
PHYSICAL REVIEW B 102, 024521 (2020)

Spin resonances in iron selenide high-Tc superconductors by proximity to a hidden spin density wave

J. P. Rodriguez
Department of Physics and Astronomy, California State University, Los Angeles, California 90032, USA

(Received 19 February 2020; revised 1 June 2020; accepted 6 July 2020; published 29 July 2020)

Recent inelastic neutron scattering studies by B. Pan et al. [Nat. Commun. 8, 123 (2017)] find evidence
for spin resonances in an iron selenide high-Tc superconductor that persist at energies above the quasiparticle
gap. The momenta of such spin excitations form a diamond around the checkerboard wave vector, QAF, that
is associated with the square lattice of iron atoms that makes up the system. It has been suggested that the
“hollowed-out” spin-excitation spectrum is due to hidden Néel order. We study such a hidden spin density wave
(hSDW) state that results from nested Fermi surfaces at the center and at the corner of the unfolded Brillouin
zone. It emerges within mean-field theory from an extended Hubbard model over a square lattice of iron atoms
that contain the minimal dxz and dyz orbitals. Opposing Néel order exists over the isotropic d+ = dxz + idyz and
d− = dxz − idyz orbitals. The dynamical spin susceptibility of the hSDW is computed within the random phase
approximation, at perfect nesting. Unobservable Goldstone modes that disperse acoustically are found at QAF.
A threshold is found in the spectrum of observable spin excitations that forms a “floating ring” at QAF also. The
ring threshold moves down in energy toward zero with increasing Hund’s rule coupling, while it moves up in
energy with increasing magnetic frustration. Comparison with the normal-state features of the spin-excitation
spectrum shown by electron-doped iron selenide is made. Also, recent predictions of a Lifshitz transition from
the nested Fermi surfaces to Fermi surface pockets at the corner of the folded Brillouin zone will be discussed.
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I. INTRODUCTION

Spin resonances inside the energy gap that opens at the
Fermi level in the spectrum of quasiparticle excitations of
high-temperature superconductors are commonly observed
[1,2]. In the case of iron pnictide superconductors, they
are predicted to exist just below the quasiparticle energy
gap, 2�SC, at the nesting wave vector that connects hole-
type Fermi surfaces at the center of the Brillouin zone with
electron-type Fermi surfaces at the corner of the folded
Brillouin zone [3,4]. Such predictions are based on S+−

Bardeen-Cooper-Schrieffer (BCS) ground states, where the
sign of Cooper pairs alternates between the hole-type and
the electron-type Fermi surfaces [5,6]. It is believed that
low-energy spin fluctuations that arise from the nested Fermi
surfaces are what bind together electrons into Cooper pairs
in the S+− state [7]. The predicted spin resonances inside
of the energy gap, at the “stripe” spin density wave (SDW)
wave vectors, have indeed been observed in iron pnictide
superconductors by inelastic neutron scattering [2].

Spin resonances have also been observed inside the quasi-
particle energy gap of electron-doped iron selenide high-
temperature superconductors, but at wave numbers midway
between the “stripe” SDW ones and the checkerboard one that
describes Néel antiferromagnetism [8–12]. Electron doping
buries the hole bands at the center of the Brillouin zone below
the Fermi level, leaving only the electron-type Fermi surface
pockets at the corner of the folded Brillouin zone [13–16].
Spin resonances are therefore observed in electron-doped
iron selenide in the absence of nested Fermi surfaces, which
is a puzzle. Additionally, recent inelastic neutron scattering
studies of iron selenide that is electron-doped by intercalated

organic molecules find evidence for spin resonances that
persist above the quasiparticle energy gap, 2�SC, at wave
numbers that form a “diamond” around the checkerboard
wave vector [11], (π/a, π/a). Such relatively high-energy
spin excitations very likely persist into the normal state at
temperatures above Tc.

Recent theoretical work suggests that the “rings” and “dia-
monds” of spin excitations observed in electron-doped FeSe at
the checkerboard wave vector are due to proximity to a hidden
spin density wave (hSDW) state [17–19]. Here, the sign of
the ordered magnetic moment alternates between the principal
d+ = (dxz + idyz )/

√
2 and d− = (dxz − idyz )/

√
2 orbitals of

the iron atom, as well as between the “white” and the “black”
sites on the checkerboard of iron atoms [20,21]. It is the
most isotropic one among a family of hSDW states that are
related by isospin rotations [22]. The stability of the hSDW
is driven by perfectly nested Fermi surfaces at the center and
at the corner of the unfolded Brillouin zone. (See Fig. 1.) It
has recently been shown by the author and a co-worker that
fluctuation exchange with Goldstone modes associated with
such hidden magnetic order results in a Lifshitz transition
to electron/hole Fermi surface pockets at the corner of the
folded Brillouin zone [19]. (See Fig. 3.) A rigid shift in energy
of this renormalized electronic structure because of electron
doping away from half filling can bury the hole pockets, leav-
ing the electron pockets that are observed by angle-resolved
photoemission spectroscopy (ARPES) in electron-doped iron
selenide [22].

Below, we shall reveal the nature of spin excitations in
the hidden SDW state within an extended Hubbard model
over a square lattice of iron atoms that includes only the
principal 3dxz and 3dyz orbitals of iron superconductors [19].
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TABLE I. List of physical operators per site i according to spin
and isospin quantum numbers, S and I . In the latter case, the d+ and
d− orbitals are analogous to the u and d quarks. (See Ref. [22].)

Physical quantity Operator S I

Density ni,d+ + ni,d− 0 0
True spin Si,d+ + Si,d− 1 0
Hidden spin Si,d+ − Si,d− 1 1

In particular, the dynamical spin susceptibility is com-
puted within a Nambu-Gorkov-type [23–25] random phase
approximation (RPA) that accounts for perfect nesting of
the unrenormalized Fermi surfaces mentioned above. This
calculation is then the two-orbital realization of Schrieffer,
Wen, and Zhang’s “spin bag” calculation of the dynami-
cal spin susceptibility for the conventional Hubbard model
over the square lattice [26–29]. As expected, we recover the
Goldstone modes that disperse acoustically from the nesting
wave vector, QAF = (π/a, π/a). Such modes have an ex-
tremely weak spectral weight in the true-spin channel, how-
ever. (See Table I.) A ring of spin excitations at QAF begins at
energies above the Goldstone modes in the true-spin channel,
on the other hand. They evolve into a diamond shape at QAF as
energy increases above the threshold. We shall argue that the
dynamical spin susceptibility within RPA accounts for spin
excitations in the normal state of electron-doped iron selenide.

II. NESTED FERMI SURFACES IN HUBBARD MODEL

The extended Hubbard model for electron-doped iron se-
lenide and the mean-field theory for the hidden SDW state are
introduced below.

A. Electron hopping over square lattice of iron atoms

We keep the 3dxz/3dyz orbitals of the iron atoms in the
following description of a single layer of heavily electron-
doped FeSe. In particular, consider the isotropic basis of
orbitals d− = (dxz − idyz )/

√
2 and d+ = (dxz + idyz )/

√
2.

Kinetic dynamics is governed by the hopping Hamiltonian

Hhop = −
∑
〈i, j〉

(
tα,β

1 c†
i,α,sc j,β,s + H.c.

)

−
∑
〈〈i, j〉〉

(
tα,β

2 c†
i,α,sc j,β,s + H.c.

)
, (1)

where the repeated indices α and β are summed over the d−
and d+ orbitals, where the repeated index s is summed over

electron spin ↑ and ↓, and where 〈i, j〉 and 〈〈i, j〉〉 represent
nearest-neighbor (1) and next-nearest-neighbor (2) links on
the square lattice of iron atoms. Above, ci,α,s and c†

i,α,s denote
annihilation and creation operators for an electron of spin s
in orbital α at site i. The reflection symmetries in a single
layer of FeSe imply that the above intraorbital and interorbital
hopping matrix elements show s-wave and d-wave symmetry,
respectively [30–32]. Nearest neighbor hopping matrix ele-
ments satisfy

t±±
1 (x̂) = t‖

1 = t±±
1 (ŷ),

t±∓
1 (x̂) = t⊥

1 = −t±∓
1 (ŷ), (2)

with real t‖
1 and t⊥

1 , while next-nearest-neighbor hopping
matrix elements satisfy

t±±
2 (x̂ + ŷ) = t‖

2 = t±±
2 (ŷ − x̂),

t±∓
2 (x̂ + ŷ) = ±t⊥

2 = −t±∓
2 (ŷ − x̂), (3)

with real t‖
2 and pure-imaginary t⊥

2 .
The above hopping Hamiltonian is diagonalized [19] by

plane waves of dx(δ)z and idy(δ)z orbitals that are rotated with
respect to the principal axis by a phase shift δ(k):

|k, dx(δ)z〉〉 = N−1/2
∑

i

eik·ri [eiδ(k)|i, d+〉 + e−iδ(k)|i, d−〉],

i|k, dy(δ)z〉〉 = N−1/2
∑

i

eik·ri [eiδ(k)|i, d+〉 − e−iδ(k)|i, d−〉],

(4)

where N = 2NFe is the number of iron site orbitals. The
energy eigenvalue of the (bonding) dx(δ)z band is given
by ε+(k) = ε‖(k) + |ε⊥(k)| and the energy eigenvalue of
the (anti-bonding) dy(δ)z band is given by ε−(k) = ε‖(k) −
|ε⊥(k)|, where

ε‖(k) = −2t‖
1 (cos kxa + cos kya) − 2t‖

2 (cos k+a + cos k−a),

(5a)

ε⊥(k) = −2t⊥
1 (cos kxa − cos kya) − 2t⊥

2 (cos k+a − cos k−a)

(5b)

are diagonal and off-diagonal matrix elements, with k± =
kx ± ky. The phase shift δ(k) is set by ε⊥(k) = |ε⊥(k)|ei2δ(k),
with

cos 2δ(k) = −t⊥
1 (cos kxa − cos kya)√

t⊥2
1 (cos kxa − cos kya)2 + |2t⊥

2 |2(sin kxa)2(sin kya)2
, (6a)

sin 2δ(k) = 2(t⊥
2 /i)(sin kxa)(sin kya)√

t⊥2
1 (cos kxa − cos kya)2 + |2t⊥

2 |2(sin kxa)2(sin kya)2
. (6b)

At k = 0 and QAF, the matrix element ε⊥(k) vanishes. The
phase factor ei2δ(k) is then notably singular there.

