the N + 1 system. That is, in KS-DFT the lowest unoccupied
molecular orbital (LUMO) of the N electron system is not
equal to the HOMO of the N + 1 system. The difference is due
to the derivative discontinuity in the exchange-correlation en-
ergy functional as the number of electrons goes from slightly
below N to slightly above it [40–44]. This behavior of the
exact KS functional is not reproduced correctly by local or
semilocal KS functionals, such as local density approximation

(LDA) and the various types of generalized gradient approx-
imations (GGAs) where the functional exhibits no derivative
discontinuity. To compensate for the lack of derivative discon-
tinuity, the energy E (N ± x) becomes nonlinear [45].

One way to account for this lack and for the nonlinearity
in E (N ± x) is to use optimally tuned range-separated hybrid
functionals within the generalized Kohn-Sham DFT (GKS-
DFT) [32,33,37]. Specifically, we employ the range-separated
hybrid functional following the proposal by Savin to use full
exchange at long distances [34,46–48]. The exchange term is
divided into long- and short-range components,

1

r
= erf(γ r)

r
+ erfc(γ r)

r
, (1)

where γ is the range-separation parameter that controls the
distance upon which the potential is switched from long
to short range, erf(x) is the error function, and erfc(x) is
the complimentary error function. The long-range term is
calculated explicitly through a Fock-like exchange operator
while the short-range term is approximated by a screened local
exchange functional.

This hybrid construction is attractive because it maintains
the correct long-range asymptotic behavior, decaying as 1/r,
whereas local exchange functionals are known to decay too
rapidly. This property allows a full fraction of exact exchange
to cancel out the long-range self-interaction error in the
Hartree energy part of the DFT functional. A complication
is that the range-separation parameter γ is in principle a
functional of the density that we currently do not know how
to construct. This is where the approach of optimally tuning
becomes useful [32,33].

The tuning of γ imposes a physical constraint to the
system instead of relying on universal or empirical fittings.
The physical constraint ensures that it satisfies the linearity
of the ensemble energy E (N ± x) with a fractional number of
electrons x. Since by Janak’s theorem [49] the energy slope is
equal to the orbital energy, the constant slope requirement is
equivalent to

∂εH/L

∂ fH/L
= 0, (2)

where εH/L refers to the HOMO or LUMO orbital energy
and fH/L is its occupancy. Hence, the approach explicitly
constructs a GKS functional such that the ionization potential
(IP) corresponds to the HOMO and the electron affinity (EA)
to the LUMO as closely as possible, meaning the functional
should be able to accurately describe fundamental band gaps.
In many cases, this approach works well and can predict
fundamental gaps close to experiment and to MBPT methods
for various atomic and molecular systems [35,36], as well
as Rydberg [33] and charge-transfer excitations [within time-
dependent density functional theory (TDDFT)] [37,50].

Dopant activation energies are calculated similar to fun-
damental gaps. For electron donors, the activation energy is
defined as the energy difference to ionize the dopant and
place the electron back into the undoped structure. For ac-
ceptors, it is the difference to remove an electron from the
undoped structure and place it back into the acceptor level. To
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summarize,

Eact = IPd − EAu (donor),
(3)

Eact = IPu − EAd (acceptor),

where the subscripts d and u refer to the doped or undoped
structures. We can ensure the dopant IPs and EAs are calcu-
lated correctly by tuning the functionals to the dopant levels
explicitly. However, repeating the tuning procedure becomes
costly, especially since one often wants to examine many
different dopant types at different dopant locations. One of
the key findings of the paper is that we can bypass this tuning
step and simply use γ for the undoped structure in the spirit
of using one constant γ for the fundamental gap. In this case,
the dopant can be viewed as a perturbation to the electronic
structure of the undoped system and does not significantly
affect its electronic environment.

