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The electronic properties in a solid depend on the specific form of the wave functions that represent the
electronic states in the Brillouin zone. Since the discovery of topological insulators, much attention has been
paid to the restrictions that the symmetry imposes on the electronic band structures. In this work we apply two
different approaches to characterize all types of bands in a solid by the analysis of the symmetry eingenvalues:
the induction procedure and the Smith decomposition method. The symmetry eigenvalues or irreducible
representation (irreps) of any electronic band in a given space group can be expressed as the superposition
of the eigenvalues of a relatively small number of building units (the basic bands). These basic bands in all the
space groups are obtained following a group-subgroup chain starting from P1. Once the whole set of basic bands
are known in a space group, all other types of bands (trivial, strong topological, or fragile topological) can be
easily derived. In particular, we confirm previous calculations of the fragile root bands in all the space groups.
Furthermore, we define an automorphism group of equivalences of the electronic bands which allows to define
minimum subsets of, for instance, independent basic or fragile root bands.
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I. INTRODUCTION

The theory of electronic band structure has underpinned
our understanding of weakly interacting materials for the past
century. It has been fundamental in areas from theoretical
physics to material engineering, and has contributed to virtu-
ally each one of the technical advances in the past century.
At the basis of the theory rests Bloch’s theorem—the fact
that the Hamiltonian of any periodic lattice in real space has,
when Fourier transformed, a structure in momentum space
which makes the energy levels in the first momentum space
Brillouin zone repeat at other electron momenta. While Bloch
focused on the electron energies, it was realized early on, by
Wigner, Von Neumann, Herring, Harrison, and others, that
eigenfunctions are fundamental to the electronic properties in
crystals.

The focus on the electron wave function properties ex-
perienced a fundamental breakthrough with the realization
that topology plays an essential role in the physics of a
given material. Thouless, Kohmoto, Nightingale, and den
Nijs (TKNN) [1] proved, in the early 1980s, that the wave
functions of a system under the influence of a magnetic field
exhibit a topological invariant, the Chern number [2], which,
moreover, equals a physical observable, the Hall conduc-
tance. This is measured in the quantum Hall effect, and it is
the first example of how topological protection can lead to
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experimental observables. The first topological classification
was developed: wave functions described by different topo-
logical invariants—Chern numbers—cannot be adiabatically
continued to one another. When two insulating materials
described by wave functions with different Chern number are
placed next to one another, gapless edge states develop at
the interface between them. This is an example of the bulk-
boundary correspondence: a topologically nontrivial gapped
bulk gives rise to a gapless chiral edge—which is moving in
one direction. The topological classification of Chern insula-
tors is based on integers: every wave function can be described
by a Chern number which is an integer. A nonzero Chern
number requires the breaking of time reversal [3], usually
realized by the application of a magnetic field.

The field of electronic wave functions then experienced
a lull until the early 2000s [4–12], when it was shown
that adding symmetry provides new topological classification,
which was different from a Chern number. The first papers
of the new field of topological insulators showed that, by
adding time reversal to a system the integer Chern classifi-
cation vanishes—nonzero Chern number is not possible in the
presence of time reversal. However, a new Z2 classification
emerges, based on time-reversal pairs of edge states. A non-
trivial time-reversal topological insulator, when put next to a
trivial one, has a pair of helical edge states on one edge, whose
crossing is protected by time reversal.

The next 15 years have then produced many more topo-
logical classifications based, primarily, on adding symmetries
to the electron Hamiltonian [13–26]. Crystals are periodic
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arrangements of atoms, and as such, exhibit spatial symme-
tries classified by 230 nonmagnetic space groups. When a
symmetry is enforced on the system, new phases of matter
become distinct. For example, when mirror symmetry is added
to a system, we find that it is possible to diagonalize the
Hamiltonian in mirror symmetry sectors: each mirror sym-
metry sector has a Chern number, even if the full system—
summed over all mirror sectors—did not have a Chern num-
ber.

These realizations have pointed towards a fundamental
refinement—based on topological features—of band theory.
This refinement takes into account the symmetry properties
of a given space group. In retrospect, the first rewriting of
band theory was due to Zak [27,28], although without em-
phasis or consideration of topological features. Zak mainly
focused on atomic limit bands—electronic structures that are
obtained from a set of localized orbitals. Zak’s fundamental
advances are multifold. First, Zak and co-authors realized that
a Hamiltonian is not needed in order to describe the symme-
try structure of bands that can be expressed from localized
orbitals. Zak introduced the concept of band representations,
induced representations from the lattice orbitals to the space
group that fix the symmetry eigenvalues, in the Brillouin zone,
of a band structure described by atomic orbitals. While Zak
performed this program for a small set of orbitals, recent
advances [29] completed his vision, tabulating all 10 398
elementary band representations (atomic limits) existing in the
230 space groups, with and without spin-orbit coupling. Even
though it is supposed to only describe atomic limits, it was
found [29] that Zak’s theory intimately implies topological
phases of matter, which cannot be described by atomic limits.
This led to a rewriting of electronic band theory.

Recently, Topological Quantum Chemistry (TQC) classi-
fied all the elementary band representations (EBRs) that exist
in Zak’s theory. It also put forward the thesis, following
Soluyanov and Vanderbilt [30], that any band structure that
is not an atomic limit has to be, by definition, topological. It
also provided [29] the entirety of the so-called compatibility
relations, a set of linear algebraic constraints that determine
whether bands starting from one high-symmetry point can
connect to bands coming from a different high-symmetry
point. This allows for a classification of the nontrivial (topo-
logical) band structures, as well as the enforced semimetals:
any set of bands that do not satisfy the compatibility relations
have to be metallic. All these constraints and data are tabulated
at the Bilbao Crystallographic Server [31–38]. Several other
similar formalisms were also proposed [39,40]. Then, the
topology criteria are explicitly mapped to topological invari-
ants protected by TRS or crystalline symmetries [41–43].
These advances allowed high throughput work [44–46] where
we presented a catalog with the topological classification of
all the “high-quality” topological materials existing in the
Inorganic Crystal Structure Database (ICSD), see Ref. [47].
The approach is based on classifying different types of bands
that satisfy the compatibility relations. EBRs describe atomic
limits. However, sometimes, they can be “split” into several
branches, which are not EBRs, and are hence topological
bands. In many symmetry groups, there also exist bands that
are not EBRs, and hence are topological, but have nonetheless
the same (or lower) dimension than EBRs. The question then

becomes: what is a (smallest) basis for all the bands in every
symmetry group? Clearly, and in general, these “basic” bands
need to involve atomic limits, strong topological bands, and a
new type of topological bands—fragile topological [48–56].

In this paper we present a different bottom-up approach
of obtaining all the topological and nontopological bands in
any symmetry group. In Sec. II we introduce the definitions
of the different types of bands we can find in the electronic
structure of a material. Next, in Sec. III and starting from
space group (SG) P1 (No. 1), we build what we call the basic
bands, by induction, successively, in supergroups following
group-subgroup chains. In this section of the main text we
describe the main steps of the derivation and in Secs. S1–S5
of the Supplemental Material [57] we include more specific
details of the procedure and some examples of calculation
for some particular group-subgroup pairs. Upon building all
sets of basic bands, we then show that we can find the same
topological classification, both strong and fragile, as obtained
in previous works. Section IV is devoted to an alternative
method to obtain the basic bands from the knowledge of the
EBRs in a space group: by using the Smith decomposition
of the integer matrix defined by the EBRs. We show that the
results given by this brute-force method match the results of
the induction method. In the next section, Sec. V, we extend
the method based on the Smith decomposition to determine
the fragile bands. In Secs. S6–S8 of the Supplemental Mate-
rial [57] we give several examples of application of this al-
ternative method. Finally, in Sec. VI we establish equivalence
relations between the basic bands in a space group through
the elements of the normalizer of the space group and through
the Kronecker multiplication of irreducible representations. In
Sec. S9 of the Supplemental Material [57] we give examples
of determination of these equivalences.