Now turn off next-nearest-neighbor intraorbital hopping:
t‖
2 = 0. The above energy bands then satisfy the perfect nest-
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FIG. 1. Band structure with perfectly nested Fermi surfaces at half filling: ε+(k) = 0 and ε−(k) = 0, with hopping matrix elements t‖
1 =

100 meV, t⊥
1 = 500 meV, t‖

2 = 0, and t⊥
2 = 100i meV. Dirac cones emerge from the dots on the Fermi surfaces in the hSDW state.

ing condition [19]

ε±(k + QAF) = −ε∓(k), (7)

where QAF = (π/a, π/a) is the Néel ordering vector on the
square lattice of iron atoms. As a result, the Fermi level
at half filling lies at εF = 0. Figure 1 shows such perfectly
nested electron-type and hole-type Fermi surfaces for hopping
parameters t‖

1 = 100 meV, t⊥
1 = 500 meV, t‖

2 = 0, and t⊥
2 =

100i meV.

B. Extended Hubbard model

Next, add interactions due to on-site Coulomb repulsion
and superexchange interactions [33,34] via the Se atoms to
the hopping Hamiltonian (1): H = Hhop + HU + Hsprx. The
second term counts on-site Coulomb repulsion [35],

HU =
∑

i

[U0ni,α,↑ni,α,↓ + J0Si,d− · Si,d+

+U ′
0ni,d+ni,d− + J ′

0(c†
i,d+,↑c†

i,d+,↓ci,d−,↓ci,d−,↑ + H.c.)],

(8)

where ni,α,s = c†
i,α,sci,α,s is the occupation operator, where

Si,α = h̄
2

∑
s,s′ c†

i,α,sσs,s′ci,α,s′ is the spin operator, and where
ni,α = ni,α,↑ + ni,α,↓. Above, U0 > 0 denotes the intraorbital
on-site Coulomb repulsion energy, while U ′

0 > 0 denotes the
interorbital one. Also, J0 < 0 is the ferromagnetic Hund’s rule
exchange coupling constant, while J ′

0 is the matrix element for
on-site Josephson tunneling between orbitals.

The last term in the Hamiltonian represents superexchange
interactions [33,34] among the iron spins via the selenium

atoms:

Hsprx =
∑
〈i, j〉

J1(Si,d− + Si,d+) · (S j,d− + S j,d+)

+
∑
〈〈i, j〉〉

J2(Si,d− + Si,d+) · (S j,d− + S j,d+). (9)

Above, J1 and J2 are positive superexchange coupling con-
stants across nearest-neighbor and next-nearest-neighbor iron
sites. Assume henceforth that magnetic frustration is moderate
to strong: J2 > 0.5J1. In isolation, and at strong on-site-orbital
repulsion, Hsprx thereby favors “stripe” SDW order over con-
ventional Néel order.

III. HIDDEN SPIN DENSITY WAVE

The perfectly nested Fermi surfaces shown by Fig. 1 will
result in a spin density wave state within the previous extended
Hubbard model at ordering wave vector QAF = (π/a, π/a).
In the present d−/d+ basis of dxz/dyz orbitals, the most
natural candidates are the true spin density wave (0, π, π )
and the hidden spin density wave (π, π, π ), with the ordered
moments

N−1
∑

i

eiQAF ·ri
∑

s=↑,↓
(sgn s)

h̄

2
〈c†

i,d+,sci,d+,s ± c†
i,d−,sci,d−,s〉.

(10)
It is important to recall that the creation/annihilation operators
transform as

c†
i,d±,s → e±iφc†

i,d±,s and ci,d±,s → e∓iφci,d±,s
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TABLE II. List of hidden-order magnetic moments by isospin quantization axis. Examples of where such hidden SDW order parameters
appear in the literature are also listed.

hSDW ordered moment Isospin axis Reference

(sgn s)(c†
i,dxz,s

ci,dxz,s − c†
i,dyz,s

ci,dyz,s )eiQAF ·ri I1 None
(sgn s)(c†

i,dxz,s
ci,dyz,s + c†

i,dyz,s
ci,dxz ,s )eiQAF ·ri I2 Berg, Metlitski, and Sachdev [38]

(sgn s)i(c†
i,dxz,s

ci,dyz,s − c†
i,dyz,s

ci,dxz ,s )eiQAF ·ri I3 Rodriguez [17]

under a rotation of the orbitals by an angle φ about the z
axis. The ordered moments (10) of both the true SDW (+)
and of the hidden SDW (−) are then notably isotropic with
respect to such rotations. Neither SDW state therefore couples
to nematic instabilities that can appear in the phase diagram of
iron superconductors [36,37].

Consider, now, the d− and d+ orbitals as components of
isospin [22] I = 1/2. In general, the ordered moment of an
hSDW state has isospin I = 1. (See Table I.) In particular, they
are components of the tensor product

N−1
∑

i

eiQAF ·ri
∑

s,s′=↑,↓
σs,s′

∑
α,α′=d−,d+

τα,α′
h̄

2
〈c†

i,α,sci,α′,s′ 〉,

(11)
where σ and τ are Pauli matrices. The candidate hSDW state
(10), for example, corresponds to the tensor product σ3τ3.
Table II lists the ordered magnetic moments of such hSDW
states along the three principal axes of the isospin I. Notice
the hSDW state along the I2 isospin axis that was introduced
by Berg, Metlitski, and Sachdev in the context of copper oxide
high-temperature superconductors [38]. Both it and the hSDW
state along the I1 isospin axis are not, in fact, isotropic about
the orbital z axis. Below, we shall review the mean-field theory
for the candidate hSDW state [19] (10) along the I3 isospin
axis. Both it (−) and the true SDW state (+) provide the basis
for the RPA calculation in the next section.

A. Mean-field theory

Assume that the expectation value of the magnetic moment
per site, per orbital, shows hidden Néel order, with sponta-
neous symmetry breaking along the z axis:

〈mi,α〉 = (−1)αeiQAF ·ri〈m0,0〉, (12)

where 〈mi,α〉 = 1
2 〈ni,α,↑〉 − 1

2 〈ni,α,↓〉. (Henceforth, set h̄ = 1.)
Such an hSDW state (−) is expected to be more stable than
the true SDW state (+) in the presence of magnetic frustration
[21], J1, J2 > 0. Also, calculations in the local-moment limit
find that the above hidden magnetic order is more stable
than the “stripe” SDW mentioned previously at weak to
moderate strength in the Hund’s rule coupling [17,21]. The
superexchange terms, Hsprx, make no contribution within the
mean-field approximation, since the net magnetic moment per
iron atom is null in the hidden-order Néel state. Also, the
formation of a spin singlet per iron site orbital is suppressed
at the strong-coupling limit, U0 → ∞. The on-site-orbital
Josephson tunneling term (J ′

0) in HU can then be neglected on
that basis. We are then left with the two on-iron-site repulsion
terms and the Hund’s rule term in HU .

The mean-field replacement of the intraorbital on-site term
(U0) is the usual one [26]:

ni,α,↑ni,α,↓ → 1
2 〈ni,α〉(ni,α,↑ + ni,α,↓) − 〈mi,α〉(ni,α,↑ − ni,α,↓)

−〈ni,α,↑〉〈ni,α,↓〉.
The first term above can be absorbed into the chemical
potential and the last term above is a constant-energy shift.
This leaves a mean-field contribution to the Hamiltonian:
−∑

i

∑
α U0〈mi,α〉(ni,α,↑ − ni,α,↓). A similar mean-field re-

placement of the interorbital on-iron-site repulsion term (U ′
0)

in HU can be entirely absorbed into a shift of the chemical
potential plus a constant-energy shift [19], on the other hand.
Finally, we make the same type of mean-field replacement for
the Hund’s rule term (J0) in HU :

Si,d+ · Si,d− → S(z)
i,d+

〈
S(z)

i,d−
〉 + 〈

S(z)
i,d+

〉
S(z)

i,d− − 〈
S(z)

i,d+
〉〈

S(z)
i,d−

〉
.

