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One-step model of photoemission at finite temperatures: Spin fluctuations of Fe(001)
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Various technical developments have extended the potential of angle-resolved photoemission spectroscopy
(ARPES) tremendously over the last 20 years. In particular improved momentum, energy, and spin resolution
as well as the use of photon energies from a few eV up to several keV make ARPES a rather unique tool to
investigate the electronic properties of solids and surfaces. With our work we present a generalization of the
state-of-the-art description of the photoemission process, the so-called one-step model that describes excitation,
transport to the surface, and escape into the vacuum in a coherent way. In particular, we present a theoretical
description of temperature-dependent ARPES with a special emphasis on spin fluctuations. Finite-temperature
effects are included within the so-called alloy analogy model which is based on the coherent potential
approximation, and this method allows us to describe uncorrelated lattice vibrations in combination with spin
fluctuations quantitatively on the same level of accuracy. To demonstrate the applicability of our approach a
corresponding numerical analysis has been applied to spin- and angle-resolved photoemission of Fe(100) at
finite temperatures.
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I. INTRODUCTION

The experimental and theoretical studies on itinerant elec-
tron ferromagnetism address one of the crucial problems in
condensed-matter physics (for reviews, see Ref. [1]). One
of the most important experimental tools to get direct in-
sight into the electronic structure of solids and surfaces is
angle-resolved photoemission spectroscopy (ARPES). In par-
ticular, spin- and angle-resolved photoemission spectroscopy
(SARPES) has been developed into a powerful method to
study surface and thin-film magnetism [2]. Very recently,
this technique has been used extensively to investigate the
topological properties of solid-state materials [3]. In the 1980s
the first experimental studies using SARPES were devoted to
probing the existence of local magnetic moments at tempera-
tures close to and above the Curie temperature TC. Pioneering
SARPES experiments were performed in particular by Kisker
et al. [4–6] on Fe(001). At that time two contrary models had
been proposed to describe the ferromagnetic to paramagnetic
transition at the critical temperature. On the one hand, the so-
called Stoner model proposed the breakdown of the exchange
splitting of bands, leading in this way to the nonmagnetic
phase. On the other hand, the existence of local fluctuating
magnetic moments above the Curie temperature according to
the Heisenberg model was suggested. SARPES studies on
magnetic transition metals (Fe and Co) were able to clearly
identify the exchange-split bands at lower temperatures and
fluctuating moments at high temperatures [2].
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Unfortunately, after the pioneering SARPES experiments
at elevated temperatures, most of the more recent SARPES
studies were done at room or even very low temperatures for
a variety of materials, including superconductors, topological
materials, etc. [3,7,8]. The main reason for this is found
in the possible contamination of the electron analyzer and
UHV chamber after heating of the thin-film samples, which
leads to a significant decrease of the pressure in the UHV
chamber. However, the thermal vibrations in combination
with spin fluctuations turned out to be a very important issue
for photoemission spectra measured at high photon energy
ranging from soft to hard x rays [9–13]. Going to higher
photon energies has the advantage of a longer inelastic mean
free path of the photoelectrons and turns ARPES into a
bulk-sensitive technique. However, higher photon energies
challenge the interpretation of the corresponding experimental
spectra. In particular, even at very low temperatures (tenths of
a kelvin), indirect transitions occur which, as a consequence,
lead to the X-ray photoemissiom spectroscopy (XPS) limit.
The corresponding averaging over the Brillouin zone leads
to density-of-states-like spectra for any emission angle, and
access to the ground-state band structure is lost [14]. Finally,
spin fluctuations play an important role in the description of
ultrafast processes measured by pump-probe angle-resolved
photoemission and two-photon photoemission spectroscopy.
Absorption of a very intense pump-pulse leads in the first
femtoseconds to the increase of the electronic temperature,
and after several hundreds of femtoseconds the energy is dissi-
pated into the lattice. Very recently, time-dependent SARPES
measurements were performed for topological insulators [15].
Furthermore, Eich et al. performed a detailed study of possible
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ultrafast demagnetization processes in ferromagnetic transi-
tion metals by SARPES [16].