II. TYPES OF ELECTRONIC BANDS

In a solid, the electronic energy bands are continuous
functions (wave functions) defined in the reciprocal space
whose dependence on the wave-vector k is restricted by the
space group of the structure. The existence of a translational
periodicity forces the bands to be periodic in the reciprocal
space, with the periodicity given by the reciprocal lattice.
The symmetry operations whose rotational part is different
from the identity impose additional restrictions on the band
structure. In particular, at every k vector in the reciprocal
space, the electronic states transform as a representation of the
little group of k. This representation is, in general, reducible,
but it is identified by the multiplicities of the (tabulated) irreps
at the k vector. In principle, the symmetry property of a band
or a set of bands defined in the whole Brillouin zone (BZ) are
partially characterized by the multiplicities of the irreducible
representations at every k vector. The set of irreps does not
give complete information about the whole wave function.
However, it is enough to determine the connectivity properties
of the band.

Although it is possible to determine the sets of irreps in all
of the whole BZ, it is not necessary to specify the multiplici-
ties at every k vector to unambiguously identify a band. It is
sufficient to know the multiplicities of the irreps of the little
groups at a selected set of k vectors in the BZ: the k vectors of
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maximal symmetry or maximal k vectors [31,58,59]. A vector
k in the reciprocal space with little group Gk is of maximal
symmetry if it cannot be connected, following a continuous
path in which all the k vectors have as little group Gk, to an
end point k′ whose little group is a supergroup of Gk. The k
vectors of maximal symmetry in all the space groups form
a small set and are listed in the program BANDREP [32].
From the multiplicities of the irreps at the maximal k vectors,
the multiplicities at the nonmaximal k vectors can be derived
making use of the compatibility relations.

The knowledge of the set of maximal k vectors, the little
groups of these k vectors, the irreps of these little groups, and
the sets of compatibility relations in the whole BZ allows us
to define and classify the possible types of electronic bands
that there can be in a solid. In this section we first define the
types of bands from the point of view of their topology.

Definition 1: Connected bands and basic bands. An elec-
tronic band is defined by the multiplicities of the irreps of
the little groups of the maximal k vectors in the space group.
These sets of irreps are interconnected along the intermediate
paths (lines and planes) and satisfy the compatibility relations,
i.e., for every pair of maximal k vectors, the set of irreps at
both k vectors subduces into the same sets of irreps of the
intermediate paths that connect the two maximal k vectors
with identical multiplicities. If some subsets of irreps at each
maximal k vector are fully connected and separated from
the rest of the subsets of irreps that form the whole set of
electronic states in a structure, we say that it is a connected
band. We define as basic band a connected band that cannot
be split into separate subsets of irreps at every maximal k
vector satisfying internally the compatibility relations, even
if we consider all the different possible arrangements of
irreps at every k vector. As a consequence of this definition,
any electronic band in a given space group is an integer
linear combination (with non-negative coefficients) of basic
bands. This linear combination is not necessarily unique, and
different linear combinations of basic bands can give rise to
the same whole set of symmetry eigenvalues at maximal k
vectors. We can say that the basic bands constitute an, in
general, overcomplete basis of all the bands in a space group.
In the next sections we will restrict the use of the term band
to refer only to connected bands.

Definition 2: Elementary band representation. The concept
of band representation was first introduced by Zak [27] to
refer to a set of energy bands spanned by a given collec-
tion of (exponentially) localized Wannier orbitals. Given the
coordinates of a Wyckoff position in a space group G, the
symmetry operations that keep invariant the coordinates of
this point belong to the so-called site-symmetry group of the
Wyckoff position. This group is isomorphic to a point group
and each irreducible representation of this group induces a
representation onto G called band representation. A band
representation that is equivalent to a direct sum of other band
representations is called a composite band representation. A
band representation that is not composite is called elementary.
Therefore, if we identify a band representation through the
multiplicities of the irreps at the maximal k vectors under
subduction, the list of multiplicities of a composite band rep-
resentation is a linear combination of the lists of multiplicities
of the elementary band representations (EBRs) of the space

group. All the EBRs of a space group are obtained from its
maximal Wyckoff positions, although not all the band repre-
sentations induced from the maximal Wyckoff positions are
elementary. All the EBRs in all the space groups without spin-
orbit coupling (SOC), which are induced from the so-called
single-valued irreps, were deduced by Zak and Bacry [27,28]
and the EBRs with SOC (induced from double-valued irreps)
were calculated in Ref. [29] and implemented in the program
BANDREP [32]. The EBRs play a central role in the classi-
fication of the band structures into topological bands (strong
or fragile) and trivial bands and, consequently, of the mate-
rials into topological or trivial. We can state that the EBRs
form a basis for the band representations in a space group.
Whereas the basic bands expand all the existing connected
bands in a space group, the EBRs expand a particular type of
connected bands: the band representations (or trivial bands).
An EBR can coincide with one of the basic bands or can be
a linear combination of basic bands with non-negative integer
coefficients.

Definition 3: Fragile topological bands and fragile root
bands. A band that cannot be expressed as the direct sum
(linear combination with non-negative integer coefficients) of
EBRs but can be expressed as linear combinations of EBRs
with positive and negative integer coefficients is a fragile
(topological) band. A fragile band that cannot be expressed
as a linear combination of EBRs and another fragile bands
with non-negative integer coefficients is a fragile root. Then,
any fragile band that is not a fragile root band can be written
as a linear combination of EBRs and fragile root bands. The
EBRs and the fragile root bands form a basis for all the fragile
bands in a space group.

Definition 4: Strong topological bands. A band that cannot
be expressed as an integer linear combination of EBRs is a
strong (topological) band. Two strong bands are EBR equiva-
lent if its difference can be written as a linear combination of
EBRs, with positive or negative integer coefficients.

According to the above definitions, the direct sums of
different kinds of bands give rise to the following results:

(1) The direct sum of two trivial bands (as a particular case
the sum of two EBRs) gives a trivial band.

(2) The direct sum of two fragile bands (being roots or
not) can give rise to another fragile band or to a trivial band.
In some cases the trivial band is a single EBR. This EBR is
thus identified as decomposable [29].

(3) The direct sum of two strong bands can give rise to
another strong band, to a trivial band (elementary or not), or to
a fragile band (root or not). When the result is another strong
band, this is not equivalent to any of the two previous strong
bands. If the result is an EBR, the EBR is thus decompos-
able [29].

(4) The direct sum of a fragile band and a trivial band can
be a trivial band or a fragile band.

(5) The direct sum of a strong band and a not strong band
is always another strong band equivalent to the first one.

Once all the basic bands in a space group have been
identified, through combinations of these basic bands, it is
possible to determine all kinds of topological bands that can
be realized in a space group and, in particular, the fragile roots.
In the next section we describe a method to derive all the
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basic bands in a space group based in a standard group theory
technique: the induction procedure.

III. CALCULATION OF THE BASIC BANDS THROUGH
THE INDUCTION PROCEDURE

The induction procedure has been the standard way to
obtain the irreps of the point and space groups and programs to
apply the induction have been developed [31,60,61]. If H is a
normal subgroup of G, H� G, the irreps of G can be obtained
from the irreps of H through induction. The general procedure
is simplified in the case of crystallographic point and space
groups because, for any point or space group G, there exists
a normal subgroup H of index 2 or 3 in G. In Sec. S1 of
the Supplemental Material (SM) [57] we summarize the main
steps of the induction procedure applied to crystallographic
groups with index 2 or 3 [61].

As an extension of the induction procedure, it can also
be applied to induce the basic bands in a space group from
the basic bands of one of its maximal subgroups. This pur-
pose requires the systematic application of the induction to
the little group of every k vector in the subgroup to derive
the irreps of the corresponding little group of the k vector in
the supergroup. In the following we summarize the main steps
followed in the systematic identification of the basic bands in
a space group.

Given a k vector, its little co-group is the set of point-group
operations R that keep the k vector invariant, mod reciprocal
lattice translations, i.e., those rotational operations such that
the relation

k · R = k + K (1)

is fulfilled for some K in the reciprocal lattice. The little group
of k, Gk, is the subset of symmetry operations of G whose
rotational part satisfies Eq. (1). Therefore, Gk is a subgroup of
G.