A roadblock to using hybrid functionals is that they are
much more expensive to use than local multiplicative func-
tionals such as the LDA since they involve the explicit calcula-
tion of the orbital-dependent exchange energy. In a “determin-
istic” (nonstochastic) calculation, the long-range exchange
operator is given by the expression

K̂ lr
x [ψi(r)] = −

Nocc∑
j=1

ψ j (r)
∫

dr′ψ∗
j (r′)ψi(r′)V γ

c (|r − r′|),

(4)
where V γ

c (|r|) is the long-range screened Coulomb potential
governed by the range parameter γ . The computation of
this exchange term roughly scales quadratically as NoccNgrid,
where Nocc is the number of occupied states and Ngrid is the
size of the basis set (the number of real-space grid points),
both of which increase with system size. In a typical hybrid
functional application, this exchange term takes up the over-
whelming majority of the total computation time.

Stochastic techniques have been developed to overcome
the deterministic scaling limit to make hybrid functional cal-
culations tractable for large systems [20]. Using a technique
called stochastic resolution of the identity, we can decouple
the r and r′ indices in Eq. (4). We introduce a stochastic orbital
ξ (r) that assigns a random sign to each real-space grid point
(dV is the volume per grid point),

ξ (r) = 〈r|ξ 〉 = ± 1√
dV

. (5)

We define

η(r) =
Nocc∑
j=1

ψi(r)〈ψi|ξ 〉, (6)

which is the stochastic orbital projected on to the occupied
space spanned by ψi∈occ(r). Similarly, we can write the
Coulomb potential in a stochastic representation as

ζ (r) = 1

(2π )3

∫
dG

√
Ṽ γ

c (G)eiϕ(G)eiG·r,

where Ṽ γ
c (G) is the Fourier transform of V γ

c (|r|) and ϕ(G)
is a random phase between [0, 2π ]. Now we can rewrite the
exchange term in Eq. (4) as an average (〈· · · 〉ξ,ϕ) over the

stochastic orbitals,

K̂ lr
x [ψi(r)] = −

〈
η(r)ζ (r)

∫
dr′ζ ∗(r′)η∗(r′)ψi(r′)

〉
ξ,ϕ

.

Defining the product of stochastic orbitals χ (r) = ζ (r)η(r),
we simplify the above expression to

K̂ lr
x [ψi(r)] = − 1

Nsto

Nsto∑
χ=1

χ (r)〈χ |ψi〉. (7)

The scaling for the exchange becomes NstoNgrid, where Nsto

is the number of stochastic orbitals. If Nsto goes to infinity,
we recover the deterministic result in Eq. (4) exactly. In this
sense, Nsto becomes another convergence parameter that we
control at the cost of introducing statistical error. Remarkably,
we find that Nsto is often independent of system size or can
even decrease with system size (see the Results section and
Ref. [20] for details), so the scaling for applying the stochastic
exact exchange operator becomes quasilinear.

We implemented the stochastic BNL functional into a
plane-wave DFT code to calculate quasiparticle spectra and
fundamental gaps for H-passivated Si nanocrystals ranging
from 1 to 2.5 nm in diameter, containing up to Ne ≈ 1600
electrons. We tune the range separation parameter γ for each
nanocrystal size based on the physical constraint described
above. We used a kinetic energy cutoff of 40 Ry for the
density, which converges band gaps to within 0.1 eV. We treat
the divergent G = 0 term in the exchange energy using the
Gygi-Baldereschi method [51]. Structural relaxations were
performed with QUANTUM ESPRESSO with the LDA functional
[52,53]. For additional computational details, see the Supple-
mental Material [20,49,52–57].

III. RESULTS

Using optimized γ ’s obtained from the tuning proce-
dure, in Fig. 1 we compare quasiparticle (QP) gaps for Si
nanocrystals (NCs) of different sizes obtained by different
theoretical methods. The agreement between stochastic BNL
(sBNL) and stochastic GW (sGW) [18,22–24] is remarkable
whereas LDA significantly underestimates the gap. We note
that γ decreases nearly linearly with system size (see the
inset in Fig. 1) [20,35]. As system size increases, orbitals
become more delocalized, and the exchange energy becomes
better approximated by semilocal functionals [37,59]. With a
smaller γ , the fraction of stochastic exact exchange mixed into
the functional becomes smaller. Therefore, for larger system
sizes, we can use fewer stochastic orbitals to converge the
exchange energy to within an acceptable statistical error (see
Supplemental Material [54]), leading to the favorable scaling
for sBNL. Note that the RSH tuning procedure used for
NCs is not applicable to bulk systems. The behavior of RSH
functionals approaching the bulk limit has been discussed in
other studies [59–61].