It is well known that density functional theory (DFT) in its
local spin-density approximation (LSDA) is able to describe
quantitatively the ground state and magnetic properties of
transition metals at T = 0 K. This rigorous description can
be extended also to finite temperatures. The most common
multiscale approach in this direction is based on the calcu-
lation of the so-called exchange-coupling constants [17] for a
classical Heisenberg model on the basis of DFT and perform-
ing subsequent Monte Carlo or spin dynamics simulations.
On the other hand, it has been realized for many years that
locally fluctuating magnetic moments are a consequence of
local electronic correlations. A very successful method to
go beyond the DFT-LSDA scheme is the dynamical mean-
field theory (DMFT) in combination with DFT. Lichtenstein
et al. showed that such a DFT + DMFT approach can quan-
titatively describe the temperature-dependent magnetism in
Fe and Ni [18]. However, such an approach does not take
into account lattice vibrations which are present at all finite
temperatures. On the other hand, a scheme to deal with
thermal lattice vibrations is provided by the so-called alloy
analogy model [19] that takes the necessary thermal average
by means of the coherent potential approximation (CPA) alloy
theory. This approach was already applied successfully to deal
with ARPES of nonmagnetic materials at finite temperatures
[20]. In addition, following the original idea behind the alloy
analogy model, it was extended to account for thermally
induced spin fluctuations in magnetic materials [21] as well.
This opens the combination with various models to deal with
thermal spin fluctuations, for example, the disordered local
moment approach [22,23]. Another advantage of the approach
is its possible combination with methods describing local
correlations, for example, LSDA + U and LSDA + DMFT.
This was demonstrated recently for Gd, where the temperature
dependence of the longitudinal resistivity and the anomalous
Hall effect was studied [24].

A widely accepted practice is to interpret a measured
photoelectron spectrum by referring to the results of band-
structure calculations. Such an interpretation is questionable
for moderately and, even more, strongly correlated systems.
On the other hand, the most reliable theoretical approach to
interpret ARPES spectra is provided by the so-called one-
step model of photoemission. This approach was formulated
first by Pendry and coworkers [25,26] in the framework
of multiple-scattering theory and was recently generalized
to include various aspects like disorder, lattice vibrations,
electronic correlations, the fully relativistic spin-density ma-
trix formulation, and time-dependent pump-probe aspects
[8,27,28]. However, this scheme did not allow us, until now,
to consider temperature-dependent spin fluctuations in com-
bination with lattice vibrations. In this paper we generalize
the one-step model of photoemission in order to include
spin fluctuations and lattice vibrations on the same level of
accuracy within the framework of the alloy analogy model.

This paper is organized as follows: In Sec. II we de-
scribe the theoretical approach, the so-called alloy analogy
model, which has been applied to the one-step model of
photoemission in the framework of the spin-polarised rela-
tivistic Korringa–Kohn–Rostoker (SPR-KKR) method. The

calculational details and parameters are summarised in the
Sec. III. In Secs. IV A and IV B we apply this formalism
and calculate temperature-dependent, spin-polarized ARPES
spectra for Fe(001). In Sec. V we summarize our results.

II. THEORETICAL APPROACH: THERMAL EFFECTS

Considering the electronic structure of a magnetic solid
at finite temperature, its modification due to thermal lat-
tice and magnetic excitations has to be taken into account.
The present approach is based on the adiabatic treatment of
the noncorrelated localized thermal displacements of atoms
from their equilibrium positions (thermal lattice vibrations)
in combination with a tilt of the local magnetic moments
away from their orientation in the ground state (thermal spin
fluctuations). Multiple-scattering theory allows us to describe
uncorrelated local thermal vibrations and spin fluctuations
within the single-site CPA alloy theory. This implies the
reduction of the calculation of a thermal average to the cal-
culation of the configurational average, in complete analogy
to the averaging for random, substitutional alloy systems.
The impact of thermal effects on the electronic structure,
taken into account within such an approach, was discussed
previously in order to describe the temperature-dependent
transport properties and Gilbert damping in magnetic systems
[28]. The impact of the thermal lattice vibrations was also
studied in calculations of temperature-dependent photoemis-
sion of nonmagnetic systems [20]; however, the inclusion
of the thermal spin fluctuations for ferromagnetic systems
is missing, and in the following we generalize the one-step
model of photoemission accordingly.