When the little groups of a given k vector in a space group
G and in one of its subgroups H are compared, there can be
two different possibilities depending on the k vector:

T1 The little group is the same in both groups, Gk = Hk.
This means that no symmetry operation g ∈ G and g /∈ H
belongs to the little group of k. For these k vectors, there is a
1 to 1 mapping between the irreps of the little groups, which
have the same dimensions, i.e., an irrep ρHk ∈ Hk induces a
single irrep ρGk ∈ Gk.

T2 The little group in G is a supergroup of the little group
in H. The irreps of Gk can be induced from the irreps in
Hk following the procedure summarized in Sec. S1 of the
SM [57]. In general, there are two different types of results
when the induction of the whole set of irreps ρ i

Hk ∈ Hk

is considered (see the details in Sec. S1 of the SM [57]):
T2(a) a given irrep ρHk can induce 2 or 3 irreps into Gk

(depending on the index between the two little groups: 2 or
3 for crystallographic space groups if the group-subgroup pair
H� G is appropriately chosen) or T2(b) 2 or 3 irreps of Hk

combine to induce a single irrep in Gk.
Once the mapping between the irreps in the subgroup

and the irreps in the supergroup has been performed, the
multiplicities that define the different possible induced bands
in the supergroup are obtained from the multiplicities of the

given basic band in the subgroup and the restrictions imposed
by the compatibility relations. In Sec. S2 of the SM [57] we
summarize the theoretical background of the compatibility re-
lations and their application in the analysis of the connectivity
of the bands, but we here outline some general results:

(1) If the list of irreps at k vectors of maximal symmetry
that define the bands in a group contains irreps of type T2(a),
every basic band induces, in principle, a band in the super-
group that, in general, is not basic. In principle, to identify all
the basic bands in the supergroup we could first calculate all
the induced bands from basic bands in the subgroup, and then
find all the possible ways of decomposition of every induced
band into sets of irreps at every k vector of maximal symmetry
that form a fully connected band. However, computationally
it is more efficient to proceed in a different way. Let ρHk an
irrep of the little group k and let this irrep induce a reducible
representation in the little group Gk,

ρHk ↑ G = ρ1
Gk ⊕ ρ2

Gk . (2)

If the multiplicity of ρHk in a basic band of H is n(ρHk ), the
multiplicities of the two irreps ρ1

Gk and ρ2
Gk in the induced

band in G are n(ρ1
Gk ) = n(ρ2

Gk ) = n(ρHk ). Now, if we consider
all the possible splits of this induced band into basic bands
of G, in any basic band the multiplicities (not necessarily
identical) of these two irreps must be an integer between 0
and n(ρHk ). In the systematic search of all the possible basic
bands, we can consider that every irrep ρHk can induce in
a basic band of G a single irrep ρ1

Gk or a single irrep ρ2
Gk .

This slightly different procedure, which can be called partial
induction, reduces the number of combinations to be checked.
Once we have determined all the possible alternative ways
to perform a partial induction at every k vector, we choose
a particular result in every k vector to construct a set of irreps
that can potentially form a basic band. If the compatibility
relations are fulfilled and the sets of irreps at any pair of
maximal k vectors are fully connected, they form a basic
band.

(2) The list of irreps contains irreps of type T2(b), i.e., at a
given maximal k vector some irreps (2 or 3 in crystallographic
groups) combine to induce a single irrep in the supergroup.
This means that a basic band in the subgroup with different
multiplicities of these 2 (or 3) irreps cannot induce by itself
a band into the supergroup. In these cases, several basic
bands in the subgroup must be combined to get a band with
the appropriate multiplicities to induce a basic band into the
supergroup.

More details of the whole process can be found in Secs. S1
and S2 of the SM [57].

However, as the single- and double-valued irreps of the
little group of all the k vectors in the space groups have
been tabulated [31,35,62,63], the work to be done can be
simplified using the opposite procedure to the induction (or
the above described partial induction): the subduction, much
easier and faster to compute. Therefore, in practice, we will
use the subduction to determine the required relations between
the two sets of irreps in the group-subgroup pair. We can
summarize the subduction process in the following way:
let ρGk be an irrep of the little group Gk and DρGk (g) the
matrix of the irrep of the symmetry operation g ∈ Gk. Let
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H a subgroup of G and Hk the little group of k in H.
The matrices DρGk (h) restricted to the symmetry operations
h ∈ Hk form a representation, in general reducible, of Hk.
The correlations between ρGk and the irreps ρ i

Hk of Hk are
easily calculated through the reduction formula (Eq. (S7) in
the SM [57]). In Sec. S3 of the SM [57] we give the details of
the application of the subduction process in a group-subgroup
pair of crystallographic groups. We have also implemented
the program DCORREL [64] in the BCS which gives all the
correlations between the irreps in any group-subgroup pair.
The program uses the subduction process and requires as input
just the number of the group, the number of the subgroup and
the transformation matrix [65] of the group-subgroup pair (see
the details in Sec. S3 of the SM [57]).

In principle, the systematic application of the induction-
subduction process in the whole BZ making use of DCOR-
REL allows us to calculate all the possible induced sets of
irreps in G from the basic bands of H. In every k vector,
all the possible sets of induced irreps from Hk to Gk must
be considered, along with the compatibility relations in all
the intermediate paths (lines and planes) between all pairs
of maximal k vectors in the space group G. These conditions
impose restrictions on the multiplicities of the irreps at differ-
ent maximal k vectors to form a band. As an example of the
application of the induction procedure to the determination of
the basic bands in a space group, in Sec. S4 of the SM [57] we
derive the basic bands of the space group I212121 with time-
reversal (TR) symmetry from the basic bands of its maximal
subgroup C2.

All the different kinds of bands (basic, strong topological,
fragile, trivial) in a space group can be derived from the
bands in one of its subgroups, ideally from one of its maximal
subgroups, following the above outlined induction-subduction
procedure and described in detail in Secs. S1–S4 of the
SM [57]. Therefore, considering different subduction chains,
all the basic bands in all the space groups can be ultimately
derived from the unique basic band of the space group P1 (No.
1).

In Sec. S5 of the SM [57], starting from the single basic
band in the space group P1, we describe the derivation of all
the double-valued basic bands in the first steps of the different
subduction chains, P1 → P1 (No. 2), P1 → P2 (No. 3),
P1 → P3 (No. 143), P1 → R3 (No. 146), P2 → P4 (No. 75),
P2 → P4 (No. 81) and the more elaborated cases P1 → C2/c
(No. 15)→ Fddd (No. 70) and P1 → C2 (No. 5)→ I222121

(No. 24)→ I213 (No. 199).
Following different group-subgroup chains, we have iden-

tified all the double-valued basic bands in all the 230 space
groups with TR symmetry. These are the relevant bands
when the Hamiltonian of the system depends on the spin (for
instance, when SOC is considered). Table I shows the number
of basic bands in each space group divided into elementary,
strong, and fragile (columns e, s, and f, respectively). The
table also shows the numbers of independent bands of each
type (see Sec. VI). At the end of the SM [57], Table S10 lists
all the basic bands for each space group through the set of
multiplicities of the irreps of the little groups of the maximal
k vectors. The order of irreps to which the multiplicities are
referred is given in Table S9. In Table S10 we also indicate
the type of band (elementary, strong, or fragile) of each basic

band, and we identify a subset of independent basic bands. A
similar process can also be applied to derive the single-valued
basic bands, but they are not considered in this work.

As stressed before, there are different kinds of basic bands:
elementary, strong topological, and fragile topological. In our
complete analysis of the 230 space groups with TR symmetry,
we have found four different types of space groups according
to the kinds of basic bands found:

(1) All the basic bands are elementary band representa-
tions. In these space groups there are neither strong nor fragile
topological bands.

(2) Some basic bands are elementary band representations
and the rest are fragile bands. In these space groups there are
not strong bands.

(3) Some basic bands are elementary band representations
and the rest are strong topological bands. These groups can
have fragile bands, but they are combinations of basic strong
topological bands.

