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Interaction between moving Abrikosov vortices in type-II superconductors
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The self-energy of a moving vortex is shown to decrease with increasing velocity. The interaction energy of
two parallel slowly moving vortices differs from the static case by a small term ∝v2; the “slow” motion is defined
as having the velocity v < vc = c2/4πσλ, where σ (T ) is the conductivity of normal excitations and λ(T ) is
London penetration depth. For higher velocities, v > vc(T ), the interaction energy of two vortices situated along
the velocity direction is enhanced and in the perpendicular direction is suppressed compared to the static case.
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I. INTRODUCTION

Recent experiments have tracked Abrikosov vortices mov-
ing with extremely high velocities well exceeding the speed of
sound [1,2]. The time-dependent Ginzburg-Landau equations
(GL) were the major tool used to model vortex motion. Al-
though this approach, strictly speaking, is applicable only for
gapless systems near the critical temperature [3], it reproduces
qualitatively major features of the fast vortex motion.

A much simpler linear London approach had been suc-
cessfully employed through the years to describe static or
nearly static vortex systems. The London equations express
the basic Meissner effect and can be used at any temperature
for problems where vortex cores are irrelevant. The magnetic
structure of moving vortices was commonly considered the
same as that of a static vortex displaced as a whole.

It has been shown recently, however, that this is not so
for moving vortexlike topological defects in, e.g., neutral
superfluids or liquid crystals [4]. Also, this is not the case
in superconductors within the time dependent London theory
(TDL) which takes into account normal currents, a necessary
consequence of moving magnetic structure of a vortex [5]. In
this paper we show that the line energy of a moving vortex
decreases with increasing velocity. Moreover, the interaction
of two vortices moving with the same velocity becomes
anisotropic so that it is enhanced when the vector R con-
necting vortices is parallel to the velocity v and suppressed
if R ⊥ v.

A. Outline of time dependent London approach

In time dependent situations, the current consists, in gen-
eral, of normal and superconducting parts:

J = σE − 2e2|�|2
mc

(
A + φ0

2π
∇χ

)
, (1)
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where E is the electric field and � is the order
parameter.

The conductivity σ approaches the normal state value σn

when the temperature T approaches Tc in fully gapped s-wave
superconductors; it is believed to vanish fast with decreasing
temperature along with the density of normal excitations.
This is, however, not the case for strong pair breaking when
superconductivity becomes gapless while the density of states
approaches the normal state value at all temperatures.

Within the London approach |�| is a constant �0 and
Eq. (1) reads:

4π

c
J = 4πσ

c
E − 1

λ2

(
A + φ0

2π
∇χ

)
, (2)

where λ2 = mc2/8πe2|�0|2 is the London penetration depth.
Acting on this by curl one obtains:

−∇2H + 1

λ2
H + 4πσ

c2

∂H
∂t

= φ0

λ2
z
∑

ν

δ(r − rν ) , (3)

where rν (t ) is the position of the νth vortex, and z is the
direction of vortices that coincides with that of H for isotropic
infinite type-II superconductors. Equation (3) can be consid-
ered as a general form of the time dependent London equation.
This form differs from that provided by F. London where
contribution of normal quasiparticles to the current was not
included [6].

As with the static London approach, the time dependent
version (3) has the shortcoming of being valid only outside
vortex cores. As such it may produce useful results for mate-
rials with large GL parameter κ in fields away from the upper
critical field Hc2. On the other hand, Eq. (3) is a useful, albeit
approximate, tool for low temperatures where GL theory does
not work and the microscopic theory is forbiddingly complex.
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B. Moving vortex

For a straight vortex along z moving with a constant
velocity v in the xy plane Eq. (3) reads:

−λ2∇2H + H + τ
∂H

∂t
= φ0δ(r − vt ) , (4)

where H is the z component of the magnetic field and

τ = 4πσλ2/c2 (5)

is the “current relaxation time,” the term used in literature
on time-dependent GL models. Clearly, the field distribution
described by Eq. (4) differs from the solution which would
have existed in the absence of relaxation term for τ = 0:

H0(r, t ) = φ0

2πλ2
K0

( |r − vt |
λ

)
, (6)

where K0 is the modified Bessel function.
Equation (4) can be solved by first finding the time de-

pendence of the Fourier transform Hk, as it is done for the
diffusion equation [7]:

τ ∂t Hk + (1 + λ2k2)Hk = φ0 e−ikvt (7)

which yields

Hk = φ0 e−ikvt

1 + λ2k2 − ikvτ
. (8)

To find the field distribution in real space for the stationary
case of a constant velocity one may consider t = 0. This was
done in Ref. [5] where it was shown that the moving vortex
looses the cylindrical symmetry of vortex at rest, in particular,
this distribution is no longer symmetric relative to x → −x
with x being the velocity direction.

Physically, the distortion of the vortex field is due to contri-
bution of the out-of-core normal excitations to vortex currents.
At small velocities, the distortion can be disregarded. At low
temperatures, the quasiparticles are nearly absent (for the s-
wave symmetry) and σ ≈ 0, whereas λ is finite, therefore the
vortex field distortion is weak. Hence, the distortion may have
an effect at high T s where the conductivity is close to that of
the normal phase. Gapless superconductors are an exception
to this rule, since the normal excitations density of states is
close to the normal even at low T s.

II. SELF-ENERGY OF MOVING VORTEX

Given the field distribution of a moving vortex, one readily
evaluates the London line energy of a vortex [8,9]:

F1 =
∫

d2r[H2 + λ2(curlH )2]/8π

=
∫

d2k
32π3

[|Hk|2 + λ2|k × Hk|2] , (9)

where the Fourier transform Hk is given in Eq. (8) for t = 0.
Further, we have |k × Hk|2 = k2|Hk|2, so that

32π3λ2

φ2
0

F1 =
∫

d2q (1 + q2)

|1 + q2 − iqu|2

=
∫

d2q (1 + q2)

(1 + q2)2 + q2
x u2

. (10)
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FIG. 1. The line energy f1 normalized on φ2
0/32π 2λ2 as a func-

tion of reduced velocity u = v/vc for κ = λ/ξ = 10.

Here, the dimensionless q = λk is introduced and the normal-
ized velocity u = v/vc, vc = c2/4πσλ (this vc is by a factor
of 2 smaller than vc used in Ref. [5]). After integration over
the angle ϕ (qx = q cos ϕ) one obtains the last integral in the
form∫ κ

0

2π qdq√
(1 + q2)2 + q2u2

= π

2
ln

u4 + 2u2(1 + κ2 +
√

(1 + κ2)2 + κ2u2)

(4 + u2)(2 + u2 + 2κ2 − 2
√

(1 + κ2)2 + κ2u2)
,

(11)

where the logarithmically divergent integral is truncated at
q = λ/ξ = κ . The reduced line energy f1 = F1/(φ2

0/32π2λ2)
for κ = 10 is shown in Fig. 1.

It is worth noting that large values of the reduced velocity
u = v/vc not necessarily imply a large actual velocity because
vc depends on temperature, in particular, vc → 0 when T →
Tc. For a “fast” motion u2 � 1, Eq. (11) gives

F1 ≈ φ2
0

16π2λ2

κ

u
. (12)

Near u = 0 we have

f1 ≈ 2π ln κ − πu2/4 , (13)

where the first term gives the standard line energy of a vortex
at rest.

III. INTERVORTEX INTERACTION

For two parallel vortices moving with the same velocity,
one at the origin at t = 0 and the other at R = (x, y), the field
is given by the Fourier transform:

Hq = φ0(1 + e−iqR)

1 + q2 − iqxu
. (14)

Using Eqs. (9), one obtains the total energy F of two vortices
and the interaction energy Fint = F − 2F1 where F1 is the line
energy of a single vortex given in Eq. (10):

16π3λ2

φ2
0

Fint(R) =
∫

d2q (1 + q2) cos qR
(1 + q2)2 + q2

x u2
. (15)
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For u = 0 this yields the static interaction energy [8]:

Fint = φ2
0

16π3λ2

∫
d2q cos qR

1 + q2
= φ2

0

8π2λ2
K0

(
R

λ

)
. (16)

This energy is commonly written as Fint = φ0H12(R)/4π ,
where H12(R) is the field generated by the first vortex at the
location of the second.