A. Alloy analogy model

Within the alloy analogy model, lattice vibrations are de-
scribed by a discrete set of Nv displacement vectors � �Rq

v (T )
for each atom in the unit cell. The temperature-dependent
amplitude of the displacements is taken to be equal to the rms
displacement (〈u2〉T )1/2, |� �Rq

v (T )| = 〈u2
q〉1/2

T , with the prob-
abilities xv = 1/Nv (v = 1, . . . , Nv). [〈u2

q〉T ]1/2 is evaluated
here within the Debye model with the Debye temperature �D

taken from experiment.
Using the rigid muffin-tin approximation [29,30], the dis-

placed atomic potential is associated with a corresponding
single-site t matrix t that has to be referred to with respect
to the common global frame of reference. This quantity is
obtained by a coordinate transformation from a local single-
site t matrix t loc via the expression

t = U (� �R) t loc U (� �R)−1. (1)

In the following the underline represents a matrix in the
angular momentum representation. In the fully relativistic
formulation case, as adopted here, this implies a labeling of
the matrix elements with the relativistic quantum numbers
� = κ, μ [31]. The so-called U -transformation matrix U (�s)
in Eq. (1) is given in its nonrelativistic form by [29,30]

ULL′ (�s) = 4π
∑
L′′

il+l ′′−l ′ CLL′L′′ jl ′′ (|�s|k)YL′′ (ŝ). (2)

Here L = (l, m) represents the nonrelativistic angular mo-
mentum quantum numbers, jl (x) is a spherical Bessel

035107-2



ONE-STEP MODEL OF PHOTOEMISSION AT FINITE … PHYSICAL REVIEW B 102, 035107 (2020)

function, YL(r̂) is the real spherical harmonics, CLL′L′′ is the
corresponding Gaunt number, and k = √

E is the electronic
wave vector. The relativistic version of the U matrix is ob-
tained by a standard Clebsch-Gordan transformation [31].

To account for the impact of disorder caused by thermal
spin fluctuations, the continuous distribution P(ê) for the ori-
entation of local magnetic moments is replaced by a discrete
set of orientation vectors ê f (with f = 1, . . . , Nf ) occurring
with a probability x f . The configurational average for this
discrete set of orientations is made using the CPA, leading
to a periodic effective medium.

The rigid spin approximation [17] used in the calculations
implies that the spin-dependent part Bxc of the exchange-
correlation potential does not change for the local frame of
reference fixed to the magnetic moment when the moment
is oriented along an orientation vector ê f . As a result, the
single-site t matrix t loc

f considered in the local frame is the
same for all orientation vectors. With respect to the common
global frame that is used to deal with the multiple-scattering
problem [see Eq. (8)] the t matrix for a given orientation
vector (ê f ) is determined by

t f = R(ê f ) t loc R(ê f )−1, (3)

with the transformation from the local to the global frame of
reference expressed by the rotation matrices R f = R(ê f ) [31].
The temperature-dependent probability x f = x(ê f ) for each
orientation ê f and an appropriate Weiss field parameter w(T )
is given by the expression [32]

x f = exp[−w(T )êz · ê f /kT ]∑
f ′ exp[−w(T )êz · ê f ′/kT ]

. (4)

The various types of disorder discussed above may be
combined with each other as well as with chemical, i.e.,
substitutional disorder. In the most general case a pseudocom-
ponent (v f t ) is characterized by its chemical atomic type t ,
the spin fluctuation f , and lattice displacement v. Using the
rigid muffin-tin and rigid spin approximations, the single-site
t matrix t loc

t in the local frame is independent of the orientation
vector ê f and displacement vector � �Rv and coincides with
t t for the atomic type t . With respect to the common global
frame one has accordingly the t matrix:

tv f t = U (� �Rv ) R(ê f ) t t R(ê f )−1U (� �Rv )−1. (5)

With this the resulting CPA equations are identical to the
standard CPA equations (6) to (8) below with the index t
identifying atom types replaced by the combined index (v f t ).
The corresponding pseudoconcentration xv f t combines the
concentration xt of the atomic type t with the probability for
the orientation vector ê f and displacement vector � �Rv . This
leads to the site diagonal configurational average, which can
be determined by solving the multicomponent CPA equations
[33]:

τCPA =
∑
v f t

xv f tτ v f t , (6)

τ v f t = [(tv f t )
−1 − (tCPA)−1 + (τCPA)−1]−1, (7)

τCPA = 1

�BZ

∫
�BZ

d3k[(tCPA)−1 − G(�k, E )]−1, (8)

where, again, the underline indicates matrices with respect to
the combined index �.