Again, the last term above is a constant-energy shift. The
first two terms, however, contribute to the mean-field Hamil-
tonian:

∑
i

∑
α

1
2 J0〈mi,ᾱ〉(ni,α,↑ − ni,α,↓), which is equal to

−∑
i

∑
α

1
2 J0〈mi,α〉(ni,α,↑ − ni,α,↓) in the case of hidden mag-

netic order (12). Here, d± = d∓.
Neglecting on-site-orbital Josephson tunneling (J ′

0), the net
contribution to the mean-field Hamiltonian from interactions
in the present two-orbital Hubbard model is then

−
∑

i

∑
α

U (π )〈mi,α〉(ni,α,↑ − ni,α,↓)

= −〈m0,0〉U (π )
∑

i

∑
α

(−1)αeiQAF ·ri (ni,α,↑ − ni,α,↓),

where

U (π ) = U0 + 1
2 J0. (13)

Notice that the sum on the right-hand side above over sites and
over orbitals is twice the hidden-order moment Sz(π, QAF).
(See Appendix A.) Reexpressing it in the band basis (4) and
then applying the identity (31) for the phase shift ultimately
yields the mean-field Hamiltonian for the present two-orbital
Hubbard model [19]:

H (m f ) =
∑

s

∑
k

∑
n=1,2

εn(k)c†
s (n, k)cs(n, k)

∓
∑

s

∑
k

[(sgn s)�(k)c†
s (1, k̄)cs(2, k) + H.c.],

(14)

where k̄ = k + QAF, with a gap function

�(k) = �0 sin[2δ(k)], (15)

where

�0 = 〈m0,0〉U (π ). (16)

024521-4



SPIN RESONANCES IN IRON SELENIDE HIGH-Tc … PHYSICAL REVIEW B 102, 024521 (2020)

FIG. 2. Displayed is the ordered magnetic moment obtained from the gap equation at �0 = 740 meV versus t⊥
2 /i, along with the

corresponding on-site-orbital Hubbard U0. The Hund’s rule coupling is fixed at J0 = −100 meV. Also, the square lattice of iron atoms is
a periodic 1000 × 1000 grid. The remaining electron hopping parameters are listed in the caption to Fig. 1.

Here, c†
s (1, k) and c†

s (2, k) create plane waves (4) in the
antibonding (dy(δ)z) and bonding (dx(δ)z) bands, respectively.
Here also, intraband scattering has been neglected because
it shows no nesting. After shifting the momentum of the
antibonding band (n = 1) by QAF, we arrive at the final form
of the mean-field Hamiltonian:

H (m f ) =
∑

s

∑
k

ε+(k)[c†
s (2, k)cs(2, k) − c†

s (1, k̄)cs(1, k̄)]

∓
∑

s

∑
k

[(sgn s)�(k)c†
s (1, k̄)cs(2, k) + H.c.].

(17)

For convenience, now set the ± sign that originates from
the orbital matrix elements to minus. [See Appendix A and
(31).] The mean-field Hamiltonian (17) is diagonalized in the
usual way by writing the electron in terms of quasiparticle
excitations [27–29]:

c†
s (2, k) = u(k)α†

s (2, k) − (sgn s)v(k)α†
s (1, k̄),

c†
s (1, k̄) = (sgn s)v(k)α†

s (2, k) + u(k)α†
s (1, k̄). (18)

Here, u(k) and v(k) are coherence factors with square magni-
tudes

u2 = 1

2
+ 1

2

ε+
E

and v2 = 1

2
− 1

2

ε+
E

, (19)

where E (k) = [ε2
+(k) + �2(k)]1/2. The mean-field Hamilto-

nian can then be expressed in terms of the occupation of
quasiparticles as

H (m f ) =
∑

s

∑
k

E (k)[α†
s (2, k)αs(2, k) − α†

s (1, k̄)αs(1, k̄)].

(20)

The quasiparticle excitation energies are then E (k) for par-
ticles and E (k̄) for holes, with a gap function (15) that has
Dxy symmetry. Dirac nodes therefore emerge from the points
on the Fermi surfaces indicated by Fig. 1. At half filling, the
energy band −E (k̄) is filled and the energy band +E (k) is
empty. Last, inverting (18) yields

α†
s (2, k) = u(k)c†

s (2, k) + (sgn s)v(k)c†
s (1, k̄),

α†
s (1, k̄) = −(sgn s)v(k)c†

s (2, k) + u(k)c†
s (1, k̄). (21)

Quasiparticles are a coherent superposition of an electron of
momentum k in the bonding (+) band 2 with an electron of
momentum k + QAF in the antibonding (−) band 1.

Finally, to obtain the gap equation, we exploit the pattern
of hidden Néel order (12), and write the gap maximum (16) as

�0 = N−1
∑

i

∑
α

U (π )〈mi,α〉(−1)αeiQAF ·ri

= N−1U (π )〈Sz(π, QAF)〉.
Using expressions for the hidden-order moment in terms of
band states yields

�0 = −N−1 1

2

∑
s

∑
k

∑
n

U (π )(sgn s)

× [sin 2δ(k)]〈c†
s (n̄, k̄)cs(n, k)〉,

where n̄ = 1 + (n mod 2). [See Appendix A and (31).] In-
traband scattering has again been neglected. Substituting in
(18) and the conjugate annihilation operators, and recalling
that the n = 1 quasiparticle band is filled, while the n =
2 quasiparticle band is empty, yields 〈c†

s (n̄, k̄)cs(n, k)〉 =
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FIG. 3. Shown are the renormalized Fermi surface pockets after
a Lifshitz transition due to fluctuation exchange with hidden spin
waves centered at QAF. [See Ref. [19] and Eq. (62).] The orbital
character is only approximate, although it becomes exact as the area
of the Fermi surface pockets vanishes as U0 diverges. Dirac cones
emerge from the dots on the renormalized Fermi surfaces in the
fluctuation-corrected hSDW state.

−(sgn s)u(k)v(k) for the expectation value. We thereby obtain

�0 = N−1
∑

k

U (π )[sin 2δ(k)]�(k)/E (k),

or equivalently, the gap equation

1 = U (π )N−1
∑

k

[sin 2δ(k)]2√
ε2+(k) + �2

0[sin 2δ(k)]2
. (22)

Figure 2 displays solutions of the gap equation at constant
�0. It is important to mention that they depend only on the
hopping parameters and on U (π ). By (13), �0 then is also
constant along a line, U0 versus −J0, such that U (π ) remains
constant.

B. Lifshitz transition of the Fermi surfaces

Before going on to the calculation of the dynamical spin
susceptibility of the hSDW state within RPA in the next
section, it is important to point out that ARPES on electron-
doped iron selenide high-Tc superconductors generally sees
only electron-type Fermi surface pockets at the corner of
the folded (two-iron) Brillouin zone [13–16]. The perfectly
nested Fermi surfaces displayed by Fig. 1 do not, therefore,
coincide with ARPES measurements on these materials. The
following RPA of the extended Hubbard model for electron-
doped iron selenide reveals hidden spin waves (62) that dis-
perse acoustically from the antiferromagnetic wave vector,
QAF, however. In the critical hSDW state, as �0 → 0, the
author and a co-worker have recently shown that fluctuation-
exchange interactions of the electrons with such Goldstone
modes result in a Lifshitz transition of the nested Fermi
surfaces displayed by [19] Fig. 1: the electron-type band ε+(k)
is pulled down in energy with respect to the Fermi level,
while the hole-type band ε−(k) is pulled up in energy by
an equal and opposite amount. The Lifshitz transition results
in electron/hole pockets near the opposite band edges at
moderate to large Hubbard repulsion U0. Figure 3 displays the
resulting renormalized Fermi surfaces for hopping parameters
that are listed in the caption to Fig. 1. Also, the above Lifshitz

transition is accompanied by wave function renormalizations
that result in vanishingly small quasiparticle weight at the
renormalized Fermi levels [19].

The Lifshitz transition described above was predicted at
half filling for the critical hSDW state (�0 → 0) via an
Eliashberg-type theory of hidden spin-fluctuation exchange in
the particle-hole channel [19]. The critical hSDW itself can be
achieved by tuning the strength of Hund’s rule to the transition
point where a true SDW state appears. Adding electrons above
half filling suggests a rigid shift up in energy of the Fermi level
with respect to the renormalized band structure, ε+(k) − ν

and ε−(k) + ν. Here, ν > 0 represents the energy shift due
to the Lifshitz transition. It lies just below the upper band
edge of the bonding (+) band. At saturation, a rigid shift in
energy of such a renormalized band structure results in Fermi
surface points for the new hole-type Fermi surfaces shown in
Fig. 3, and in new electron-type Fermi surface pockets that are
a bit larger than those shown in Fig. 3. Such a rigid energy
shift has in fact been confirmed by the author in a related
Eliashberg theory for hidden spin-fluctuation exchange, but in
the conventional particle-particle channel [22]. In particular,
the author finds that the quasiparticle weight of the holes
remains vanishingly small at the Fermi level, while that the
quasiparticle weight of the electrons can be appreciable at the
Fermi level. This scenario is confirmed by a local-moment
model for the present extended Hubbard model that harbors
the hSDW state [17].

In the following section, we will proceed to compute the
dynamical spin susceptibility of the hSDW within RPA, but
starting from the unrenormalized electron bands shown in
Fig. 1. This is justified on the basis of perturbation theory in
powers of the interactions, HU and Hsprx. Does that conflict
with the Lifshitz transition [19] shown by Fig. 3? We believe
that is does not. By (7), the renormalized energy bands men-
tioned above trivially also satisfy perfect nesting:

ε+(k + QAF) − ν = −[ε−(k) + ν],

ε−(k + QAF) + ν = −[ε+(k) − ν]. (23)

The form of the RPA to be developed below does not therefore
change if the shifted energy bands are used instead, along
with the wave function renormalization. We therefore believe
that starting the RPA below from the unrenormalized bands
(Fig. 1) is compatible with the Lifshitz transition [19] men-
tioned above.