(4) There are basic bands of the three types: elementary,
strong, and fragile.

The classification of the 230 space groups into these four
categories is shown in Table II.

A. Determination of the fragile root bands

Once all the basic bands in a space group have been iden-
tified, using also the tabulated EBRs of the space group [32],
it is possible to construct all the kinds of bands in the space
group (trivial, strong topological, fragile root bands, fragile
but not root bands, etc.), though in this work we will focus
on the derivation, in particular, of the fragile roots. Looking at
the four kinds of space groups found, it is possible to come to
some preliminary conclusions:

(1) In space groups whose basic bands are elementary or
fragile, by definition these basic fragile bands are the only
fragile roots in the space group.

(2) In those groups whose basic bands are elementary or
strong topological, the fragile bands are combinations of basic
strong bands and, therefore, all the fragile roots (if any) are
direct sums of strong basic bands.

(3) In the space groups with basic bands of the three types,
the basic fragile bands are also root fragile bands, but there can
be additional roots as combinations of strong bands.

The determination of the fragile roots in a space group is
thus immediate in those groups with no strong basic bands.
All the fragile basic bands (if any) form the complete set of
fragile roots. In the space groups with strong basic bands the
determination of the fragile roots has been performed in a
steplike process. (1) The starting subset of fragile roots are
the fragile basic bands. At this point we define basis as the
union of the elementary basic bands and the fragile basic
bands. (2) In the next step we construct all the combinations
of two strong basic bands and remove from the set those
than can be expressed as linear combination with non-negative
integers of at least a band of basis and strong basic bands.
The fragile bands in the remaining set are root bands and
are added to basis. (3) The rest of bands (those direct sums
of two strong bands that result in another strong band) are
considered in the next step: we combine them with all the
strong basic bands to get all the relevant combinations of three
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TABLE I. List of number of basic bands for each space group divided as (e) number of elementary bands, (s) number of strong topological
bands, and (f) number of fragile topological bands. The columns (ie), (is), and (if) show the number of independent (see Sec. VI) elementary,
strong topological, and fragile topological basic bands, respectively.

SG e ie s is f if SG e ie s is f if SG e ie s is f if SG e ie s is f if SG e ie s is f if

1 1 1 0 0 0 0 47 16 1 240 4 0 0 93 1 1 0 0 0 0 139 8 1 56 5 0 0 185 2 2 0 0 2 2
2 16 1 240 2 0 0 48 1 1 8 2 0 0 94 1 1 0 0 0 0 140 10 4 92 18 0 0 186 4 4 0 0 2 2
3 1 1 0 0 0 0 49 9 2 72 5 0 0 95 1 1 0 0 0 0 141 4 1 20 3 0 0 187 15 2 60 4 0 0
4 1 1 0 0 0 0 50 1 1 8 2 0 0 96 1 1 0 0 0 0 142 3 2 6 2 0 0 188 12 3 30 5 6 2
5 1 1 0 0 0 0 51 9 2 72 6 0 0 97 2 1 0 0 0 0 143 6 2 0 0 6 2 189 5 2 20 4 0 0
6 1 1 0 0 0 0 52 5 2 10 4 0 0 98 1 1 0 0 0 0 144 1 1 0 0 0 0 190 9 5 22 8 1 1
7 1 1 0 0 0 0 53 8 1 28 3 0 0 99 4 1 0 0 0 0 145 1 1 0 0 0 0 191 12 2 228 20 0 0
8 1 1 0 0 0 0 54 5 2 20 4 0 0 100 3 2 0 0 0 0 146 2 2 0 0 0 0 192 9 4 94 27 5 3
9 1 1 0 0 0 0 55 8 1 28 3 0 0 101 1 1 0 0 0 0 147 8 2 48 8 8 2 193 7 4 72 25 5 3
10 16 1 240 4 0 0 56 5 2 10 4 0 0 102 1 1 0 0 0 0 148 8 2 24 4 0 0 194 12 6 152 36 4 2
11 9 2 72 4 0 0 57 5 2 20 4 0 0 103 4 1 0 0 0 0 149 6 2 0 0 6 2 195 2 2 0 0 0 0
12 8 1 56 4 0 0 58 8 1 16 2 0 0 104 2 1 0 0 0 0 150 2 2 0 0 2 2 196 2 2 0 0 0 0
13 9 2 72 6 0 0 59 1 1 8 2 0 0 105 1 1 0 0 0 0 151 1 1 0 0 0 0 197 2 2 0 0 0 0
14 8 1 28 3 0 0 60 5 2 10 4 0 0 106 1 1 0 0 0 0 152 1 1 0 0 0 0 198 2 2 0 0 0 0
15 9 2 72 8 0 0 61 4 1 6 2 0 0 107 2 1 0 0 0 0 153 1 1 0 0 0 0 199 1 1 0 0 1 1
16 1 1 0 0 0 0 62 5 2 10 4 0 0 108 3 2 0 0 0 0 154 1 1 0 0 0 0 200 8 2 40 6 4 1
17 1 1 0 0 0 0 63 5 2 22 6 0 0 109 1 1 0 0 0 0 155 2 2 0 0 0 0 201 1 1 12 3 0 0
18 1 1 0 0 0 0 64 4 1 14 3 0 0 110 1 1 0 0 0 0 156 6 2 0 0 6 2 202 8 2 20 5 4 1
19 1 1 0 0 0 0 65 8 1 56 4 0 0 111 8 1 8 1 0 0 157 2 2 0 0 2 2 203 1 1 16 5 0 0
20 1 1 0 0 0 0 66 9 3 72 13 0 0 112 5 2 4 1 0 0 158 6 2 0 0 6 2 204 4 2 14 5 2 1
21 1 1 0 0 0 0 67 9 2 72 6 0 0 113 5 2 4 1 0 0 159 4 4 0 0 2 2 205 8 2 10 3 0 0
22 1 1 0 0 0 0 68 1 1 8 2 0 0 114 4 1 2 1 0 0 160 2 2 0 0 0 0 206 8 2 32 5 5 2
23 1 1 0 0 0 0 69 4 1 28 2 0 0 115 8 1 8 1 0 0 161 2 2 0 0 0 0 207 5 2 0 0 0 0
24 1 1 0 0 0 0 70 1 1 8 3 0 0 116 5 2 4 1 0 0 162 8 2 48 8 8 2 208 1 1 0 0 1 1
25 1 1 0 0 0 0 71 8 1 24 2 0 0 117 5 2 4 1 0 0 163 8 6 36 18 10 6 209 3 2 0 0 0 0
26 1 1 0 0 0 0 72 5 2 22 6 0 0 118 5 2 4 1 0 0 164 8 2 48 8 8 2 210 1 1 0 0 1 1
27 1 1 0 0 0 0 73 5 2 20 4 0 0 119 8 1 8 1 0 0 165 6 4 24 12 6 4 211 3 2 0 0 0 0
28 1 1 0 0 0 0 74 9 2 72 8 0 0 120 5 2 4 1 0 0 166 8 2 24 4 0 0 212 2 2 0 0 0 0
29 1 1 0 0 0 0 75 4 1 0 0 0 0 121 4 1 4 1 0 0 167 6 4 12 6 0 0 213 2 2 0 0 0 0
30 1 1 0 0 0 0 76 1 1 0 0 0 0 122 4 1 2 1 0 0 168 3 2 0 0 3 2 214 1 1 0 0 1 1
31 1 1 0 0 0 0 77 1 1 0 0 0 0 123 16 1 240 6 0 0 169 1 1 0 0 0 0 215 5 2 12 3 8 3
32 1 1 0 0 0 0 78 1 1 0 0 0 0 124 12 2 96 8 0 0 170 1 1 0 0 0 0 216 9 2 22 4 12 2
33 1 1 0 0 0 0 79 2 1 0 0 0 0 125 6 2 28 4 0 0 171 1 1 0 0 0 0 217 3 2 4 1 2 1
34 1 1 0 0 0 0 80 1 1 0 0 0 0 126 2 1 4 1 0 0 172 1 1 0 0 0 0 218 2 2 6 3 6 2
35 1 1 0 0 0 0 81 8 1 8 1 0 0 127 12 2 124 11 0 0 173 4 4 0 0 2 2 219 2 2 6 3 6 2
36 1 1 0 0 0 0 82 8 1 8 1 0 0 128 8 1 40 5 0 0 174 15 2 60 4 0 0 220 5 2 4 2 5 3
37 1 1 0 0 0 0 83 16 1 240 6 0 0 129 6 2 28 4 0 0 175 12 2 228 20 0 0 221 12 2 116 11 0 0
38 1 1 0 0 0 0 84 12 3 132 13 0 0 130 5 3 14 4 0 0 176 12 6 152 36 4 2 222 3 2 6 2 0 0
39 1 1 0 0 0 0 85 6 2 28 4 0 0 131 12 3 132 13 0 0 177 3 2 0 0 3 2 223 4 2 30 9 9 4
40 1 1 0 0 0 0 86 4 1 12 2 0 0 132 8 2 40 6 0 0 178 1 1 0 0 0 0 224 2 1 16 3 2 1
41 1 1 0 0 0 0 87 8 1 56 5 0 0 133 3 2 6 2 0 0 179 1 1 0 0 0 0 225 12 2 108 15 8 1
42 1 1 0 0 0 0 88 4 1 20 3 0 0 134 4 1 12 2 0 0 180 1 1 0 0 0 0 226 7 4 52 16 2 1
43 1 1 0 0 0 0 89 4 1 0 0 0 0 135 7 4 20 6 0 0 181 1 1 0 0 0 0 227 4 1 36 5 0 0
44 1 1 0 0 0 0 90 3 2 0 0 0 0 136 4 1 12 2 0 0 182 4 4 0 0 2 2 228 1 1 8 3 3 2
45 1 1 0 0 0 0 91 1 1 0 0 0 0 137 4 1 4 1 0 0 183 3 2 0 0 3 2 229 6 2 38 9 0 0
46 1 1 0 0 0 0 92 1 1 0 0 0 0 138 7 3 20 5 0 0 184 3 2 0 0 3 2 230 3 2 22 7 5 3