Next, we show that γ ’s tuned for the undoped structures
give reasonable results for doped system properties. We test a
P-substituted dopant for an electron donor, and a B-substituted
dopant for an electron acceptor in two dopant locations:
One at the center of the nanocrystal, and another near the
nanocrystal surface. For the surface dopant, we substitute a
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FIG. 1. QP gap comparisons for Si NCs ranging from 1 to 2.5
nm. The sGW results are from Ref. [20]. The dashed lines show the
bulk values for BNL and LDA. Inset: The values of γ at different NC
sizes are best fit to the line 0.403N−1/3

Si . The dashed line shows the
reverse-engineered value of γ that reproduces the experimental bulk
value for Si [58].

four-coordinated Si atom as far from the center as possible.
We relax the doped structures in all cases.

In Table I we show tuning comparisons for the smallest
(D = 1 nm) nanocrystal. For this system, we repeat the tuning
procedure to optimize γ ’s for each of the doped structures
(Fig. 2). This ensures that the physical constraint for the
tuning applies directly to the dopant level itself. When tuning
the P-doped structures (donors), we remove a small partial
charge (+0.05e) from the HOMO; when tuning the B-doped
structures (acceptors), we add a partial charge (−0.05e) to
the LUMO. We plot how much the dopant energies change
when using γ ’s tuned specifically for the doped structures
compared to undoped system γ . We find the change to be neg-
ligible, the largest difference being 32 meV. This difference is
smaller than the change in the undoped structure energy gap
(38 meV) when using one γ for the HOMO and LUMO. We
conclude that we can also use one γ (the undoped value) to
calculate accurate dopant energies. This strategy likely holds
for any four-coordinated dopant location, from the center of
the crystal to the surface. To test the validity of the tuning
strategy for larger nanocrystal sizes, we repeat the procedure
for the D = 1.4 nm nanocrystal (Fig. 2). We find that the
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FIG. 2. Tuning γ for the undoped and doped structures in the
D = 1.0 nm and D = 1.4 nm NCs. The optimal γ values are given
by the intersect with the y axis (dotted line). Upper panel: A partial
charge is removed from the HOMO, which is the dopant level for a P
donor. Lower panel: A partial charge is added to the LUMO, which
is the dopant level for a B acceptor.

optimized γ for the undoped structure is extremely similar to
the doped structure γ ’s, as in the D = 1 nm case. We expect
this behavior to continue holding for the larger nanocrystal
sizes.

In Fig. 3 we plot the dopant activation energies, ionization
energies, and electron affinities for all nanocrystal sizes. For
electron donors such as P, we calculate the activation energy
as Eact = IPd − EAu; for acceptors such as B, we calculate
the energy as Eact = IPu − EAd , where the subscripts d and
u refer to the doped or undoped structures. In delta self-
consistent field (�SCF), we obtained the IP and EA from
total energy differences of charged (+1e or −1e) and neutral
calculations. In the sBNL and sGW calculations, we obtained
the IP and EA from the negative of the corresponding HOMO
and LUMO eigenvalue energies (for sBNL) and associated
quasiparticle energies (for sGW, see below).

For the sGW calculations, we obtained good agreement
with sBNL on the smallest cluster (D = 1 nm) with the GW0

energies based on an LDA starting point and with the G0

energies self-consistently iterated [62]. For the larger doped
clusters, the LDA results become essentially metallic, so the
GW0 energies are not reliable. Using starting points from
other local or semilocal functionals [Perdew-Burke-Ernzerhof

TABLE I. Tuning comparisons for the D = 1 nm nanocrystal. γ ’s are in units of a−1
0 and energies in eV. The difference shown is �E =

E (γ = 0.125) − E (γ ).