The double integral (15) can be evaluated numerically. The
integral over q, however, diverges logarithmically. One can
isolate effects of motion by subtracting and adding the result
(16) for the interaction of vortices at rest:

fint = 2πK0(R) −
∫

u2 q2
x cos(qR) d2q

(1 + q2)
[
(1 + q2)2 + q2

x u2
] , (17)

where the reduced interaction fint = (16π3λ2/φ2
0 )Fint. An-

other benefit of this step is that the logarithmic divergence is
now incorporated in the exact first term, while the integral here
is convergent.

To exclude large |k| > 1/ξ (where the London theory
breaks down, ξ is the vortex core size), we introduce a factor
e−k2ξ 2 = e−q2/κ2

in the integrand of Eq. (17) and integrate over
region −qm < qx < qm and −qm < qy < qm with qm exceed-
ing κ substantially, so that the square shape of the integration
domain does not matter. The result is shown in Fig. 2. The
upper panel shows that at low velocities, the interaction en-
ergy Fint(x, y) = Fint(R, ϕ) is nearly azimuth independent. In
particular, this means that the interaction force is nearly radial,
as is the case of vortices at rest. With increasing velocity
the situation changes drastically, and the force −∇Fint(x, y),
which is perpendicular to contours Fint(x, y) = const has a
complicated distribution.

Clearly, the interaction energy (15) remains the same if
R → −R; also, it is symmetric with respect to reflection
y → −y. Since the interaction force is −∇Fint, the lower panel
of Fig. 2 shows that the force direction deviates from the
direction of R, unless R is parallel or perpendicular to the
velocity v = vx̂. It is worth noting that the field distribution
of the first vortex is asymmetric with respect to x → −x, so
that the interaction energy is not proportional to the field of
the first vortex at the location of the other.

To have a better view of the energy Fint(x, y) we provide a
three-dimensional plot in Fig. 3. It is seen that the interaction
energy of a pair of vortices at the x axis is larger than for a pair
situated at the same distance at the y axis, i.e., along the direc-
tion perpendicular to v. This difference is pronounced for high
velocities as shown in Fig. 3 for u = 10. This graph suggests
a possibility of a shallow minimum at x = 0 and some finite
y∗. To see this minimum we plot in Fig. 4 fint(0, y) for a few
high velocities. Hence, the minimum indeed exists; it deepens
and moves to smaller intervortex distance y∗ for increasing
velocities. Numerical tests show that for u � 2 the minimum
disappears within exponentially small tails of fint(0, y), see the
Appendix. We thus conclude that a pair of vortices situated at
the y axis and moving fast with u > 2 repel at distances y < y∗
and attract when separated farther than y∗. In Fig. 5 the region
of negative interaction energies is plotted for u = 20. It is seen
that the minimum of the interaction energy is near the point
(0, 0.8) and the two-dimensional region of negative fint(x, y)
extends in all directions on distances of the order λ.

0.5

1

1.5

2

2.5

3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x
y

0.25

0.5

0.75

11.25

1.5

1.75

2

2.25

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

y

FIG. 2. Contours of constant interaction energy for a vortex at
the origin (0, 0) and another one at (x, y) for a small velocity u =
v/vc = 0.2 (the upper panel) and for fast vortices with u = v/vc = 4
(the lower panel). x, y are measured in units of λ. In this calculation
κ = 8 and qm = 12.

IV. ELECTRIC FIELD AND DISSIPATION

Having the magnetic field (8) of a moving vortex, one gets
for two vortices of our interest:

Hq = φ0(1 + e−iqR)e−iqxut/τ

1 + q2 − iqxu
. (18)

The moving nonuniform distribution of the vortex magnetic
field causes an electric field E out of the vortex core, which in
turn causes the normal currents σE and the dissipation σE2.