strong basic bands. We repeat the process explained in step
(2): remove the bands that are combinations of bands in basic
and another strong band, keep the remaining fragile bands as
fragile root bands, add these new roots to basis, and consider
the combinations that result in another strong bands for the
next step (rest of bands). We repeat the process combining
in each step the remaining set of bands with the strong basic
bands. We have checked that, in all the 117 space groups that
have basic strong bands (Table II), at the beginning, the rest

of bands (to be considered in subsequent steps) increases with
the number of strong basic bands combined, until it reaches
a maximum. Then, the number of bands in rest decreases in
all the space groups, until it goes to 0 when a given number
of strong basic bands are combined. This number depends on
the space group [it goes from 2 in space groups with low
symmetry, to a maximum value 18 in space groups P6/m
(No. 175) and P6/mmm (No. 191)]. Note that, in principle, as
the number of strong basic bands in these two extreme space
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TABLE II. Classification of the 136 space groups that have strong and/or fragile topological bands with spin-orbit coupling and TR. In the
remaining 94 space groups all the basic bands are elementary.

2,10,11,12,13,14,15,47,49,51,53,55,58,63,64,65,66,67,69,70,71,72,74,81,82,83,84,85,86,87,88,
Space groups with strong 111,115,119,121,123,124,125,126,127,128,129,130,131,132,134,135,136,137,138,139,140,
and fragile bands 141,147,148,162,163,164,165,166,167,174,175,176,187,188,189,190,191,192,193,194,200,201,

202,203,204,205,206,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230

Space groups with strong 48,50,52,54,56,57,59,60,61,62,68,73,112,113,114,116,117,118,120,122,133,142
but without fragile bands
Space groups with fragile 143,149,150,156,157,158,159,168,173,177,182,183,184,185,186,199,208,210,214
but without strong bands

groups is 228 (see Table I) the number of combinations of
18 strong basic bands is 22818 � 1042. However, as most of
the combinations have been removed in previous steps, the
maximum number of bands to be considered is never higher
than half a million, which makes the problem tractable. The
results obtained through the induction method confirm the
results previously obtained using the polyhedron method [66]
based on the computation of the normalizations of affine
monoids, which can be represented by linear diophantine
equations and inequalities [67]. An example of application of
this steplike process can be found in Sec. S5 J of the SM [57],
where we give details about the determination of the fragile
roots in the space group P4/m (No. 83).

B. Relations between the types of bands
in the group-subgroup pair

The results of the induction process establishes features
between the basic bands in the subgroup and the induced
bands. We can state that:

(1) EBRs are always induced from EBRs in the sub-
group, independently of the group-subgroup pair. Alterna-
tively, given an EBR in a space group, it always subduces into
a direct sum of EBRs in any of its subgroups.

(2) Strong topological bands are induced from strong
topological bands, fragile bands, or from EBRs. In the last
two cases, it is only possible to induce a strong topological
band when one of the added symmetry operations to the
subgroup has as rotational part an improper operation, except
a mirror plane, i.e., there must be in the supergroup at least one
symmetry operation (not present in the subgroup) that keeps
invariant a single point.

(3) Fragile bands are induced from fragile bands or from
EBRs. The second case is only possible when one of the added
symmetry operations to the subgroup has as a rotational part
a threefold axis and/or an improper operation different from
a mirror plane.

IV. CALCULATION OF THE STRONG BANDS AND
STRONG TOPOLOGICAL INDICES THROUGH THE

SMITH NORMAL FORM

In the preceding sections we have described an extension
of the standard induction-subduction procedure to the deter-
mination of the types of bands in a solid. The calculation of
the basic bands in a space group is based on the knowledge
of the basic bands in one of its subgroups and the classification

of the basic bands and combinations of basic bands into
different types, trivial, fragile topological, or strong topolog-
ical, relies on the known EBRs in the space group. In this
section we introduce an alternative but equivalent formulation
of the problem based just on the knowledge of the EBRs in a
space group and on the fact that the set of EBRs contains all
the necessary information to derive all kinds of bands in the
space group.

Let ρ i
k j

, i = 1, . . . , Nk j be the list of the Nk j irreps (single-
valued irreps if spin-orbit coupling is not considered or
double-valued irreps when it is considered) at the Nk maximal
k j vectors ( j = 1, . . . , Nk) in a space group and mi,k j � 0 the
multiplicity of the irrep ρ i

k j
in the decomposition of a band B

into the irreps at maximal k vectors. We address the question:
can the band given by the mi multiplicities be expressed as a
linear combination of EBRs?

The band B can be represented as a N-dimensional “sym-
metry data vector” whose components are the integers mi,k j ,

B = (
m1,k1 , . . . , mNk1 ,k1 , . . .

)T
(3)

and the EBRs of the space group can also be described in the
same form. N = Nk1 + Nk2 + · · · is the total number of irreps
at maximal k vectors. Given an EBR, we denote as EBRi

the N-dimensional column vector whose jth component
EBRj,i represents the multiplicity of the jth irrep in the
decomposition of the ith EBR into irreps at the maximal k
vectors. Then the band in Eq. (3) can be expressed as a linear
combination of the NEBR elementary band representations if
there exist an NEBR-dimensional vector X = (x1, . . . , xNEBR )
with integer components such that the set of linear diophantine
equations given in matrix form,

EBR · X = B (4)

is fulfilled. Note that the rank of the matrix EBR in some
groups is rank(EBR) < NEBR because some EBRs can be
linear combinations of other EBRs with integer coefficients.
The equation system (4) can be simplified through the Smith
decomposition of EBR which can be stated as:

Theorem 1 (Smith normal form). If EBR is any m × n
integer matrix, then there is a unimodular integer invertible
m × m matrix L and a unimodular integer invertible n × n
matrix R such that

� = L · EBR · R, (5)

where � is a diagonal m × n matrix, not necessarily square,
known as the Smith normal form of EBR. The elements of
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� are �i, j = 0 if i �= j and the number of elements in the
diagonal different from 0 is the rank of the matrix EBR. L and
R can be chosen such that 0 < �1,1 � �2,2 · · · � �r,r with
r = rank(EBR).