System Optimized γ Energy level Energy level Difference
at γ at γ = 0.125 �E

Undoped (HOMO) 0.125 N/A N/A N/A
Undoped (LUMO) 0.120 −1.351 −1.313 0.038
P (center) 0.117 −4.355 −4.387 −0.032
P (surface) 0.119 −4.336 −4.360 −0.024
B (center) 0.120 −4.478 −4.462 0.016
B (surface) 0.123 −4.182 −4.173 0.009
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panels) and B (lower panels) substituted at the center (left panels)
and surface (right panels). Component IPs and EAs are also shown.
The plotted �SCF results were performed with the LDA functional.

(PBE) or even the strongly constrained and appropriately
normed (SCAN) meta-GGA functional [63]] did not improve
results. Future studies should examine sGW for dopant ener-
gies based on a better starting point, perhaps from the BNL
itself.

As a representative data set, Table II compares dopant acti-
vation energies calculated using different theoretical methods
for the D = 1 nm nanocrystal. As expected, LDA performs
poorly, erroneously predicting the dopant level to be nearly
shallow. We find that sGW tends to predict deeper energy
states than sBNL (seen by the larger IPs and EAs), but the
activation energies calculated from the difference of these
states agree well with sBNL. Similar energy shifts have been
observed in other comparative studies [20,35,36], where in
some cases the BNL functional agrees with IPs from exper-
iment better than GW [36]. Interestingly, we find that �SCF
(over LDA and BNL) gives almost identical results to sBNL.
�SCF seems to work particularly well when the added (or
removed) charge is in a strongly localized state (the IPd in
the P-doped system and the EAd in the B-doped system agree
remarkably well with sBNL).

In the size regime tested (D = 1–2.5 nm), the defect states
from the P and B dopants are strongly localized, which can be
observed in their charge density plots (Fig. 4). As a result,
the defect states lie deep in the gap, reflecting their large

FIG. 4. Charge densities for dopant level in D = 1.4 nm
nanocrystal for (left to right) P center, P surface, B center, and B
surface configurations. The isosurface is plotted at 20%–25% of the
maximum value.

(�1 eV) activation energies (the activation energies for P and
B dopants in bulk are around 0.045 eV) [64]. This also leads to
an IP that is roughly independent of NC size for the P-doped
system and to an EA that is roughly independent of NC size
for the B-doped system, consistent with previous theoretical
and experimental studies [65–69].

For the P dopant, when P is in the center of the crystal,
the IP hardly changes with nanocrystal size (the red line that
tracks the IPd trend is nearly flat). This can be attributed
to the strong electron-impurity interaction in the confined
system that gives rise to the localized defect state [65]. The
size dependence of the activation energy is therefore almost
entirely due to the confinement of the LUMO in the undoped
system. We note a tendency for the activation energy to
decrease slightly when the dopant moves to the surface. A
possible explanation for this is when the dopant is placed near
the surface, its wave function becomes more distorted and
less symmetrical, reducing its Coulomb binding energy and
therefore its IPd . Calculated and experimentally measured val-
ues of the hyperfine splitting parameter in P-doped structures
support this interpretation [66,70].

The B dopants can be interpreted with a similar analysis.
Because the dopant level is also localized and does not vary
much with crystal size, the trend in the activation energy is
mostly governed by the confinement of the IPu in the undoped
system. However, structural relaxation plays a greater role
due to the smaller size of the B atom (see Ref. [1] and
Supplemental Material [54]). Activation energies for the B
dopants tend to be higher when the dopant is near the surface.
This likely comes about due to structural relaxation effects
and spin splitting. Spin splitting occurs because the bond
lengths to the neighboring Si atoms are not evenly distributed
around the dopant atom. When B is in the center, its bonds
to the neighboring Si atoms are almost equivalent. When B is
near the surface, the bonds to the outer Si atoms contract more
than the bonds to the inner Si atoms. This uneven distribution
contributes to increased spin splitting which raises the energy

TABLE II. Method comparisons for dopant activation energies (eV) in a D = 1 nm crystal. Differences are taken with respect to sBNL.