B. One-step model of ARPES

The main idea of the one-step model of photoemission
is to describe the excitation process, the transport of the
photoelectron to the surface, and the escape into the vacuum in
a coherent way as a single quantum-mechanical process [25].
The one-step model of ARPES is based on Fermi’s golden rule
and was originally implemented for ordered surfaces using
the multiple-scattering KKR formalism (for more details see
the review in Ref. [34]). This approach was generalized to
describe photoemission of disordered alloys by means of the
CPA [35,36]. Recently, it was extended to deal with thermal
lattice vibration effects exploiting the alloy analogy model
described above. This approach was successfully applied to
describe indirect transitions which occur in soft- and hard-
x-ray photoemission [20]. Based on the CPA approach the
temperature-dependent spin-density matrix ρ for a given ki-
netic energy ε f and wave vector k‖ can be written in the
following form:

〈ρss′ (ε f , k‖, T )〉 ∝ 〈
ρat

ss′ (ε f , k‖, T )
〉 + 〈

ρc
ss′ (ε f , k‖, T )

〉
+ 〈

ρ inc
ss′ (ε f , k‖, T )

〉 + 〈
ρsurf

ss′ (ε f , k‖, T )
〉
,

(9)

with a purely atomic part (at), a coherent part (c) with multiple
scattering involved, and an incoherent (inc) part as described
in detail in Refs. [37,38] in the context of chemical disorder
in alloys. The third, incoherent contribution which appears
due to the CPA-averaging procedure represents an on-site
quantity that behaves density-of-states-like [37]. The last con-
tribution is the surface (sur f ) part of the spin-density matrix.
As dispersing and nondispersing contributions are clearly
distinguishable, we can define the spin-density matrix which
describes the angle-integrated photoemission spectroscopy
(AIPES)

〈
ρAIPES

ss′ (ε f , k‖, T )
〉 ∼ 〈

ρat
ss′ (ε f , k‖, T )

〉
+ 〈

ρ inc
ss′ (ε f , k‖, T )

〉 + 〈
ρsurf

ss′ (ε f , k‖, T )
〉
, (10)

where the k dependence in the atomic and incoherent con-
tributions is only due to the final state. k averaging is not
necessary because the k dependence of the spin-polarised
low energy electron diffraction ((SP)LEED)-type final state
is very weak and can be neglected in explicit calculations.
Furthermore, when using the single-scatterer approximation
for the final state the k dependence completely vanishes. In
this way a direct comparison to corresponding measurements
is given in both cases.

In terms of the spin-density matrix ρ the intensity of the
photocurrent can be written as

I (ε f , k‖, T ) = Tr[ρss′ (ε f , k‖, T )], (11)

with the corresponding spin polarization vector given by

P = 1

I
Tr(σρ). (12)
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Finally, the spin-projected photocurrent is obtained from the
following expression:

I±
n = 1

2 (1 ± n · P), (13)

with the spin polarization (±) referring to the vector n.
Within our approach, we aim at a generalized spin-density

matrix formalism for the photocurrent to include spin fluc-
tuations and thermal vibrations on the same level of accu-
racy. The formalism presented in Sec. II A provides us with
the temperature-dependent single-site scattering matrix tv f t
which enters the multiple-scattering KKR formalism to cal-
culate the photocurrent I (ε f , k‖, T ). (A detailed description of
the generalized fully relativistic one-step model for disordered
magnetic alloys can be found in Ref. [8].) Special care has to
be taken concerning the temperature-dependent averaging of
the photoemission matrix elements, in contrast to the previous
work which did not account for spin fluctuations [20]. Within
the above-mentioned rigid spin approximation [39], the reg-
ular M loc

i′ and irregular I loc
i′, j′ dipole matrix transition elements

are first calculated for the local frame of reference fixed to
the magnetic moment when the moment is oriented along an
orientation vector ê f with the components i′ and j′ of the light
polarization vector referred to the local frame of reference
(x′, y′, z′) with êz′ = ê f . In the case of spin fluctuations, the
transformation of the matrix elements into the global frame of
reference also includes a rotation of the polarization. For the
regular matrix elements one finds

Mv f t
i =

∑
i′

Dii′ (ê f )U (� �Rv ) R(ê f ) M loc
i′ R(ê f )−1U (� �Rv )−1,

(14)
and for the irregular matrix elements one has accordingly

Iv f t
i j =

∑
i′ j′

Dii′ (ê f ) Dj j′ (ê f )U (� �Rv )

× R(ê f ) I loc
i′ j′ R(ê f )−1U (� �Rv )−1, (15)

where the 3 × 3 matrix Di j represents the transformation of
the polarization vector of the light from the local to the global
frame of reference.