Using the Smith decomposition, Eq. (4) can be written as

�Y = C with Y = R−1X and C = LB. (6)

Since L and R are unimodular matrices, Eq. (6) is also an
equation over the integers.

Due to the diagonal form of �, the set of equations (6) has
an integer solution if and only if

ci = 0, i > r (7)

and

ci/�i,i ∈ Z, i = 1, . . . , r. (8)

If a solution exists, the xi integers in Eq. (4) are

X = RY with Y = (
c1/�11, . . . , cr/�rr, y1, . . . , yNEBR−r

)T
,

(9)

where (y1, . . . , yNEBR−r ) are free variable integers. Setting all
yi = 0 we obtain a particular solution of Eq. (4) in terms of a
set of linearly independent EBRs.

Strong indices, topological classes, and compatibility relations

The existence of, at least, a solution of Eq. (4) requires that
the components of the B vector fulfill two types of conditions
given by Eqs. (7) and (8). The condition (7) can be written as

C̃ = L̃B = 0, (10)

where the matrix L̃ is the matrix L once the first r rows have
been removed and the C̃ vector has as components the last
N − r components of the C vector in Eq. (6) [39,68]. Its
components are, thus, L̃i, j = Li+r, j with i = 1, . . . , N − r and
j = 1, . . . , NEBR.

These conditions are equivalent to the conditions imposed
by the compatibility relations along any path between any
pair of maximal k vectors in the space group. As mentioned
before, if we consider two maximal k vectors k1, k2, an
intermediate k vector kl (a line or a plane) that connects
the two maximal vectors k1 and k2, and an irrep ρl of the
little group of kl , the total multiplicity of the irrep ρl upon
subduction of the irreps of the little group of k1 and k2 must
be the same on both sides. These conditions can be expressed
as a set of linear equations on the components of B,

CcompB = 0, (11)

where the compatibility matrix Ccomp contains as many rows
as irreps at all the possible intermediate paths between any
pair of maximal k vectors in the space group. For a detailed
explanation of the construction of the compatibility matrix see
Sec. S6 of the SM [57]. We have checked that rank(L̃) =
rank(Ccomp) = rank(L̃ ∪ Ccomp) in the 230 space groups with
and without TR for single-valued and double-valued irreps
in agreement with the results in Ref. [68]. Therefore, the
set of restrictions given by the matrix L̃ is equivalent to the
restrictions imposed by the compatibility relations. In other

words, a set of multiplicities that define a B vector (3) that do
not fulfill Eq. (10) do not form a band as defined in Sec. II.

The second condition (8) implies extra restrictions when
�i,i > 1. In these cases, the restrictions can be written as

ci = 0 mod �i,i. (12)

If the B vector satisfies the compatibility relations (10) but
does not fulfill all the conditions (12), the band given by
Eq. (3) is strong topological and the ci components in Eq. (12)
can be considered a set of strong topological indices of the
space group, with ci = LiB and Li the ith row of the L matrix
in the Smith decomposition of EBR [68].

For instance, the Smith normal form � of the EBR matrix
in the space group P1 (No. 2) with TR has three diagonal
elements �i,i = 2 and one diagonal element �i,i = 4. There-
fore, there are four indices ci than can take 2 × 2 × 2 × 4 =
32 different values (32 topological classes), being = c2,1 =
c2,1 = c2,3 = c4 = 0 the only set of values of the coefficients
that fulfills Eq. (8) or (12) and, therefore, it corresponds to a
trivial or fragile band. A detailed analysis of the determination
of the strong topological indices of this space group (first in
two dimension and then in three dimension) is explained in
Sec. S7 of the SM [57].

V. DETERMINATION OF THE FRAGILE PHASES AND
FRAGILE ROOTS THROUGH THE SMITH

DECOMPOSITION

The determination of the topological strong phases and the
definition of the topological indices in a space group is almost
immediate once the multiplicities of the EBRs are known,
as it has been shown in the previous section. However, the
determination of the fragile root is much more difficult. We
can state the problem in the following terms: which conditions
must satisfy a set of multiplicities given by the symmetry data
B vector in Eq. (3) to form a fragile band and, among the
fragile bands, which are fragile roots?

First, the multiplicities must fulfill the compatibility re-
lations. From the Smith decomposition of the matrix EBR
the condition for the symmetry data B vector to fulfill the
compatibility relations is Eq. (10). We now have obtained an
integer equation which would give us the general solution for
the band vector B in Eq. (3). This is easily solved as follows:
first, we do a Smith decomposition

�comp = LcompCcompRcomp. (13)

We then look for the nonzero components in the matrix
�comp. This is a diagonal matrix and has the first p com-
ponents equal to 1: (�comp)1,1 = · · · = (�comp)p,p = 1 and
(�comp)p+1,p+1 = · · · = (�comp)m,m = 0. The condition (10)
can be written as

L−1
comp�compR−1

compB = 0 → �compR−1
compB = 0 (14)

and due to the special values of the diagonal matrix �comp,

R−1
compB = Yp = (0, . . . , 0, yp+1, . . . , ym)T . (15)

Yp is a m-dimensional vector whose first p components are 0
and the remaining m − p components are, for now, integers
that must fulfill some conditions. The general B vector that
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satisfies the compatibility relations is thus

B = RcompYp. (16)

As the components of the B vector must be non-negative
integers, Eq. (16) restricts the possible sets of allowed com-
ponents of Yp through the matrix Rcomp.

Once the general form of the B vector that fulfills the
compatibility relations has been obtained, we now have to
ensure that the band is not strong topological. We then build
the C = LB matrix (6) and define the diagonal NEBR × N
matrix �−1 as �−1

i,i = 1/�i,i for i � r, being r the rank of
� in Eq. (5). So constructed, as in Eqs. (6) and (7), the C
matrix has coefficients ci = 0 for i > r, provided that B has
been forced to fulfill the compatibility relations. Finally, we
build the EBR vector VEBR,

VEBR = R�−1LB = R�−1LRcompYp (17)

whose components are the coefficients of the EBRs in the
linear equations that give the parametrization of any band B
that fulfills the compatibility relations. Note that VEBR is X
in Eq. (9), but we have changed the notation here to stress
explicitly that this vector is a linear combination of EBRs.
If at least one component is not an integer number, the band
represented by B is strong topological. If all the coefficients
are integer numbers it is fragile or trivial. If all the coefficients
are non-negative, the band is trivial. However, as the set of
EBRs is, in general, an overcomplete basis, a non-negative
component VEBR does not ensure that the band is not trivial.
It should be checked that there is no other VEBR vector with
non-negative coefficients that gives the same B. If there is such
VEBR vector, the band is trivial.

The whole procedure to identify the fragile phases thus
relies on the Smith decomposition of the EBR matrix. It
is clear that the number of fragile phases, i.e., number of
solutions of Eq. (17) with at least a negative integer will
depend on the rank of EBR. For instance, in those groups
where rank(EBR) = 1 there cannot exist fragile phases. The
vector (of non-negative components) that represents any EBR
is a multiple of the unique basis vector which, in principle,
could be or not an EBR. In any case, the components of this
vector are non-negative integers and, ultimately, any band in
this group can be expressed as a multiple (positive) of this
vector basis. This does not mean that no fragile phases exist.
It just means that, if they exist, they cannot be identified by
symmetry indices. In fact, in several groups analyzed in Sec.
S8 in the SM [57], decomposable EBRs do exist. However,
each branch of a decomposable EBR has characters at high
symmetry points that can be expressed entirely as sums of
other EBRs. The non-Wannierizable character of their bands
has to be proved by other methods which make use of Berry
phases [69]. We call these phases Berry fragile phases, to
differentiate them from the eigenvalue fragile phases which
can only be written in terms of a sum and (necessarily) a
difference of EBRs.