P (center) B (center)

Method IPd EAu Eact Diff. IPu EAd Eact Diff.

sBNL 4.292 1.296 2.996 0.000 7.711 4.323 3.387 0.000
sGW 4.498 1.785 2.713 −0.283 8.565 5.540 3.025 −0.362
LDA 3.173 2.739 0.434 −2.562 6.123 5.591 0.531 −2.856
�SCF (BNL) 4.333 1.343 2.990 −0.006 7.795 4.501 3.294 −0.093
�SCF (LDA) 4.449 1.546 2.903 −0.093 7.348 4.247 3.101 −0.286
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level for the dopant. For example, in the D = 1 nm NC,
the spin splitting value is 2.842 eV when B is at the center
and 3.026 eV when B is near the surface. This interpretation
follows that in another DFT study on B-doped Si NCs [71].

IV. CONCLUSIONS

We applied the stochastic BNL approach to study dopant
activation energies for P- and B-doped Si nanocrystals with up
to 1600 electrons. The stochastic approach reduces the scal-
ing of applying the exact exchange operator from quadratic
to linear, enabling its application to experimentally relevant
system sizes. We find excellent agreement with �SCF and
good agreement with stochastic GW for dopant activation
energies using a single range parameter (γ ) for the stochastic
BNL functional. The difference for stochastic GW could be
influenced by the underlying LDA starting point, which erro-
neously predicts shallow dopant levels. One of the key find-
ings is that shallow dopants in the bulk become deep dopants
under confinement. This has been observed in previous studies
using �SCF at the LDA level, but we can finally use stochastic
BNL to validate these results at the hybrid functional level.

This study is further significant in that it provides a way to
calculate a self-consistent solution with a quasiparticle model
Hamiltonian at a low computational cost. This quasiparticle

Hamiltonian, which is not obtainable through traditional GW
methods, can be further processed and used with methods
such as time-dependent DFT and stochastic BSE [21] to
describe optical excitations for system sizes and complexities
beyond current limitations.
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[27] V. Vlĉek, R. Baer, and D. Neuhauser, J. Chem. Phys. 150,
184118 (2019).

[28] X. Zhang, G. Lu, R. Baer, E. Rabani, and D. Neuhauser,
J. Chem. Theory Comput. 16, 1064 (2020).

[29] R. Rurali, B. Aradi, T. Frauenheim, and Á. Gali, Phys. Rev. B
79, 115303 (2009).

[30] Y. M. Niquet, L. Genovese, C. Delerue, and T. Deutsch, Phys.
Rev. B 81, 161301(R) (2010).

[31] A. J. Lee, T.-L. Chan, and J. R. Chelikowsky, Phys. Rev. B 89,
075419 (2014).

[32] E. Livshits and R. Baer, Phys. Chem. Chem. Phys. 9, 2932
(2007).

035112-6

https://doi.org/10.1109/JSTQE.2006.884087
https://doi.org/10.1126/science.1143802
https://doi.org/10.1126/science.1196321
https://doi.org/10.1021/jp4032749
https://doi.org/10.1021/acs.nanolett.6b00225
https://doi.org/10.1088/1361-6463/aac1fe
https://doi.org/10.1063/5.0006429
https://doi.org/10.1021/jp2055798
https://doi.org/10.1103/PhysRevB.87.085420
https://doi.org/10.1021/acs.jpcc.7b09501
https://doi.org/10.1103/PhysRevLett.55.1418
https://doi.org/10.1103/PhysRevB.34.5390
https://doi.org/10.1103/PhysRevB.62.4927
https://doi.org/10.1103/PhysRevLett.111.106402
https://doi.org/10.1021/ct300946j
https://doi.org/10.1021/jz3021606
https://doi.org/10.1021/jz402206m
https://doi.org/10.1103/PhysRevLett.113.076402
https://doi.org/10.1063/1.4905568
https://doi.org/10.1021/acs.jpca.5b10573
https://doi.org/10.1103/PhysRevB.91.235302
https://doi.org/10.1021/acs.jctc.7b00770
https://doi.org/10.1103/PhysRevMaterials.2.030801
https://doi.org/10.1103/PhysRevB.98.075107
https://doi.org/10.1063/1.5064472
https://doi.org/10.1063/1.5110226
https://doi.org/10.1063/1.5093707
https://doi.org/10.1021/acs.jctc.9b01121
https://doi.org/10.1103/PhysRevB.79.115303
https://doi.org/10.1103/PhysRevB.81.161301
https://doi.org/10.1103/PhysRevB.89.075419
https://doi.org/10.1039/b617919c


DOPANT LEVELS IN LARGE NANOCRYSTALS USING … PHYSICAL REVIEW B 102, 035112 (2020)

[33] R. Baer, E. Livshits, and U. Salzner, Annu. Rev. Phys. Chem.
61, 85 (2010).