III. COMPUTATIONAL DETAILS

The electronic structure of the investigated ferromagnet
bcc Fe, has been calculated self-consistently using the SPR-
KKR band structure method [40,41]. For the LSDA exchange-
correlation potential the parametrization as given by Vosko
et al. [42] has been used, and the experimental lattice param-
eters have been taken. For the angular momentum expansion
within the KKR multiple-scattering method a cutoff of lmax =
3 was used. The temperature effects are treated within the
alloy analogy scheme based on the CPA alloy theory. For the
description of the magnetic spin fluctuations the temperature-
dependent magnetization data were taken from experimental
magnetization curves [43], and the lattice displacements as
a function of temperature have been calculated using the
Debye temperature of T = 420 K. In addition to the LSDA
calculations, a charge and self-energy self-consistent LSDA +
DMFT scheme for correlated systems based on the KKR
approach [44,45] has been used. The many-body effects are
described by means of DMFT [46], and the relativistic version

of the so-called spin-polarized T -matrix fluctuation exchange
approximation [47,48] impurity solver was used. The realistic
multiorbital interaction has been parametrized by the average
screened Coulomb interaction U and the Hund exchange
interaction J . In our calculations of bcc Fe we used values
for the Coulomb parameter U = 1.5 eV and J = 0.9 eV as
found in our previous ARPES studies on Fe [49,50]. Finally,
the around-mean-field LSDA + U-like double-counting cor-
rection is applied to the self-energy [44]. In the case of pure
transition metals this choice of double counting seems to be
the most appropriate [49,50].

In a second step the self-consistent potential and DMFT
self-energy for bcc Fe has been used to calculate the photoe-
mission response from the Fe(001) surface by means of the
one-step model of photoemission presented above.

IV. RESULTS AND DISCUSSION

A. Temperature-dependent ground state

First, let’s discuss the impact of thermal lattice vibration
and spin fluctuations on the ground-state electronic structure
of a magnetic solid, focusing on the temperature-induced
modification of the density of states (DOS). In an ordered
material, the spin-resolved density of states is represented by
the sum ns(E ) = 1

N

∑
�k δ[E − Es(�k)], with Es(�k) being the

energies of the electron states characterized by an infinite
lifetime in the case of T = 0 K and s being the spin. On
the other hand, at a finite temperature, T > 0 K, the electron
scattering due to thermally induced lattice vibrations and spin
fluctuations leads to a finite lifetime of the electronic states
which can be accounted for within the KKR Green’s function
formalism by giving the total DOS in terms of the Green’s
function as follows:

n(E ) = − 1

π
Im TrG(E ). (16)

Thermally induced lattice vibrations are treated here as ran-
dom atomic displacements from the equilibrium positions,
with the amplitude dependent on temperature. The same holds
for the temperature-induced tilting of the atomic spin mo-
ments. This creates a thermal disorder in the atomic positions
and spin orientations having an impact on the electronic
structure similar to that of chemical disorder in an alloy. In
particular, it causes a broadening of the electronic states and
a change in the exchange splitting of the states with opposite
spin directions. Using the alloy analogy formalism described
above, the Green’s function of the system, represented within
multiple-scattering theory, is given in terms of the configura-
tional average of the scattering path operator τCPA given by
Eqs. (6) to (8).

As will be shown below, spin fluctuations make a dominat-
ing contribution to the thermally induced modification of elec-
tronic structure when the temperature approaches the critical
temperature TC, where a transition to the paramagnetic (PM)
state occurs. Thus, focusing on only thermal spin fluctuations,
the scattering path operator averaged over spin fluctuations
at a given temperature can be written as follows: τCPA =∑

f x f τ f , where τ f is associated with the spin orientation ê f ,
giving access to a corresponding DOS contribution n f ,s(E ).
The DOS nloc

f ,s(E ) projected on spin s evaluated in the local
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FIG. 1. Total spin-resolved DOS for bcc Fe in the (a) local and (b) global frames of reference.

frame of reference with êz′ = ê f is different for different spin
channels in the case of a nonzero local magnetic moment.
This holds even for the PM (i.e., magnetically disordered)
state with 〈m̂〉 = 0 in the case of a nonvanishing local moment
above TC as it occurs, e.g., for bcc Fe. However, the average
spin-projected DOS functions calculated for the PM state in
a common global frame of reference are equal; that is, one
has 〈n↑〉(E ) = 〈n↓〉(E ). Here the indices ↑ and ↓ stand for
a spin orientation along the global êz direction and opposite
it, respectively. Due to random orientation of the atomic
spin magnetic moments in the system, the n+ and n− DOS
projections are contributed equally by the electronic states
characterized by different spin quantum numbers, implying
mixed-spin character of the electronic states in such a system.