024506-3



V. G. KOGAN AND R. PROZOROV PHYSICAL REVIEW B 102, 024506 (2020)

FIG. 3. The interaction energy fint(x, y) for a vortex at the origin
(0, 0) and another one at (x, y) both moving along x with velocity
u = v/vc = 10. In this calculation κ = 10 and qm = 20.

Usually this dissipation is small relative to Bardeen-Stephen
core dissipation [10], but for fast vortex motion it can become
substantial [5].

The field E is expressed in terms of known H with the
help of the Maxwell equations i(k × Ek)z = −∂t Hzk/c and
k · Ek = 0:

Exk = −φ0v

c

qxqy(1 + e−iqR)

q2(1 + q2 − iqxu)
, (19)

Eyk = φ0v

c

q2
x (1 + e−iqR)

q2(1 + q2 − iqxu)
. (20)

For the stationary motion, one can consider the dissipation at
t = 0. The dissipation power per unit length is:

W = σ

∫
drE2 = σ

∫
d2k
4π2

(|Exk|2 + |Eyk|2)

= φ2
0σv2

π2c2

∫
d2q

q2
x cos2(qR/2)

q2
[
(1 + q2)2 + q2

x u2
] . (21)
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FIG. 4. The interaction energy fint(0, y) for a vortex at the origin
(0, 0) and another one at (0, y) for u = v/vc = 8, 6, 4, 2 in left-to-
right order. In this calculation κ = 10 and qm = 20.
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FIG. 5. The interaction energy fint(x, y) for a vortex at the origin
(0, 0) and another one at (x, y) for u = v/vc = 20. In this calculation
κ = 10 and qm = 20.

Treating this integral numerically in the same way as was done
for the energy integral in Eq. (17), we calculate the reduced
quantity w(x, y) = W (πc2λ2/φ2

0σv2
c ) shown in Fig. 6.

An interesting feature of this result is that the dissipation
w(x, y) develops a shallow ditch along the x axis. An example
of this ditch is better seen if we plot a cross section w(2, y)
as shown in Fig. 7. It is seen that for vortices separated by
x ≈ 2λ, the ditch width is �y ≈ 2λ, although the dissipation
in the minimum is only about 3% less than at the maxima.

FIG. 6. The reduced dissipation w(x, y) for a vortex at the origin
(0, 0) and another one at (x, y) both moving along x with velocity
u = v/vc = 10. In this calculation κ = 10 and qm = 15.
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FIG. 7. The reduced dissipation w(2, y) for a vortex at the origin
(0, 0) and another one at (2, y) for u = v/vc = 10. In this calculation
κ = 10 and qm = 15.

V. SUMMARY AND DISCUSSION

The time-dependent London equations, formulated to in-
clude normal currents around a moving vortex, show that the
vortex field distribution differs from the static distribution
displaced as a whole [5]. Hence, dynamics of vortices in su-
perconductors with a short-range field distribution is similar to
dynamics of topological singularities in overdamped systems
with long-range interaction potentials [4].

We argue that the self-energy of a moving vortex is reduced
as compared to the static case and decreases with increasing
velocity. Moreover, the interaction energy of two parallel
vortices, moving with the same velocity, one at the origin at
t = 0 and another at R = (x, y), is symmetric relative to x →
−x (x is along the velocity) notwithstanding the asymmetric
field distribution of the first. In other words, the common
rule stating that the interaction energy of two vortices is
proportional to the field of the first vortex at the location of
the other holds only for the vortices at rest.

As in any London based approach, our results are applica-
ble only out of the vortex cores. The only relevant parameter
of the theory, in addition to the penetration depth λ, is the
reduced vortex velocity u = v/vc with the crossover velocity
vc = c2/4πσλ. We have shown that only for u > 1 distortions
of the field in a moving vortex become considerable and even
large. Hence, the estimate of vc is crucial for relevance of our
calculations.