[34] R. Baer and D. Neuhauser, Phys. Rev. Lett. 94, 043002 (2005).
[35] T. Stein, H. Eisenberg, L. Kronik, and R. Baer, Phys. Rev. Lett.

105, 266802 (2010).
[36] S. Refaely-Abramson, R. Baer, and L. Kronik, Phys. Rev. B 84,

075144 (2011).
[37] L. Kronik, T. Stein, S. Refaely-Abramson, and R. Baer,

J. Chem. Theory Comput. 8, 1515 (2012).
[38] U. Salzner and R. Baer, J. Chem. Phys. 131, 231101 (2009).
[39] M. G. Medvedev, I. S. Bushmarinov, J. Sun, J. P. Perdew, and

K. A. Lyssenko, Science 355, 49 (2017).
[40] J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Phys. Rev.

Lett. 49, 1691 (1982).
[41] J. P. Perdew and M. Levy, Phys. Rev. B 56, 16021 (1997).
[42] P. Mori-Sánchez, A. J. Cohen, and W. Yang, Phys. Rev. Lett.

100, 146401 (2008).
[43] W. Yang, A. J. Cohen, and P. Mori-Sánchez, J. Chem. Phys.

136, 204111 (2012).
[44] P. Mori-Sánchez and A. J. Cohen, Phys. Chem. Chem. Phys. 16,

14378 (2014).
[45] T. Stein, J. Autschbach, N. Govind, L. Kronik, and R. Baer,

J. Phys. Chem. Lett. 3, 3740 (2012).
[46] A. Savin, in Recent Advances in Density Functional Methods

Part I, edited by D. P. Chong (World Scientific, Singapore,
1995), p. 129.

[47] H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao, J. Chem. Phys.
115, 3540 (2001).

[48] J. Toulouse, A. Savin, and H.-J. Flad, Int. J. Quantum Chem.
100, 1047 (2004).

[49] J. F. Janak, Phys. Rev. B 18, 7165 (1978).
[50] T. Stein, L. Kronik, and R. Baer, J. Am. Chem. Soc. 131, 2818

(2009).
[51] F. Gygi and A. Baldereschi, Phys. Rev. B 34, 4405(R) (1986).
[52] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C.

Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I.
Dabo, A. D. Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R.
Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri,
L. Martin-Samos et al., J. Phys.: Condens. Matter 21, 395502
(2009).

[53] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B.
Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli,
M. Cococcioni, N. Colonna, I. Carnimeo, A. D. Corso, S. de

Gironcoli, P. Delugas, R. A. DiStasio, A. Ferretti, A. Floris, G.
Fratesi, G. Fugallo et al., J. Phys.: Condens. Matter 29, 465901
(2017).

[54] See Supplemental Material http://link.aps.org/supplemental/
10.1103/PhysRevB.102.035112 for information about compu-
tational details, convergence with respect to stochastic orbitals,
and the structural relaxation of doped structures, which includes
Refs. [20,49,52,53,55–57].

[55] R. D. King-Smith, M. C. Payne, and J. S. Lin, Phys. Rev. B 44,
13063 (1991).

[56] G. J. Martyna and M. E. Tuckerman, J. Chem. Phys. 110, 2810
(1999).

[57] N. D. M. Hine, J. Dziedzic, P. D. Haynes, and C.-K. Skylaris,
J. Chem. Phys. 135, 204103 (2011).

[58] H. R. Eisenberg and R. Baer, Phys. Chem. Chem. Phys. 11,
4674 (2009).

[59] T. Körzdörfer, J. S. Sears, C. Sutton, and J.-L. Brédas, J. Chem.
Phys. 135, 204107 (2011).
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