Figure 1(a) represents the DOS for bcc Fe calculated
for the PM state (〈m̂〉 = 0) in the local frame of reference
(solid line), averaged over all possible orientations of the
magnetic moment. This result is compared with the DOS at
T = 0 K. One can see, first of all, a finite exchange splitting
of the majority- and minority-spin states at T > TC . The main
temperature effect is a significant broadening of the energy
bands when compared to the case of T = 0 K. However, in
the global frame of reference [see Fig. 1(b)] the difference be-
tween the majority- and minority-spin states decreases when
approaching the critical temperature TC = 1024 K. Above TC,
in the PM state, the difference vanishes between the DOSs for
different spin channels. However, this is not the case when
only thermal lattice vibrations are taken into account [dashed
line in Fig. 1(b) for T = 1025 K]. In this case only a weak
broadening of the energy bands occurs, which is much weaker
when compared to that due to spin fluctuations.

B. Angle-resolved photoemission spectroscopy of bcc Fe(001)

Although a large number of experimental spin-resolved
ARPES studies on ferromagnetic transition metals are present
in the literature, corresponding data for high temperatures are
very rare. Experimental temperature-dependent studies were
carried out predominantly for Fe and Ni in the mid-1980s
(for a review see Ref. [2]). On the other hand, there have

been several attempts to account for temperature-dependent
ARPES within various different theoretical frameworks such
as dynamical mean-field theory [18] and the disorder local
moment approach [51]. However, most theoretical models
were limited either to T = 0 K or to temperatures above the
critical temperature TC and are based on only the ground-
state electronic structure. In this way these approaches ignore
matrix element, surface, and final-state effects. Therefore,
the question of whether ARPES can distinguish between the
different models describing finite-temperature spin correla-
tions, such as the Stoner and Heisenberg models, is still
open [16]. The alloy analogy model in combination with the
one-step model of photoemission, presented in Sec. II, allows
us to describe all the mentioned effects on the same level of
accuracy. As an illustration of an application of this approach
we discuss results for temperature-dependent spin-resolved
ARPES on Fe(001) and compare the calculated spectra with
corresponding experimental data from Kisker et al. [5].

In Fig. 2 we compare experimental and theoretical LSDA-
based spin-resolved photoemission data for three different
temperatures, namely, T = 0, 300, and 900 K, respectively.
The data for 0 K are seen as a reference obtained by using
the standard one-step model of photoemission scheme. All
spectra have been calculated for normal emission geometry
assuming s-polarized light with 60 eV photon energy. Prior
to these calculations we performed a photon energy scan
(kz scan) in order to identify the kz position in the Bril-
louin zone. Due to the LSDA approximation the final states
are usually shifted somewhat in energy with respect to the
experimental spectra. In the case of Fe the photon energy
of 60 eV corresponds to emission from the � point. The
spin-resolved spectra reveal three main transitions with bulk
states as initial states: a minority peak close to the Fermi
level and a majority peak at −2.4 eV binding energy, both
having T2g symmetry. The majority peak at −0.9 eV binding
energy has Eg symmetry. This transition should be suppressed
by using s-polarized light due to the selection rules. However,
as mentioned by Kisker et al. [5] due to the finite acceptance
angle of the analyzer this transition has, nevertheless, been
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FIG. 2. Comparison between experimental (right panels) and theoretical LSDA-based spectra (left panels, dashed lines) and LSDA +
DMFT based spectra (left panels, solid lines) for temperature-dependent spin-resolved photoemission at Ephot = 60 eV and normal emission.

observed in the corresponding measurements. In addition a
majority peak around −0.9 eV shows up with strong surface
character, and in fact, it is a mixture of an Eg-like state and
a surface d-like resonance. The minority surface states of
Fe(001) close to the Fermi energy have been studied in detail
in the past [52] but could not be resolved in Kisker’s work due
to the limited experimental resolution.