IV. SPIN FLUCTUATIONS WITHIN RANDOM PHASE
APPROXIMATION

Is the previous mean-field solution for the hSDW state of
the extended Hubbard model for electron-doped iron selenide
[19] stable? To answer this question, we shall compute the
transverse dynamical spin susceptibility within the random
phase approximation. Like in the original “spin bag” calcu-
lation of the SDW state in the conventional Hubbard model
over the square lattice [27], the bare dynamical spin suscepti-
bilities (RPA bubbles) do not conserve crystal moment over
the square lattice, whereas the interaction terms do. In the
present case, additionally, the bare RPA bubbles also break
orbital-swap symmetry, Pd,d̄ , because of orbital mixing (t⊥

2 ),
while the interaction terms preserve that symmetry as well.
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A. Bare spin fluctuations at perfect nesting

We shall first compute the bare spin-fluctuation propaga-
tors in the hSDW state, at perfect nesting (7). Recall the spin-
flip operator at relative momentum q, in the true or hidden
channel, q0 = 0 or π :

S+(q0, q) =
∑

i

∑
α=0,1

eiq0αeiq·ri c†
i,α,↑ci,α,↓. (24)

Here, the indices α = 0 and 1 represent the d− and d+
orbitals, respectively. In the band basis set by the plane-wave

eigenstates (4) of the hopping Hamiltonian, it has the form

S+(q0, q) =
∑

k

∑
n,n′

M(q0 )
n,k;n′,k′ c†

↑(n′, k′)c↓(n, k), (25)

with k′ = k + q. Above, the indices n = 1 and 2 represent
the antibonding and bonding bands that are in momentum-
dependent orbitals (−i)dy(δ)z and dx(δ)z, respectively. The or-
bital matrix element is computed in Appendix A, and it is
given by

M(mπ )
n,k;n′,k′ =

{
cos[δ(k) − δ(k′)], for n′ = n + m (mod 2),
−i sin[δ(k) − δ(k′)], for n′ = n + m + 1 (mod 2). (26)

Now define the Nambu-Gorkov spinor that incorporates the physics of nesting [19]:

Cs(k) =
[

cs(2, k)
cs(1, k̄).

]
. (27)

The spin-flip operator (25) can then be broken up into four components by the 2 × 2 identity matrix, τ0, and by the Pauli matrices,
τ1, τ2, and τ3:

S+
μ (q0, q) =

∑
k

M(q0 )
k,k′ (μ)C†

↑(k′)τμC↓(k), (28)

with matrix elements

M(0)
k,k′ (μ) =

⎧⎪⎨
⎪⎩
M(0)

1,k̄;1,k̄
′ = cos[δ(k) − δ(k′)] = M(0)

2,k;2,k′ , if μ = 0 (not nested),

iM(0)
1,k̄;2,k′ = ± cos[δ(k) + δ(k′)] = −iM(0)

2,k;1,k̄
′ , if μ = 2 (nested),

0, if μ = 1, 3,

(29)

and

M(π )
k,k′ (μ) =

⎧⎪⎨
⎪⎩

−M(π )

1,k̄;1,k̄
′ = −i sin[δ(k) − δ(k′)] = M(π )

2,k;2,k′ , if μ = 3 (not nested),

M(π )
1,k̄;2,k′ = ± sin[δ(k) + δ(k′)] = M(π )

2,k;1,k̄
′ , if μ = 1 (nested),

0, if μ = 0, 2.

(30)

Here, we have used the property

δ(k + QAF) = ±π

2
− δ(k) (31)

satisfied by the phase shift, which is a result of the property
ε⊥(k + QAF) = −ε∗

⊥(k) satisfied by the matrix element (5b).
The components S+

μ (q0, q) of the spin-flip operator (24) can
then be reassembled following the nesting (1) versus the non-
nesting (0) nature of the momentum transfer, q:

S+
q0,0

(q) = S+
0 (q0, q) + S+

3 (q0, q) (not nested),

S+
q0,1

(q) = S+
1 (q0, q) + S+

2 (q0, q) (nested). (32)

Inspection of (29) and (30) then yields that the above spin
operators take the form

S+
q0,γ

(q) =
∑

k

M(q0,γ )
k,k′ C†

↑(k′)τ(q0,γ )C↓(k), (33)

where the products M(q0,γ )
k,k′ τ(q0,γ ) are listed in Table III.

Next, en route to computing the bare spin-fluctuation
propagator of the hSDW state within mean-field theory, we
will first compute the Nambu-Gorkov Green’s function. Let
Cs(k, t ) denote the time evolution of the destruction operators

(27) Cs(k), and let C†
s (k, t ) denote the time evolution of

the conjugate creation operators C†
s (k). The Nambu-Gorkov

electron propagator is then the Fourier transform iGs(k, ω) =∫
dt1,2eiωt1,2〈T [Cs(k, t1)C†

s (k, t2)]〉, where t1,2 = t1 − t2, and
where T is the time-ordering operator. It is a 2 × 2 matrix.
By expression (17) for the mean-field Hamiltonian, the matrix
inverse of the Nambu-Gorkov Green’s function takes the form

G−1
s (k, ω) = ω τ0 − ε+(k) τ3 ± (sgn s)�(k) τ1. (34)

Here, �(k) is the quasiparticle gap (15). Notice that the term
proportional to τ3 is a direct consequence of perfect nest-
ing (7). Matrix inversion of (34) yields the Nambu-Gorkov

TABLE III. The products M(q0,γ )
k,k′ τ(q0,γ ) that appear in S+

q0,γ (q),
where q0 = 0, π are labels for true versus hidden spin, and where
γ = 0, 1 are labels for un-nested versus nested momentum transfer.
[See Eqs. (25)–(33).]

Not nested (0) Nested (1)

True spin (0) cos[δ(k) − δ(k′)]τ0 ± cos[δ(k) + δ(k′)]τ2

Hidden spin (π ) −i sin[δ(k) − δ(k′)]τ3 ± sin[δ(k) + δ(k′)]τ1
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Green’s function [19,23–25] G = ∑3
μ=0 G(μ)τμ, with compo-

nents

G(0)
s = 1

2

(
1

ω − E
+ 1

ω + E

)
,

G(1)
s = ∓1

2

(
1

ω − E
− 1

ω + E

)
�

E
(sgn s),

G(2)
s = 0,

G(3)
s = 1

2

(
1

ω − E
− 1

ω + E

)
ε+
E

. (35)

Above, the excitation energy is E = (ε2
+ + �2)1/2.

We shall now define the bare dynamical spin susceptibility
of the hSDW state with indices composed of true/hidden spin
(q0) and of un-nested/nested momentum transfer (γ ):

χ
(0)+−
q0,γ ;q′

0,γ
′ (q, ω) = i

N
〈
S+

q0,γ
(q, ω)S−

q′
0,γ

′ (q, ω)
〉
. (36)

Here, S+
q0,γ

(q, ω) is the Fourier transform of the time-
evolution of the spin-flip operator, S+

q0,γ
(q). [See (32) and

(33).] Analytically continuing this dynamical spin suscep-
tibility to imaginary time yields a convolution in terms of
Matsubara frequencies:

χ
(0)+−
q0,γ ;q′

0,γ
′ (q, iωm) = kBT

N
∑
iωn

∑
k

tr
[
G↑(k′, iωn′ )τ(q0,γ )

× G↓(k, iωn)τ(q′
0,γ

′ )
]
M(q0,γ )

k,k′ M(q′
0,γ

′ )∗
k,k′ ,

(37)

where the orbital matrix element M(q0,γ )
k,k′ appears as a product

with the 2 × 2 matrix τ(q0,γ ) in Table III. Here, k′ = k + q and
iωn′ = iωn + iωm. Substituting in the Nambu-Gorkov Green’s
function (35) yields the expression

χ
(0)+−
p0,γ ;q0,δ

(q, iωm) = kBT

N
∑
iωn

∑
k

3∑
μ,ν=0

tr
[
τμτ(p0,γ )τντ(q0,δ)

]
G(μ)

↑ (k′, iωn′ )G(ν)
↓ (k, iωn)M(p0,γ )

k,k′ M(q0,δ)∗
k,k′ (38)

for the bare dynamical spin susceptibility.
It is well known that the sum over Matsubara frequencies in the expression above for the bare dynamical spin susceptibility

(38) can be evaluated in terms of Fermi-Dirac distribution functions. Below, we obtain the corresponding Lindhard functions in
the zero-temperature limit. The required trace formulas for products of 2 × 2 matrices are listed in Appendix B.

(1) (0, 0; 0, 0): true spin; true spin. M(0,0)
k,k′ M(0,0)∗

k,k′ = cos2(δ − δ′) and tr(τμτ0τντ0) = 2δμ,ν . Then

3∑
μ,ν=0

tr(τμτ0τντ0)G′(μ)
↑ G(ν)

↓ = 2[G′(0)
↑ G(0)

↓ + G′(1)
↑ G(1)

↓ + G′(3)
↑ G(3)

↓ ].

Hence,

χ
(0)+−
0,0;0,0(q, ω) = 1

2N
∑

k

(
1 − ε+ε′

+ − ��′

EE ′

)(
1

E + E ′ − ω
+ 1

E + E ′ + ω

)

× 1

2
[1 + (cos 2δ)(cos 2δ′) + (sin 2δ)(sin 2δ′)]. (39)

(2) (0, 0; π, 0): true spin; hidden spin. M(0,0)
k,k′ M(π,0)∗

k,k′ = i cos(δ − δ′) sin(δ − δ′) and tr(τμτ0τντ3) = 2(δμ,0δν,3 + δμ,3δν,0 +
iεμ,ν,3), where εμ,ν,i coincides with the Levi-Civita tensor for μ, ν = 1, 2, 3, while it vanishes otherwise, for μ = 0, or for ν = 0.
Then

3∑
μ,ν=0

tr(τμτ0τντ3)G′(μ)
↑ G(ν)

↓ = 2[G′(0)
↑ G(3)

↓ + G′(3)
↑ G(0)

↓ ].