To estimate maximum possible vortex velocity vmax, one
can set the transport current causing the vortex motion equal
to the maximum possible, i.e., to the depairing value jd p =
cφ0/16π2λ2ξ . Then, the equation of motion ηvmax = φ0 jd p/c
and Bardeen-Stephen’s η = φ2

0σn/2πc2ξ 2 provide vmax and

umax = vmax

vc
= 1

2κ
< 1 , (22)

because conductivities from the expressions for the drug coef-
ficient and of the crossover velocity cancel out. If this estimate
is correct, effects of the vortex motion should be weak.

We note, however, that Bardeen-Stephen’s η describes the
dissipation within the normal vortex core and thus involves
the normal state conductivity σn, whereas the conductivity
σ entering vc is of quasiparticles in the superconducting
phase. These two are not necessarily the same, i.e., the above
estimate should be

umax = 1

2κ

σ

σn
. (23)

In a recent work [11], Smith, Andreev, and Spivak argue that
the conductivity of normal quasiparticles could be strongly
enhanced by inelastic processes in time dependent situations.
If this is the case, the crossover velocity vc ∝ 1/σ could be
suppressed and high values of the reduced velocity u = v/vc

become available.
In experiments [1,2], at velocities exceeding 106 cm/s,

vortices are reported to form chains along the velocity. The
moving vortex core has a tail of suppressed order parameter in
the −v direction which at large enough velocities may cause
the following vortex to trail the first one. A moving vortex
generates heat due to normal currents and the changing in
time order parameter. This complicated process is discussed
in Refs. [1,2] within the time dependent GL theory.

In this paper we consider a less ambitious and simple
model of Abrikosov vortices moving with a constant velocity
within linear time-dependent London theory. Whereas dis-
tances ∼ξ are inaccessible within this approach, the interac-
tion of vortices at distances of the order of λ � ξ are well
described by the London-type theory. Hence, although the
TDL approach cannot describe all features of fast moving
vortices, it may provide an extra useful insight. E.g., our
results on the interaction energy of two fast-moving vortices
suggest that vortices in a single chain along the velocity
should have a tendency to slip aside, in other words, such
a chain is unstable. Thus, we have shown that usual models
treating a moving vortex as a static structure displaced as a
whole, miss nontrivial changes in the vortex field structure
and in the intervortex interaction that become relevant for fast
motion.
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APPENDIX: POSITION OF INTERACTION MINIMUM

As mentioned above, numerical tests show that the mini-
mum of the interaction energy at (0, y∗) practically disappears
for u � 2. Here, we examine this question in more detail. The
minimum position (0, y∗) is determined by ∂ fint(0, y)/∂y = 0.
Differentiating Eq. (17) over y and setting x = 0 we obtain an
equation for y∗:

−2πK1(y∗) + u2
∫

q2
x qy sin(qyy∗)d2q

(1 + q2)
[
(1 + q2)2 + q2

x u2
] = 0. (A1)

Let us consider the case of slow motion u 
 1. Since
we have u2 in front of the integral here, in the lowest
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approximation one can set u = 0 in the integrand. We then
have:∫

q2
x qy sin(qyy∗)d2q

(1 + q2)3

=
∫ ∞

0

q4dq

(1 + q2)3

∫ 2π

0
dϕ cos2 ϕ sin ϕ sin(qy∗ sin ϕ)

= 2π

y∗

∫ ∞

0

q3J2(qy∗)dq

(1 + q2)3
= πy∗

4
K0(y∗). (A2)

Hence for u 
 1, y∗ satisfies

K1(y∗) = y∗u2

8
K0(y∗). (A3)

Clearly, for vortices at rest, y∗ = ∞ as is should be. Since the
leading terms in asymptotic expansions of K0 and K1 are the
same, we obtain for small velocities (and large y∗):

y∗ = 8/u2. (A4)

This relation can also be confirmed by a direct numerical
evaluation.

It is worth noting that this result implies that the minimum
of the interaction energy fint(x, y) at the y axis in fact exists
for any nonzero velocity. However for small u it is so far
from the origin where fint is exponentially small anyway and,
therefore, details of the interaction coordinate dependence
become irrelevant.
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