In Fig. 2 (bottom panels) the results of the finite-
temperature calculations (see Sec. II) are compared with
corresponding experimental data. As a reference, calculated
spectra for T = 0 K are given by dashed lines. Obviously, we
obtained reasonable agreement with the experimental spectra.
At T = 900 K the magnetization of Fe is decreased to roughly
about 60% of the value at T = 300 K. As one can see, at
high temperature the Eg states are shifted towards the Fermi
level. The exchange splitting of the T2g states is reduced, but it
still remains very high. In particular, not only is a reduction
of the exchange splitting observed, but also an increase of
the minority peak intensity at −2.5 and −0.9 eV is found, in
accordance with the experimental findings. This results from
an increasing contribution from the majority-spin states in line
with the discussion in Sec. IV A. The overall reduction in the
minority-spin intensities at finite temperature is also a result
of the varying contribution of the different spin channels to the
“spin-mixed” electronic states. In the calculations we can turn
the lattice vibrations or spin fluctuations separately on and off.
The main broadening effect in the spectra results from the spin

fluctuations, while lattice vibrations have a minor effect on the
spin polarization. However, as shown in the case of soft- and
hard-x-ray photoemission [20], lattice vibrations will become
more noticeable at higher photon energies.

Figure 2 shows that the overall agreement between the ex-
perimental data and the LSDA-based calculations is quite rea-
sonable. Also the temperature dependence is well described
by the LSDA calculations. However, LSDA-based calcula-
tions underestimate the energy-dependent broadening, and the
position of the Eg peak is found at higher binding energy.
One of the most successful approaches to include many-body
effects beyond LSDA is the LSDA + DMFT scheme. Various
aspects concerning self-energy obtained via self-consistent
LSDA + DMFT calculations for bcc Fe were discussed in
detail recently in the context of ARPES [49,50]. To find the
best correspondence between the binding energy positions
and energy-dependent broadening of the theoretical peaks we
have used for the averaged on-site Coulomb interaction U the
value of U = 1.5 eV and exchange J = 0.9 eV. The chosen
value for U lies between the estimated value U ≈ 1 eV based
on experiment [53] and the value U ≈ 2 eV derived from
theoretical studies [54,55]. The most pronounced difference
between LSDA + DMFT calculations and corresponding ex-
perimental results concerns the majority T2g state, which in
the LSDA + DMFT calculations is shifted towards the Fermi
level. On the other hand, the energetic position of this peak
is better reproduced by plain LSDA calculations, as shown in
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Fig. 2. These differences may indicate a strong influence of
nonlocal correlations in the case of Fe [49,50].

In the following we address the question of to what extent
strongly correlated systems can be investigated by means of an
implementation suited to deal with only moderately correlated
systems. In general local spin fluctuations and corresponding
correlations are formally included in the LSDA + DMFT
calculations if a numerically exact DMFT impurity solver is
used, e.g., by using the continuous-time Monte Carlo method.
On the other hand, the spin-polarized T -matrix fluctuation-
exchange solver (SPTF) [47,56] used to calculate the spectra
presented in Fig. 2 (solid lines) has been implemented to treat
the problem of magnetic fluctuations in transition metals and
has been successfully applied to the ferromagnetic phases of
Fe, Co, and Ni [56–58] and to the antiferromagnetic phase
of γ -Mn [59], as well as to half-metallic ferromagnets [60].
This solver is quite stable and computationally rather cheap
and deals with the complete four-index interaction matrix.
On the other hand, its perturbative character restricts its use
to relatively weakly, or moderately, correlated systems. Not
surprisingly, SPTF performs well when starting from a spin-
polarized solution since the spin splitting contains already
the main part of the exchange and correlation effects. On the
other hand, the direct application of SPTF to a nonmagnetic
reference state can create stability problems. This is because
one tries to attribute the strong and essentially mean-field
effect of the formation of a local magnetic moment to dynam-
ical fluctuations around the non-spin-polarized state. Using a
nonmagnetic reference state causes no problems when one
uses the quantum Monte Carlo (MC) method, which has no
formal restrictions on the amplitude of fluctuations but seems
problematic for perturbative approaches. As a way to reduce
the limitations for the latter case we propose a combination
of SPTF with the disordered local moment approach [61,62].
As already shown for the case of actinides [63], the inclusion
of the fluctuations of randomly oriented local moments can
improve drastically the description of the energetics in the
paramagnetic phase. Therefore, as demonstrated in Fig. 2,
one can hope that the combination of spin fluctuations treated
within the alloy analogy model presented here in combination
with a perturbative DMFT solver will allow us to extend the
range of applicability of SPTF.