Hence,

χ
(0)+−
0,0;π,0(q, ω) = − 1

2N
∑

k

(
ε+
E

− ε′
+

E ′

)(
1

E + E ′ − ω
− 1

E + E ′ + ω

)
i

2
[(sin 2δ)(cos 2δ′) − (cos 2δ)(sin 2δ′)]. (40)

(3) (0, 0; 0, 1): true spin; SDW moment. M(0,0)
k,k′ M(0,1)∗

k,k′ = ± cos(δ − δ′) cos(δ + δ′) and tr(τμτ0τντ2) = 2(δμ,0δν,2 +
δμ,2δν,0 + iεμ,ν,2). Then

3∑
μ,ν=0

tr(τμτ0τντ3)G′(μ)
↑ G(ν)

↓ = 2i[G′(3)
↑ G(1)

↓ − G′(1)
↑ G(3)

↓ ].

Hence,

χ
(0)+−
0,0;0,1(q, ω) = − 1

2N
∑

k

ε+�′ + �ε′
+

EE ′

(
1

E + E ′ − ω
+ 1

E + E ′ + ω

)
i

2
[(cos 2δ) + (cos 2δ′)]. (41)
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(4) (0, 0; π, 1): true spin; hSDW moment. M(0,0)
k,k′ M(π,1)∗

k,k′ = ± cos(δ − δ′) sin(δ + δ′) and tr(τμτ0τντ1) = 2(δμ,0δν,1 +
δμ,1δν,0 + iεμ,ν,1).
Then

3∑
μ,ν=0

tr(τμτ0τντ1)G′(μ)
↑ G(ν)

↓ = 2[G′(0)
↑ G(1)

↓ + G′(1)
↑ G(0)

↓ ].

Hence,

χ
(0)+−
0,0;π,1(q, ω) = − 1

2N
∑

k

(
�

E
+ �′

E ′

)(
1

E + E ′ − ω
− 1

E + E ′ + ω

)
1

2
[(sin 2δ) + (sin 2δ′)]. (42)

(5) (π, 0; π, 0): hidden spin; hidden spin. M(π,0)
k,k′ M(π,0)∗

k,k′ = sin2(δ − δ′) and tr(τμτ3τντ3) = 2 sgnμ(3)δμ,ν , where sgnμ(i) =
1 if μ = 0 or i, and where sgnμ(i) = −1 otherwise. Then

3∑
μ,ν=0

tr(τμτ3τντ3)G′(μ)
↑ G(ν)

↓ = 2[G′(0)
↑ G(0)

↓ − G′(1)
↑ G(1)

↓ + G′(3)
↑ G(3)

↓ ].

Hence,

χ
(0)+−
π,0;π,0(q, ω) = 1

2N
∑

k

(
1 − ε+ε′

+ + ��′

EE ′

)(
1

E + E ′ − ω
+ 1

E + E ′ + ω

)

× 1

2
[1 − (cos 2δ)(cos 2δ′) − (sin 2δ)(sin 2δ′)]. (43)

(6) (π, 0; 0, 1): hidden spin; SDW moment. M(π,0)
k,k′ M(0,1)∗

k,k′ = ∓i sin(δ − δ′) cos(δ + δ′) and tr(τμτ3τντ2) = 2(δμ,3δν,2 +
δμ,2δν,3 + iδμ,0ε3,ν,2 + iδν,0εμ,3,2). Then

3∑
μ,ν=0

tr(τμτ3τντ2)G′(μ)
↑ G(ν)

↓ = 2i[G′(0)
↑ G(1)

↓ − G′(1)
↑ G(0)

↓ ].

Hence,

χ
(0)+−
π,0;0,1(q, ω) = − 1

2N
∑

k

(
�

E
− �′

E ′

)(
1

E + E ′ − ω
− 1

E + E ′ + ω

)
1

2
[(sin 2δ) − (sin 2δ′)]. (44)

(7) (π, 0; π, 1): hidden spin; hSDW moment. M(π,0)
k,k′ M(π,1)∗

k,k′ = ∓i sin(δ − δ′) sin(δ + δ′) and tr(τμτ3τντ1) = 2(δμ,3δν,1 +
δμ,1δν,3 + iδμ,0ε3,ν,1 + iδν,0εμ,3,1). Then

3∑
μ,ν=0

tr(τμτ3τντ1)G′(μ)
↑ G(ν)

↓ = 2[G′(3)
↑ G(1)

↓ + G′(1)
↑ G(3)

↓ ].

Hence,

χ
(0)+−
π,0;π,1(q, ω) = 1

2N
∑

k

ε+�′ − �ε′
+

EE ′

(
1

E + E ′ − ω
+ 1

E + E ′ + ω

)
i

2
[(cos 2δ) − (cos 2δ′)]. (45)

(8) (0, 1; 0, 1): SDW moment; SDW moment. M(0,1)
k,k′ M(0,1)∗

k,k′ = cos2(δ + δ′) and tr(τμτ2τντ2) = 2 sgnμ(2)δμ,ν . Then

3∑
μ,ν=0

tr(τμτ2τντ2)G′(μ)
↑ G(ν)

↓ = 2[G′(0)
↑ G(0)

↓ − G′(1)
↑ G(1)

↓ − G′(3)
↑ G(3)

↓ ].

Hence,

χ
(0)+−
0,1;0,1(q, ω) = 1

2N
∑

k

(
1 + ε+ε′

+ − ��′

EE ′

)(
1

E + E ′ − ω
+ 1

E + E ′ + ω

)

× 1

2
[1 + (cos 2δ)(cos 2δ′) − (sin 2δ)(sin 2δ′)]. (46)
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(9) (0, 1; π, 1): SDW moment; hSDW moment. M(0,1)
k,k′ M(π,1)∗

k,k′ = cos(δ + δ′) sin(δ + δ′) and tr(τμτ2τντ1) = 2(δμ,2δν,1 +
δμ,1δν,2 + iδμ,0ε2,ν,1 + iδν,0εμ,2,1). Then

3∑
μ,ν=0

tr(τμτ2τντ1)G′(μ)
↑ G(ν)

↓ = 2i[G′(0)
↑ G(3)

↓ − G′(3)
↑ G(0)

↓ ].

Hence,

χ
(0)+−
0,1;π,1(q, ω) = − 1

2N
∑

k

(
ε+
E

+ ε′
+

E ′

)(
1

E + E ′ − ω
− 1

E + E ′ + ω

)
i

2
[(sin 2δ)(cos 2δ′) + (cos 2δ)(sin 2δ′)]. (47)

(10) (π, 1; π, 1): hSDW moment; hSDW moment. M(π,1)
k,k′ M(π,1)∗

k,k′ = sin2(δ + δ′) and tr(τμτ1τντ1) = 2 sgnμ(1)δμ,ν . Then

3∑
μ,ν=0

tr(τμτ1τντ1)G′(μ)
↑ G(ν)

↓ = 2[G′(0)
↑ G(0)

↓ + G′(1)
↑ G(1)

↓ − G′(3)
↑ G(3)

↓ ].

Hence,

χ
(0)+−
π,1;π,1(q, ω) = 1

2N
∑

k

(
1 + ε+ε′

+ + ��′

EE ′

)(
1

E + E ′ − ω
+ 1

E + E ′ + ω

)
1

2
[1 − (cos 2δ)(cos 2δ′) + (sin 2δ)(sin 2δ′)].

(48)

Last, inspection of the trace formulas for products of 2 × 2
matrices listed in Appendix B yields that the matrix formed by
the trace tr(τμτγ τντδ ) as a function of the indices γ and δ is
Hermitian. The matrix of bare spin susceptibilities is then also
Hermitian by expression (38). The remaining off-diagonal
bare spin susceptibilities are then complex conjugates of those
listed above.

B. Random phase approximation

Next, to construct the RPA, we must determine how the
interaction terms in HU (8) and in Hsprx (9) couple to the previ-
ous bare dynamical spin susceptibilities. All of the interaction
terms are translationally invariant. They are also all invariant
under orbital swap, Pd,d̄ : d± → d∓. Both momentum and
parity, q and q0, are then good quantum numbers for the
interactions HU and Hsprx. They are therefore diagonal in
momentum and in parity. Yet what are such diagonal matrix
elements of HU and of Hsprx?

The on-site-orbital Hubbard repulsion (U0) has the form
n↑n↓ = +c†

↑c†
↓c↓c↑. On the other hand, the spin-flip part of

the on-site Hund’s rule coupling (J0) and of the superexchange
interactions (J1 and J2) have the transverse Heisenberg-
exchange form

1
2 S+S′− + 1

2 S−S′+ = − 1
2 c†

↑c′†
↓ c↓c′

↑ − 1
2 c†

↓c′†
↑ c↑c′

↓.

Figure 4 displays the corresponding Feynman diagrams for
the RPA. Taking the Fourier transform of the previous in-
teractions in site-orbital space yields the following spin-flip
contribution to the interaction:

V +−(q0, q) = U0 − 1
2 J0 cos(q0)

− δq0,0{2J1[cos(qxa) + cos(qya)]

+ 2J2[cos(q+a) + cos(q−a)]}. (49)

Here, q± = qx ± qy. Last, interorbital on-site interactions (U ′
0)

can be neglected because they couple only to density, while
on-site Josephson tunneling (J ′

0) can be neglected at strong
on-site repulsion U0.