It is convenient, thus, to do the analysis starting from the
groups whose EBR matrix has the lowest rank. The ranks
of the double-valued EBR matrices in the space groups with
TR covers all the integer numbers from 1 to 14, except the
value 12. If single-valued EBRs are considered (no SOC),

the highest rank is 27. Tables III and IV give the rank of
the EBR matrix for each space group with and without SOC,
respectively. It is interesting to remark that, according to
Table III, when spin-orbit coupling is considered, the space
groups with highest ranks (from 11 to 14) are symmorphic
space groups that contain two or more symmetry operations
whose rotational part keeps a single point fixed. Moreover,
symmorphic space groups with primitive unit cell in the
standard setting have higher rank than symmorphic groups
with the same point group but nonprimitive centering. In Sec.
S8 of the SM [57] the above procedure is applied to space
groups of rank 2 and 3.

VI. DETERMINATION OF A MINIMUM SET OF
INDEPENDENT BASIC BANDS

In the previous sections we have described two ways to
calculate the basic bands of a space group and, from these
basic bands, the identification of the fragile roots. In general,
there are correlations between the multiplicities of different
basic bands. In particular, we can define two different kinds
of isomorphism in the whole set of basic bands: (a) through
conjugation of operations that belong to the affine normalizer
(or affine stabilizer) [70] of the space group and (b) through
a special case of the Kronecker product of irreducible repre-
sentations of the space group, when one of the irreps is one
dimensional (1D). These two kinds of isomorphisms allow
us to reduce the number of independent basic bands to a
minimum set of bands. Each subset of isomorphisms form
an automorphism group, and the join of both automorphism
groups form the automorphism group of the set of bands in
a space group. In the next two sections we analyze these
automorphism groups.

A. Reduction on the number of independent basic bands
through elements of the affine normalizer of the group

Given a space group G and one of its supergroups S , there
is a unique intermediated group NS (G) called the normalizer
of G with respect to S [65]. A symmetry operation {N |n} of
S belongs to NS (G) if it maps the group G into itself through
conjugation, i.e.,

NS (G) := {{N |n} ∈ S|{N |n}−1G{N |n} ∈ G}. (18)

The complete list of affine normalizers in all the 230 space
groups can be found in Ref. [38]. But in general the elements
of NS (G) do not map a subgroup of G into itself. In general, it
maps a subgroup of G into another (conjugated) subgroup of
G. In particular, let {R|t} a symmetry operation that belongs
to the little group of a given k vector, i.e., k = kR mod
translations of the reciprocal lattice. The symmetry operation,

{N |n}−1{R|t}{N |n} = {N−1RN |N−1(−n + t + Rn)} (19)

belongs to the little group of k′ = kN ,

k′N−1RN = kNN−1RN = kRN = kN = k′ (20)

mod translations of the reciprocal lattice. The little groups
of k and k′ are thus conjugated and it is possible to estab-
lish a 1 to 1 relation between the irreps of both groups. If
{k1, . . . , kr} is the set of k vectors of maximal symmetry
of G, {k1N, . . . , krN} is also a set of k vectors of maximal
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TABLE III. List of ranks of the double-valued EBR matrices (with SOC) in the space groups with TR.

Rank Space groups

1 1,3,4,5,6,7,8,9,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,
36,37,38,39,40,41,42,43,44,45,46,76,77,78,80,91,92,93,94,95,96,98,101,102,
105,106,109,110,144,145,151,152,153,154,169,170,171,172,178,179,180,181

2 79,90,97,100,104,107,108,146,155,160,161,195,196,197,198,199,208,210,212,213,214
3 48,50,52,54,56,57,59,60,61,62,68,70,73,75,89,99,103,112,113,114,116,

117,118,120,122,133,142,150,157,159,173,182,185,186,209,211
4 63,64,72,121,126,130,135,137,138,143,149,156,158,168,177,183,184,207,218,219,220
5 11,13,14,15,49,51,53,55,58,66,67,74,81,82,86,88,111,115,119,134,136,141,167,217,228,230
6 69,71,85,125,129,132,163,165,190,201,203,205,206,215,216,222
7 12,65,84,128,131,140,188,189,202,204,223
8 124,127,148,166,193,200,224,226,227
9 2,10,47,87,139,147,162,164,176,192,194
10 174,187
11 225,229
13 83,123
14 175,191,221

symmetry, with N being the rotational part of an element
of the normalizer. As the subset of k vectors of maximal
symmetry is unique in each space group, the second list
must contain all the k vectors of the first list. Therefore, the
operation {N |n} of the normalizer maps the set of maximal
irreps into itself,
(
ρ

k1
1 , . . . , ρk1

nk1
, ρ

k2
1 , . . . , ρk2

nk2
, . . . , ρ

kr
1 , . . . , ρkr

nkr

)
(21)

N−→ (
ρ

k1·N
1 , . . . , ρk1·N

nk1 ·N , ρ
k2·N
1 , . . . , ρk2·N

nk2 ·N , . . . , ρ
kr ·N
1 , . . . , ρkr ·N

nkr ·N

)
.

The set of maximal irreps on the left and on the right are the
same but, in general, reordered (see the example in Sec. S9 A
of the SM [57]). We can define a Nirr × Nirr matrix M{N |n}, with
Nirr = nk1 + · · · + nkr being the number of maximal irreps,
such that the i j element is zero unless the ith irrep on the
left in Eq. (21) and the jth irrep on the right are related
through conjugation. In this case, the element is 1. Therefore
M{N |n} is a permutation matrix, i.e., a square matrix that has
exactly one entry of 1 in each row and each column and 0
elsewhere.

TABLE IV. List of ranks of the double-valued EBR matrices (without SOC) in the space groups with TR.

Rank Space groups

1 1,4,7,9,19,29,33,76,78,144,145,169,170
2 8,31,36,41,43,80,92,96,110,146,161,198
3 5,6,18,20,26,30,32,34,40,45,46,61,106,109,151,152,

153,154,159,160,171,172,173,178,179,199,212,213
4 24,28,37,39,60,62,77,79,91,95,102,104,

143,155,157,158,185,186,196,197,210
5 3,14,17,27,42,44,52,56,57,94,98,100,

101,108,114,122,150,156,182,214,220
6 11,15,35,38,54,70,73,75,88,90,103,105,107,

113,142,149,167,168,184,195,205,219
7 13,22,23,59,64,68,82,86,117,118,120,130,163,

165,180,181,203,206,208,209,211,218,228,230
8 21,58,63,81,85,97,116,133,135,137,148,183,190,201,217
9 2,25,48,50,53,55,72,99,121,126,138,141,147,188,207,216,222
10 12,74,93,112,119,176,177,202,204,215
11 66,84,128,136,166,227
12 51,87,89,115,129,134,162,164,174,189,193,223,226
13 16,67,111,125,194,224
14 49,140,192,200
15 10,69,71,124,127,132,187
17 225,229
18 65,83,131,139,175
22 221
24 191
27 47,123
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For each member {N |n} of the affine normalizer, we can
define a unique M{N |n} matrix and these matrices form a finite
group (it is an automorphism group) which we can denote as
NG. Although the number of operations of the normalizer is,
in general, infinite, the order of NG is finite. This group is
a subgroup of the group of all the permutation matrices of
dimension Nirr × Nirr whose order is Nirr!.

Note that some operations of the normalizer correspond
just to an origin shift (when N = E ). In these special cases,
as kN = k, this particular automorphism maps the irreps of
the little group of k into themselves, for any k vector.

In Sec. S9 A of the SM [57] we present an example of
the calculation of NG in the space group P1. Table S7 in the
SM [57] gives, for each space group, the order of NG.

B. Reduction on the number of independent basic bands
through Kronecker products of irreps

The Kronecker (on inner) product of irreps of a group G
is a representation of G. In general, it is equivalent to the
direct sum of irreps of G. In a physical system, if we have
two set of states (in two different subspaces) that transform
under two representations, the tensor product of the two
sets of states transforms under the Kronecker product of the
representations.