Within the recent novel ultrafast pump-probe spin-resolved
photoemission experiments on ferromagnetic materials [16]
time-dependent demagnetization is reflected by a correspond-
ing change in the exchange splitting. Several mechanisms for
this observation have been proposed in the literature. Among
others, Eich et al. discussed as two possible limiting physical
models the itinerant-electron Stoner-like approach versus the
localized-electron Heisenberg spin-fluctuation picture. While
the first model allows only for a homogeneous longitudi-
nal magnetization in the system, the latter one accounts for
transversal spin fluctuations as well. Referring to a common
spin quantization axis in the system, these lead to a band mir-
roring, i.e., to a transfer of the spectral weight of majority- or
minority-spin states to mirrored states located close in binding
energy but with opposite spin. Here we point out that a point
of view similar to the band-mirroring picture was introduced
in a more formal way in the past when dealing with itinerant
ferromagnets at finite temperatures [61,64–66]. The approach

FIG. 3. Calculated spin-resolved ARPES spectra for Ephot =
60 eV and normal geometry. The results in the top panel are calcu-
lated spectra for T = 0 K. Bottom left panels: calculated LSDA re-
sults based on the alloy analogy model (Heisenberg model). Bottom
right panels: calculated LSDA results applying a modified exchange
splitting (Stoner model).

leads to so-called shadow bands and was used, among things,
to discuss the temperature dependence of ARPES as well as
magnetoresistance measurements [64]. Both of these models
will lead to different signatures in the spin-resolved ARPES
data, and the main question is to what extent these two models
are distinguishable by the use of ab initio based calculated
ARPES spectra. The formalism presented in this paper allows
us to model quantitatively and to predict in detail all possible
differences in the corresponding ARPES spectra. In the left
panels of Fig. 3 we summarize spin-resolved spectra for the
Heisenberg model as calculated by the alloy analogy model
for T = 0, 300, and 900 K (results taken from Fig. 2). In
the right panel, we present calculated spectra for a modified
exchange field B(�r) = αB(�r), where α is a scaling factor
which has been chosen in such a way that the local magnetic
moment of Fe follows the experimental magnetization curve.
We obtain significant differences between the two models.
Within the Heisenberg model the minority-spin channel de-
velops a second peak at higher binding energy, in this way
reflecting the shadow bands and band-mirroring picture. How-
ever, the Stoner model leads to a shift in the minority spin
states towards higher binding energies. Finally, as shown in
Fig. 4, above TC the Heisenberg picture still leads to a nonzero
spin polarization in the spin-polarized ARPES spectra due
to the photoemission process. On the other hand, the Stoner
model leads to zero spin polarization above TC, and the main
intensity is found at a binding energy of about 1 eV. As a
consequence, one may state that these explicit spectroscopic
calculations provide an adequate tool to distinguish between
the various physical mechanisms involved.

V. CONCLUSIONS

We have introduced a generalization of the one-step model
of photoemission for finite temperatures. The scheme is based
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FIG. 4. Left panels: Comparison of spin-resolved ARPES in-
tensities between Stoner- and Heisenberg-like models calculated at
T = 1100 K close to the ferro- to paramagnetic transition. Right
panel: Corresponding spin difference Imaj − Imin.

on the alloy analogy model that allows for the inclusion of
thermal effects when calculating spin-resolved ARPES spec-
tra. The technical details of the implementation using the spin-
polarized relativistic coherent potential approximation within

the one-step model of photoemission have been outlined. This
formalism allows us to deal quantitatively with spin fluctua-
tions as well as with lattice vibrations on the same footing. We
have discussed temperature-dependent, spin-resolved ARPES
spectra of Fe(001). Our calculated photoemission spectra for
Fe(001) were found to match quantitatively the experimental
data. To overcome the limitations of local density approxi-
mation based calculations applications of the LSDA + DMFT
scheme have been presented and discussed. The inclusion of
electronic correlations described by the perturbative SPTF-
DMFT many-body solver in combination with randomly
fluctuating local moments improves the description of the
corresponding spectra in the paramagnetic phase.

As shown, the alloy analogy model can be used to describe
and predict changes in the spin-polarized spectra due to the
ultrafast processes obtained in pump-probe photoemission.
Here we showed that the Heisenberg-like band-mirroring
mechanism which leads to the shadow bands provides an
adequate model to describe recent experimental findings.
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