The true-spin and the hidden-spin components of the spin-
flip potential V +−(q0, q) are listed in the first-two rows of
Table IV. They clearly scatter fermions at un-nested mo-
mentum transfer, q small. The last two rows in Table IV,
however, are the corresponding spin-flip interaction potentials
that scatter fermions at momentum transfer that is indeed
nested, q small. These are simply shifted with respect to the
former un-nested spin-flip potentials by the antiferromagnetic
wave vector QAF = (π/a, π/a). Adding up the Dyson series
of Feynman diagrams of the types displayed by Fig. 4 yields
the RPA for the dynamical spin susceptibility:

χ+−(q, ω) = χ (0)+−(q, ω)[1 − V +−(q)χ (0)+−(q, ω)]−1.

(50)
Above, V +−(q) is a 4 × 4 matrix with diagonal matrix el-
ements that are listed in Table IV, and with off-diagonal
matrix elements that are null. The matrix elements of the bare

(a)

(b)

FIG. 4. Representative Feynman diagrams for the dynamical
transverse spin susceptibility, χ+−(q, ω), of the extended two-orbital
Hubbard model within RPA.
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TABLE IV. Interactions in momentum space per true (0) and hidden (π ) spin quantum numbers. The SDW and hSWD interactions are the
nested versions of the previous; i.e., q → q + QAF.

(q0, γ ) V +−
q0,γ (q)

True spin (0, 0) U0 − 1
2 J0 − 2J1[cos(qxa) + cos(qya)] − 2J2[cos(q+a) + cos(q−a)]

Hidden spin (π, 0) U0 + 1
2 J0

SDW moment (0, 1) U0 − 1
2 J0 + 2J1[cos(qxa) + cos(qya)] − 2J2[cos(q+a) + cos(q−a)]

hSDW moment (π, 1) U0 + 1
2 J0

dynamical spin susceptibility, χ (0)+−(q, ω), are listed above
in the previous subsection.

C. Reflection symmetries and the long-wavelength limit

In general, the bare dynamical spin susceptibility,
χ (0)+−(q, ω), is a dense 4 × 4 matrix. It and the RPA solu-
tion (50) break down into block-diagonal 2 × 2 matrices at
momentum transfers that are along a principal axis of the first
Brillouin zone, however. To demonstrate this, suppose that the
momentum transfer q lies (i) along one of the horizontal or
vertical principal axes of the Brillouin zone shown by Fig. 5.
Reflections about such principal axes act on momenta as

Rx : (kx, ky) → (kx,−ky),

Ry : (kx, ky) → (−kx, ky). (51)

Inspection of expressions (6a) and (6b) then yields that the
components of the orbital phase factor transform under such
reflections as

Rx(y) : (cos 2δ, sin 2δ) → (cos 2δ,− sin 2δ). (52)

Next, suppose instead that the momentum transfer q lies (ii)
along one of the diagonal principal axes of the Brillouin zone
shown by Fig. 5. Reflections about such principal axes act on

FIG. 5. Principal axes in the first Brillouin zone.

momenta as

Rx′ : (kx, ky) → (ky, kx ),

Ry′ : (kx, ky) → (−ky,−kx ), (53)

on the other hand. Inspection of expressions (6a) and (6b)
then yields that the components of the orbital phase factor
transform under such reflections as

Rx′(y′ ) : (cos 2δ, sin 2δ) → (− cos 2δ, sin 2δ). (54)

Observe, now, that the energy eigenvalue ε+(k) is invariant
under all such reflections about a principal axis. Inspection
of the integrands of the bare dynamical spin susceptibilities,
χ

(0)+−
p0,γ ;q0,δ

(q, ω), listed above then yields unique parities under
all such reflections for q along the reflection axis. They are
listed in Table V. We thereby conclude that the off-diagonal
components of the bare dynamical spin susceptibility with
negative parities are null for momentum transfer q along a
principal axis.

At momentum transfer q along a principal axis, the RPA
solution (50) for the dynamical spin susceptibility therefore
decouples into two 2 × 2 blocks among the pairs of compo-
nents (1,4) and (2,3):

[
χ+−

11 χ+−
14

χ+−
41 χ+−

44

]
= 1

d (1, 4)

[
χ

(0)+−
11 χ

(0)+−
14

χ
(0)+−
41 χ

(0)+−
44

]

×
[

1 − V +−
4 χ

(0)+−
44 +V +−

1 χ
(0)+−
14

+V +−
4 χ

(0)+−
41 1 − V +−

1 χ
(0)+−
11

]
,

(55)

with determinant

d (1, 4) = (
1 − V +−

1 χ
(0)+−
11

)(
1 − V +−

4 χ
(0)+−
44

)
−V +−

1 V +−
4 χ

(0)+−
14 χ

(0)+−
41 , (56)

TABLE V. Parities of the integrands of the bare dynamical spin
susceptibility, χ

(0)+−
p0,γ ;q0,δ (q, ω), under reflection, R, about a principal

axis of the Brillouin zone, at momentum transfers, q, along the same
axis. (See Fig. 5.)

R 0, 0 π, 0 0, 1 π, 1

0, 0 + − − +
π, 0 − + + −
0, 1 − + + −
π, 1 + − − +
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FIG. 6. Low-energy spectrum of spin excitations predicted by RPA over a periodic lattice of 1000 × 1000 iron atoms. Spectral weight
is represented by the color code. Hopping parameters are listed in the caption to Fig. 1, while Hund and spin-exchange couplings are set
to J0 = −100 meV, J1 = 100 meV, and J2 = 50 meV. The gap maximum is set to �0 = 740 meV, which implies U0 = 7.37 eV by the gap
equation, Eq. (22).

and

[
χ+−

22 χ+−
23

χ+−
32 χ+−

33

]
= 1

d (2, 3)

[
χ

(0)+−
22 χ

(0)+−
23

χ
(0)+−
32 χ

(0)+−
33

]

×
[

1 − V +−
3 χ

(0)+−
33 +V +−

2 χ
(0)+−
23

+V +−
3 χ

(0)+−
32 1 − V +−

2 χ
(0)+−
22

]
,

(57)

with determinant

d (2, 3) = (
1 − V +−

2 χ
(0)+−
22

)(
1 − V +−

3 χ
(0)+−
33

)
−V +−

2 V +−
3 χ

(0)+−
23 χ

(0)+−
32 . (58)

Above, we have enumerated the indices for true spin, for
hidden spin, for the SDW moment, and for the hSDW moment
by 1 = (0, 0), 2 = (π, 0), 3 = (0, 1), and 4 = (π, 1). These
results will be evaluated numerically at low frequency in the
next section.

Let us first, however, apply the previous to reveal the
Goldstone modes associated with hidden magnetic order (12).
Consider then the determinant (56) that describes the dynam-
ics of the principal hidden antiferromagnetic order parameter
at small momentum transfer along the x axis: q = (qx, 0).
The factor 1 − V +−

4 (q)χ (0)+−
44 (q, ω) vanishes at q = 0 and

ω = 0 because of the gap equation (22). After expanding the
determinant (56) to lowest nontrivial order in qx and in ω, we

then get

d (1, 4) ∼= [1 − U (0)χ (0)
⊥ ]

[
−ω2 U (π )

(2�0)2
χ

(0)
⊥ + q2

x

U (π )

(2�0)2
ρs

]

−ω2 U (0)U (π )

(2�0)2
χ

(0)2
⊥

∼= −ω2 U (π )

(2�0)2
χ

(0)
⊥ + [1 − U (0)χ (0)

⊥ ]q2
x

U (π )

(2�0)2
ρs,

(59)

where

χ
(0)
⊥ = 1

N
∑

k

�2
0(sin 2δ)2

E3
(60)

is the bare transverse spin susceptibility [19], and where ρs

denotes the spin rigidity of the hSDW state. Here, U (0) =
U0 − 1

2 J0 − 4J1 − 4J2 and U (π ) = U0 + 1
2 J0. Setting the de-

terminant to zero, d (1, 4) = 0, then yields an acoustic disper-
sion for the Goldstone modes associated with hidden magnetic
order, ω = c0|q|, with a hidden spin wave velocity, c0 =
(ρs/χ⊥)1/2, set by the spin rigidity, ρs, and by the transverse
spin susceptibility within RPA,

χ⊥ = χ
(0)
⊥ /[1 − U (0)χ (0)

⊥ ]. (61)

The former acoustic spectrum for hidden spin waves will
be computed numerically in the next section. (See Fig. 6.)
Also, substituting in the lowest-order values χ

(0)+−
11

∼= χ
(0)
⊥

and χ
(0)+−
44

∼= 1/U (π ) for the matrix elements of the bare
spin susceptibility into the RPA expression (55) yields the
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dynamical spin susceptibility for hidden spin waves at long
wavelength and low frequency:

χ+−
44 (q, ω) ∼= (2〈m0,0〉)2

χ⊥

1

c2
0|q|2 − ω2

, (62)

where 〈m0,0〉 is the ordered moment for the hSDW state (12).
We thereby recover the result expected from hydrodynamics
for the dynamical correlation function of the antiferromag-
netic ordered moment [39,40].

V. NUMERICAL EVALUATION OF RPA

Below, we reveal the spin excitations of the hSDW state
within the extended Hubbard model for electron-doped iron
selenide over a periodic square lattice of iron atoms. Specif-
ically, the dynamical spin susceptibility is evaluated numeri-
cally at half filling within RPA.