Let ρk1 and ρk2 two irreps of the little groups Gk1 and Gk2

of k1 and k2, respectively. We denote as ∗ρk1 and ∗ρk2 the
induced irreps (known as full irreps) from ρk1 and ρk2 into G,
i.e.,

∗ρki = ρki ↑ G, ρki ∈ Gki , ∗ρki ∈ G. (22)

Let {ki
1} with i = 1, . . . , n1 be the n1 k vectors of the star

of k1 ≡ k1
1 and {ki

2} with i = 1, . . . , n2 be the n2 k vectors
of the star of k2 ≡ k1

2. In general, the set of n1 ∗ n2 vectors
{ki

1 + k j
2} with i = 1, . . . , n1 and j = 1, . . . , n2 is the direct

sum of different stars of G,{
ki

1 + k j
2

} = ∪{
ki

m

}
, m = 3, . . . . (23)

The Kronecker product of the two full irreps ∗ρk1 and ∗ρk2

is equivalent to the direct sum of full irreps induced from the
irreps of the little groups of km ≡ k1

m, m = 3, . . . on the right
side of Eq. (23),

∗ρk1 ⊗ ∗ρk2 =
∑
m=3

nm∑
i=1

cm,i,1,2
∗ρkm

i , (24)

where ∗ρkm
i is the full irrep induced from the ith irrep ρ

km
i

of the little group Gkm of km into G, nm is the number of

irreps of Gkm , and cm,i,1,2 are the Clebsch-Gordan coefficients.
The summation in m extends to the number of stars in the
decomposition in Eq. (23).

For our purposes, we consider a particular case of the
general Kronecker product of irreps: we take as ∗ρk1 in
Eq. (24) a one-dimensional full irrep for a given k1 vector.
This means that, on the one hand, the star of k1 contains just
k1 (the little group of k1 is then the whole space group G)
and, on the other hand, the irrep ρk1 of the little group of
k1 is one dimensional. In this particular case, the full irrep
∗ρk1 coincides with the irrep ρk1 and the decomposition in
Eq. (23) reduces to a single star: the star of k3 = k1 + k2.
Note also that, as k1R ≡ k1 for any operation R of the point
group of G, the little group of k2 and k3 is the same, Gk2 = Gk3

and there is a 1:1 correspondence between the full irreps
induced from these two little groups. As ∗ρk2 is an irrep
of G and the dimension of ∗ρk1 ⊗∗ ρk2 in Eq. (24) is the
same as the dimension of ∗ρk2 , then ∗ρk1 ⊗∗ ρk2 is also an
irrep. Therefore, in the decomposition given by Eq. (24) one
coefficient is 1 and the rest are 0. This equation establishes
thus an homomorphism between the full irreps ∗ρk2

i and ∗ρk3
i .

This also implies an homomorphism between the irreps ρ
k2
i

and ρ
k3
i of the little groups Gk2 and Gk3 . If we calculate the

Kronecker product of ∗ρk1 and all the irreps of the little groups
of all the maximal k vectors, the Kronecker product maps the
set of maximal irreps into itself, as in Eq. (21).

It is important to stress that the above automorphism is
only established when the full irrep ∗ρk1 is one dimensional.
If TR is not considered, the one-dimensional irrep ∗ρk1 can be
real or not, but with TR symmetry the irrep must be real and
thus, it must be a single-valued irrep. Therefore, when TR is
considered, for each one-dimensional irrep, an automorphism
is established between the single-valued irreps on one hand
(without SOC), and another automorphism between double-
valued irreps on the other hand (with SOC). The automor-
phism under the Kronecker product by ∗ρk1 = ρk1 can also
be described by a Nirr × Nirr permutation matrix Mρk1 .

The existence of the homomorphism between the irreps at
two different maximal k vectors under the Kronecker product
by a 1D irrep can be easily checked for the matrices of the
translation operators. The matrices of the translations {E |T} of
any full irrep of the little group Gk of k are diagonal matrices,
Dρk (T) = eik·T1d , where d is the dimension of the irrep. We
can write this matrix indicating only the diagonal elements as

Dρk (T) = {eik·T, . . . , eik·T}. (25)

The matrices of the full representations are

∗D∗ρk (T) = {eik·T, . . . , eik·T, eik2·T, . . . , eik2·T, . . . , eikn·T, . . . , eikn·T}, (26)

where {k ≡ k1, k2, . . . , kn} is the star of k and the symbol ∗ stands for a matrix of the full irrep.
If k1 is a vector whose little group is the whole space group Gk1 = G (therefore its star contains just the vector k1 itself) and

ρk1 is a 1D irrep of Gk1 , the matrices of the translations of Gk1 and G for this irrep are

Dρk1 (T) = ∗D∗ρk1 (T) = {eik1·T}. (27)

Now we consider a k vector with maximal symmetry k2. The matrices for the translations of an irrep ρk2 of the little group
Gk2 of k2 and the matrices of the full irrep are given by Eqs. (25) and (26), respectively, with k = k2.
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The Kronecker product of the matrices of the full irreps are

∗D∗ρk1 (T)∗D∗ρk2 (T) = {ei(k1+k2 )·T, . . . , ei(k1+k2 )·T, ei(k1+k2
2 )·T, . . . , ei(k1+k2

2 )·T, . . . , ei(k1+kn
2 )·T, . . . , ei(k1+kn

2 )·T}. (28)

They correspond to the matrices of the translations of a
full irrep ∗ρk3 induced by an irrep ρk3 of the little group of
k3 = k1 + k2.

Once we have identified all the one-dimensional single-
valued irreps in all the single-vector stars in a space group,
we can define one automorphism (and then a permutation
matrix) for each Kronecker product. This set of matrices form
an automorphism group which we denote as KG, and which is
also a subgroup of the group of all the permutation matrices of
dimension Nirr × Nirr. Table S7 in the SM [57] gives, for each
space group, the order of KG.

In Sec. S9 B of the SM [57] we present an example of the
calculation of KG in the space group P1.

Finally, the joining of the two previous automorphism
groups JG = 〈NG,KG〉 gives the complete automorphism
group of the space group G that maps the irreps of the little
groups of maximal k vectors into itself. This group is also a
subgroup of the permutation group of matrices of dimension
Nirr × Nirr and, in general, is not the direct product of NG and
KG. Table S7 in the SM [57] also gives the order of JG. It can
be checked that, in general, |JG| � |NG| ∗ |KG|.

The automorphism group can be applied to the set of
basic bands, to the set of EBRs or to the set of fragile roots,
respectively. Table S8 in the SM [57] gives the number of
fragile roots and the number of independent fragile roots by
space group.

VII. CONCLUSIONS

The set of electronic bands in a solid can be described as
a linear combination of a limited number of basic units (basic
bands), identified by the irreducible representations at every k
vector of maximal symmetry. These basic bands are the small-
est units that fulfill the compatibility relations, in the sense
that they cannot be split into subsets of bands that internally
satisfy the compatibility relations. These basic bands are thus
the building blocks of any electronic band structure. On the
other hand, the elementary band representations are the basis
of any set of bands that can be induced from localized Wannier
functions in the unit cell of the solid. Both subsets, the basic
bands and the elementary band representations, allow us to
characterize all the possible types of bands (topologically
trivial, strong, or fragile) that can appear in a material.

The induction procedure is a powerful technique to derive
all the basic bands in all the space groups starting from the
unique trivial basic band in the space group P1 following
group-subgroup chains. On the other hand, we have demon-
strated that the Smith decomposition of the matrix constructed
from the multiplicities of the elementary bands representa-
tions on the irreps of the little groups at the k vector of
maximal symmetry contains all the information about the all
kinds of bands in all the space groups. Both methods give rise
to the same result and can be considered thus as equivalent.

Once all the basic bands have been calculated through the
induction procedure, we have identified all the fragile root
bands in all the space groups. The result confirms the previous
derivation through the polyhedron method [66]. We have also
calculated the automorphism group of all the space groups,
whose elements map the set of basic bands into itself. The
elements of this group are deduced from the operations of the
affine normalizer of the space group and from the Kronecker
products of the irreps at k vectors of maximal symmetry and
the one-dimensional single-valued irreps in the space group.
These mappings enable us to reduce the number of indepen-
dent basic bands. These equivalences have also been applied
to reduce the number of independent fragile root bands.

A catalog of the topological classification of all the “high-
quality” topological materials existing in the ICSD [47] is
available in Ref. [71].
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