A. Propagation along principal axes at low frequency

Let us again suppose that the momentum q carried by a spin
excitation in the hSDW state lies along one of the principal
axes displayed by Fig. 5. It was demonstrated at the end of
the previous section that the RPA solution (50) decouples
into dynamics between the true spin and the primary hSDW
order parameter (1,4), and into dynamics between the hidden
spin and the secondary SDW order parameter (2,3). Equations
(55) and (57), specifically, give the respective dynamical spin
susceptibilities within RPA. In order to obtain the low-energy
spectrum of such spin excitations, we can next expand the bare
spin susceptibilities to lowest nontrivial order in frequency. In
the case of the dynamics of the primary order parameter, for
example, we have

χ
(0)+−
11 (q, ω) ∼= χ

(0)
11 (q) + ω2χ

(2)
11 (q), (63)

χ
(0)+−
14 (q, ω) ∼= ωχ

(1)
14 (q), (64)

χ
(0)+−
44 (q, ω) ∼= χ

(0)
44 (q) + ω2χ

(2)
44 (q), (65)

where χ
(0)
11 (q) = χ

(0)+−
11 (q, 0), where χ

(0)
44 (q) = χ

(0)+−
44 (q, 0),

where

χ
(2)
11 (q) = 1

N
∑

k

(
1 − ε+ε′

+ − ��′

EE ′

)
1

(E + E ′)3

×1

2
[1 + (cos 2δ)(cos 2δ′) + (sin 2δ)(sin 2δ′)],

(66)

χ
(2)
44 (q) = 1

N
∑

k

(
1 + ε+ε′

+ + ��′

EE ′

)
1

(E + E ′)3

×1

2
[1 − (cos 2δ)(cos 2δ′) + (sin 2δ)(sin 2δ′)],

(67)

and where

χ
(1)
14 (q) = − 1

N
∑

k

(
�

E
+ �′

E ′

)
1

2

sin(2δ) + sin(2δ′)
(E + E ′)2

. (68)

Recall that we have enumerated the indices for the true spin
and for the hidden SDW moment by 1 = (0, 0) and by 4 =
(π, 1), respectively. The RPA denominator (56) then has the
form d (1, 4) = P − ω2Q, where P and Q are functions of
momentum transfer q that are given by

P = [
1 − V +−

1 χ
(0)
11

][
1 − V +−

4 χ
(0)
44

]
,

Q = V +−
1 χ

(2)
11

[
1 − V +−

4 χ
(0)
44

] + V +−
1 V +−

4

∣∣χ (1)
14

∣∣2

+V +−
4 χ

(2)
44

[
1 − V +−

1 χ
(0)
11

]
. (69)

Setting d (1, 4) to zero then yields the approximate energy
spectrum of spin excitations, ωb(q) = [P(q)/Q(q)]1/2, which
is exact in the zero-frequency limit. Also, applying the RPA
solution (55) yields the imaginary parts for the dynamical
spin susceptibilities of the form Im χ+−

11 (q, ω) ∼= A11(q)δ[ω −
ωb(q)] and Im χ+−

44 (q, ω) ∼= A44(q)δ[ω − ωb(q)], with respec-
tive spectral weights

A11 = π

2

√
1 − V +−

4 χ
(0)
44

1 − V +−
1 χ

(0)
11

χ
(0)
11

Q1/2
,

A44 = π

2

√
1 − V +−

1 χ
(0)
11

1 − V +−
4 χ

(0)
44

χ
(0)
44

Q1/2
. (70)

Similar formulas describe the spin dynamics of the secondary
SDW order parameter (2,3). Again, we expand the relevant
bare spin susceptibilities to lowest nontrivial order in fre-
quency:

χ
(0)+−
22 (q, ω) ∼= χ

(0)
22 (q) + ω2χ

(2)
22 (q), (71)

χ
(0)+−
23 (q, ω) ∼= ωχ

(1)
23 (q), (72)

χ
(0)+−
33 (q, ω) ∼= χ

(0)
33 (q) + ω2χ

(2)
33 (q), (73)

where χ
(0)
22 (q) = χ

(0)+−
22 (q, 0), where χ

(0)
33 (q) = χ

(0)+−
33 (q, 0),

where

χ
(2)
22 (q) = 1

N
∑

k

(
1 − ε+ε′

+ + ��′

EE ′

)
1

(E + E ′)3

× 1

2
[1 − (cos 2δ)(cos 2δ′) − (sin 2δ)(sin 2δ′)],

(74)

χ
(2)
33 (q) = 1

N
∑

k

(
1 + ε+ε′

+ − ��′

EE ′

)
1

(E + E ′)3

× 1

2
[1 + (cos 2δ)(cos 2δ′) − (sin 2δ)(sin 2δ′)],

(75)

and where

χ
(1)
23 (q) = − 1

N
∑

k

(
�

E
− �′

E ′

)
1

2

sin(2δ) − sin(2δ′)
(E + E ′)2

. (76)

Again, recall that we have enumerated the indices for the
hidden spin and for the true-SDW moment by 2 = (π, 0) and
by 3 = (0, 1), respectively. The results for the low-energy
spectrum of spin excitations is then identical in form to the
previous ones, (69) and (70), but with the replacements of
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FIG. 7. Spin excitations at frequency ω = 350 meV and damping rate � = 16 meV predicted by RPA over a periodic lattice of 300 × 300
iron atoms. Hopping parameters are listed in the caption to Fig. 1, while Hund and spin-exchange couplings and the Hubbard U0 are listed in
the caption to Fig. 6.

the true spin with the hidden spin, 1 → 2, and with the
replacement of the primary hSDW order parameter with the
secondary SDW order parameter, 4 → 3.

Figure 6 displays the spectrum of spin excitations for
momenta along a principal axis that is predicted by the low-
frequency approximation above. Hopping matrix elements
are set to t‖

1 = 100 meV, t⊥
1 = 500 meV, t‖

2 = 0, and t⊥
2 /i =

100 meV, while superexchange coupling constants are set
to J1 = 100 meV and J2 = 50 meV. Also, the Hund’s rule
coupling is set to J0 = −100 meV, while the maximum gap is
set to �0 = 740 meV. The gap equation (22) thereby implies
a Hubbard repulsion U0 = 7.37 eV. Notice that in Fig. 6, the
momenta of the dynamical spin susceptibility within the RPA,
(55) and (57), have been shifted by the antiferromagnetic
nesting vector, QAF = (π/a, π/a), for the true SDW-type and
for the hidden SDW-type spin excitations. They emerge as
poles in frequency of χ+−

33 and of χ+−
44 , respectively. The

latter hSDW-type excitations notably exhibit the expected
Goldstone modes that disperses acoustically from QAF. [See
Eq. (62) and Ref. [19].] By contrast, true SDW-type exci-
tations are predicted by RPA near zero momentum at high
energy, but they have low spectral weight.

Figure 6 also displays moderately strong excitations near
the antiferromagnetic wave vector QAF in the true-spin chan-
nel at high energy. Below, we will see that they form a
“floating ring” of spin excitations around QAF. The lowest-
energy ones lie along the diagonal axes of the Brillouin zone.

The latter minima of this energy band approach zero energy as
the Hund’s rule coupling, |J0|, increases. For example, using
the set of parameters that correspond to the spin-excitation
spectrum displayed by Fig. 6, while maintaining the gap max-
imum fixed at �0 = 740 meV, the lowest-energy of this band
“touches down” to zero energy at a Hund’s rule coupling of
J0c = −680 meV, with a Hubbard repulsion of U0 = 7.66 eV.
It is a signal of a quantum phase transition to a different
state that obeys Hund’s rule, such as the conventional SDW
state with nesting vector QAF. The spectrum corresponding
to true SDW-type excitations remains unchanged, however,
as well as that corresponding to excitations in the hidden-
spin channel. Further, increasing the magnetic frustration, J2,
from this point in parameter space moves back up in energy
the “floating” ring of magnetic excitations above zero. This
confirms the expectation based on the Heisenberg model that
magnetic frustration stabilizes the hSDW state versus the true
SDW state [21].

B. General wave numbers and frequency

We shall now evaluate the RPA for the dynamical spin
susceptibility (50) numerically at a fixed frequency ω and at an
artificial damping rate �. In particular, the explicit expressions
for the bare dynamical spin susceptibility (39)–(48) are evalu-
ated numerically at complex frequency ω + i�. Figure 7 gives
the imaginary part of χ+−(q, ω + i�) at ω = 350 meV and
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FIG. 8. Spin excitations at frequency ω = 500 meV and damping rate � = 16 meV predicted by RPA over a periodic lattice of 300 × 300
iron atoms. Hopping parameters, Hund and spin-exchange couplings, and the Hubbard U0 are identical to those used in Fig. 6.

� = 16 meV. Hopping parameters and interaction parameters
are the same as those used in Fig. 1 and in Fig. 6. A smaller
periodic square lattice of iron atoms was used, however, with
dimensions 300 × 300. And like in Fig. 6, the momenta of
the dynamical spin susceptibility have been shifted by the
antiferromagnetic nesting vector, QAF = (π/a, π/a), in the
cases of the true-SDW and of the hidden-SDW channels.
Notice the moderately strong excitations around the antifer-
romagnetic wave vector QAF in the true-spin channel. They
emerge near this frequency, and they therefore coincide with
the bottom of the high-energy bands predicted by the low-
frequency approximation above, at wave numbers q along a
principal axis. (See Fig. 6.) Notice also the vestiges of the
Goldstone mode centered at QAF in the hSDW channel. Fig-
ure 8 shows Im χ+−(q, ω + i�) at the same artificial damping
rate, � = 16 meV, but at higher frequency, ω = 500 meV. The
Goldstone mode is hardly visible in the hSDW channel, but
the high-energy spin excitations in the true-spin channel that
circle QAF persist. Notice that they now have a “diamond”
shape. In summary, the spin-excitation spectrum shows level
repulsion at ω ∼ 300 meV, which separates Goldstone modes
in the hSDW channel at low energy from high-energy modes
in the true-spin channel. Both of these types of spin excitations
are centered at the antiferromagnetic wave vector, QAF.

Figure 7 also shows spin excitations around QAF in the
hidden-spin channel and spin-excitations at the center of the
Brillouin zone in the true-SDW channel. As Fig. 6 indicates,
these are related by zone folding because of the hSDW
background, and they are therefore one and the same. Figure 8

displays that such spin excitations no longer exist at higher
energy, however. This is consistent with the collapsed-dome-
shaped band at the center of the folded Brillouin zone that is
suggested by the low-frequency approximation, Fig. 6, in the
hidden-spin and true-SDW channels.

C. Comparison with Heisenberg model

The hSDW state studied above was originally discovered
in a local-moment model over a square lattice of iron atoms
that contain the principal d+ and d− orbitals [17,18,20,21].
The model includes Hund’s rule coupling like in HU (8) and
Heisenberg exchange coupling like in Hsprx (9). However,
separate intraorbital versus interorbital exchange coupling
constants, J‖

1 and J⊥
1 , exist across nearest neighbors. Spin-

wave theory yields that they are related to the spin stiffness of
the hSDW state by J‖

1 − J⊥
1 = ρs/2s2

0. Spin-wave theory also
predicts [19] a “floating ring” of observable spin excitations
around QAF. However, as Hund’s rule coupling −J0 increases,
the hSDW is eventually destabilized by a “stripe” SDW that
intervenes. By comparison, the above RPA calculation does
not indicate that the hSDW state is destabilized by the “stripe”
SDW state as Hund’s rule is enforced. This discrepancy
could be due to the fact that the local-moment model as-
sumes infinitely strong Hubbard repulsion, U0, while keeping
the Hund’s rule coupling, −J0, finite. Nonetheless, both the
present RPA treatment and the previous local-moment model
find that the hSDW state eventually becomes unstable as
Hund’s rule is enforced, as expected.
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VI. DISCUSSION AND CONCLUSIONS

Inelastic neutron scattering studies of alkali-atom-
intercalated FeSe and of organic-molecule-intercalated
FeSe find evidence for low-energy spin excitations not at, but
around, the wave vector (π/a, π/a) in the unfolded (one-iron)
Brillouin zone [8–12]. In particular, the lowest-energy spin
excitations that have been observed in the superconducting
state lie just below the gap in energy for quasiparticle
excitations, 2�SC

∼= 28 meV, at wave vectors that lie midway
between that corresponding to “stripe” SDW order and
that corresponding to Néel order. Interestingly, evidence
exists for low-energy spin excitations in the normal state of
such electron-doped iron selenides [11], at wave numbers
near (π/a, π/a). In particular, spin excitations that form a
“diamond” around this wave vector exist at energy scales
above the gap in organic-molecule-intercalated iron selenide
high-temperature superconductors [11].

The hSDW state studied here ideally exists at half filling. It
may therefore provide a good description of the normal state
in electron-doped FeSe high-Tc superconductors. Figures 7
and 8 summarize the predictions for the nature of high-energy
spin excitations within RPA. The true-spin channel is most
likely the only one that is observable by neutron scattering.
It shows a “floating ring” of spin excitations around the
antiferromagnetic wave vector QAF that begins at a thresh-
old energy (Fig. 7), followed by spin excitations at higher
energy that form a “diamond” around the same wave vec-
tor (Fig. 8). Inelastic neutron scattering on electron-doped
iron selenide indicates that relatively high-energy magnetic
resonances exist above the quasiparticle energy gap, in the
range 80–130 meV, at wave numbers that roughly form a
diamond around the same wave vector [11]. Note that the
threshold energy of the “floating ring” shown by Fig. 7 is
three times larger. It can be reduced, however, by increasing
the Hund’s rule coupling toward |J0c|, at which the threshold
collapses to zero energy. The qualitative agreement of theory
with experiment suggests that hidden magnetic order of the
type studied here exists in electron-doped iron selenide.

In summary, we have studied the nature of low-energy
spin excitations due to hidden magnetic order in an extended
Hubbard model for a single layer of iron selenide. The

Hubbard model notably contains only the two principal 3dxz

and 3dyz orbitals of the iron atom. An RPA was developed
along the lines of the “spin bag” calculation for the SDW state
of the conventional Hubbard model over the square lattice by
Schrieffer, Wen, and Zhang [26–29]. It predicts an observable
“diamond” of spin excitations around the nesting vector of
the hSDW state, QAF = (π/a, π/a), at energies above the
band of Goldstone modes, which are not observable. Such
“hollowed-out” spin excitations at QAF have been observed
by inelastic neutron scattering in bulk electron-doped iron
selenide [9,11]. The present RPA calculations also predict
that they move down in energy as Hund’s rule is enforced,
while that they move up in energy with increasing magnetic
frustration.

Absent from the mean-field/RPA study of the hSDW state
presented above is a description of the superconducting state
in electron-doped iron selenide. Maier and co-workers have
proposed that a nodeless D-wave paired state accounts for the
spin resonances that lie at energies inside the quasiparticle
gap in electron-doped iron selenide [9,11,41]. Mazin argued,
however, that a true node appears after zone-folding the one-
iron Brillouin zone because of hybridization between the two
inequivalent iron sites in [42] FeSe. ARPES finds no evidence
for gap nodes [14,15], on the other hand. The author has
recently found an instability to S-wave pairing in the hSDW
state upon electron doping, where the sign of the Cooper pair
wave function alternates between electron pockets and faint
hole pockets [22]. Such electron/hole pockets lie at the corner
of the folded Brillouin zone, and they are due to a Lifshitz
transition of the Fermi surfaces that is incited by fluctuation
exchange with the Goldstone modes associated with hidden
magnetic order (62). (See Fig. 3 and Ref. [19].) It remains to
be seen what type of low-energy spin resonance is predicted
by such an S+− paired state.
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APPENDIX A: ORBITAL MATRIX ELEMENTS

The operators that create the eigenstates (4) of the electron hopping Hamiltonian, Hhop, are

c†
s (n, k) = N−1/2

∑
i

∑
α=0,1

(−1)αnei(2α−1)δ(k)eik·ri c†
i,α,s, (A1)

where α = 0 and 1 index the d− and d+ orbitals, and where n = 1 and 2 index the antibonding and bonding orbitals (−i)dy(δ)z

and dx(δ)z. The inverse of the above is then

c†
i,α,s = N−1/2

∑
k

∑
n=1,2

(−1)αne−i(2α−1)δ(k)e−ik·ri c†
s (n, k). (A2)

Plugging (A2) and its Hermitian conjugate into the expression for the electron spin density wave operator,

S(mπ, q) = 1

2

∑
s

∑
s′

∑
i

∑
α

(−1)mαeiq·ri c†
i,α,sσs,s′ci,α,s′ , (A3)
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yields the form

S(mπ, q) = 1

2

∑
s

∑
s′

∑
k

∑
n,n′

Mn,k;n′,k′ c†
s (n′, k′)σs,s′cs′ (n, k), (A4)

with matrix element

Mn,k;n′,k′ = 1

2

∑
α=0,1

ei(2α−1)[δ(k)−δ(k′ )](−1)(n′−n+m)α. (A5)

Here, m = 0 or 1, and k′ = k + q. The matrix element therefore equals [19]

Mn,k;n′,k′ =
{

cos[δ(k) − δ(k′)], for n′ = n + m (mod 2),
−i sin[δ(k) − δ(k′)], for n′ = n + m + 1 (mod 2). (A6)

APPENDIX B: TRACE FORMULAS FOR PRODUCTS OF 2 × 2 MATRICES

Below, we compute the trace of the product of 2 × 2 matrices tr(τμτγ τντδ ), where τ0 is the identity matrix, and where τ1,
τ2, and τ3 are Pauli matrices. The indices μ and ν pertain to the Nambu-Gorkov Green’s function: G = ∑3

μ=0 G(μ)τμ. We will
exploit the product rule obeyed by Pauli matrices:

τiτ j = δi, jτ0 + i
3∑

k=1

εi, j,kτk . (B1)

Throughout, Greek-letter indices run through 0, 1, 2, and 3, while Latin-letter indices run through 1, 2, and 3.
(1) tr(τμτ0τντ0) = tr(τμτν ) = 2 δμ,ν.

(2) tr(τμτiτντi ) = 2 sgnμ(i)δμ,ν ,
where sgnμ(i) = 1 if μ = 0 or i, and where sgnμ(i) = −1 otherwise.

(3) tr(τμτ0τντi ) = tr(τμτντi ) = 2(δμ,0δν,i + δμ,iδν,0 + iεμ,ν,i ),
where εμ,ν,i coincides with the Levi-Civita tensor for μ, ν = 1, 2, 3, while it vanishes otherwise, for μ = 0, or for ν = 0.

(4) tr(τμτiτντ0) = tr(τμτiτν ) = 2(δμ,0δν,i + δμ,iδν,0 + iεμ,i,ν ),
where εμ,i,ν coincides with the Levi-Civita tensor for μ, ν = 1, 2, 3, while it vanishes otherwise, for μ = 0, or for ν = 0.

(5) tr(τμτiτντ j ) = 2(δμ,iδν, j + δμ, jδν,i + iδμ,0 εi,ν, j + iδν,0 εμ,i, j ) for i �= j,
where εi,ν, j and εμ,i, j coincide with the Levi-Civita tensor for μ, ν = 1, 2, 3, while they vanish otherwise, for μ = 0, or for
ν = 0.

Importantly, notice that the matrix formed by the trace as a function of the indices γ and δ is Hermitian:

tr(τμτγ τντδ ) = tr(τμτδτντγ )∗.
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