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Electronic multipoles and multiplet pairs induced by Pomeranchuk and Cooper instabilities of
Bogoliubov Fermi surfaces
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It was recently pointed out that Fermi surfaces can remain even in superconductors under symmetric spin-orbit
interaction and broken time-reversal symmetry. Using the linear response theory, we study the instability of such
systems toward ordering, which is an intrinsic property of Fermi surfaces. The ordered states are classified into
diagonal and off-diagonal ones, which respectively indicate the Pomeranchuk instability and Cooper pairing not
of original electron but of Bogoliubov particles (bogolons). The corresponding order parameters are expanded by
multipole moments (diagonal order parameter) and multiplet pair amplitudes (off-diagonal order parameter) of
original electrons, which are induced by the internal fields arising from bogolon ordering. While the bogolons’
order parameters partially inherit the characters of the original electrons, many order parameter components
mix with similar magnitude. Hence, there is no clear-cut distinction for whether the phase transition is diagonal
or off-diagonal ordering in terms of the original electrons. These ordering instabilities inside the supercon-
ducting states provide insights into superconductors which have the second phase transition below the first
transition temperature.

DOI: 10.1103/PhysRevB.102.024505

I. INTRODUCTION

Fermi surfaces are known to show a variety of intrigu-
ing phenomena at low temperatures because of the inter-
action effects among electrons. A typical example is the
magnetic ordering, where the spin degrees of freedom near
the Fermi energy are reconstructed by repulsive interactions.
The critical value of the interaction where the order pa-
rameter, or magnetization, becomes finite is proportional to
the inverse of the density of states known as the Stoner
criterion. It has also been recognized that the presence of
Fermi surfaces drives the system to nonmagnetic ordering,
which results in spatial-symmetry lowering (Pomeranchuk
instability [1]). The other examples where the Fermi sur-
face effect is involved in mechanisms include the screening
of the magnetic moments in metals known as the Kondo
effect [2,3].

The superconducting state, which is caused by Cooper
pair formation [4,5], is also a manifestation of the instability
of Fermi surfaces, whose elementary fermionic excitations
are described as emerging Bogoliubov quasiparticles (or bo-
golons) written in terms of the electron-hole superposed state
[6]. The instability toward superconductivity is a quite general
phenomenon, as evidenced by the logarithmically divergent
pairing susceptibility at low temperatures even without inter-
actions due to the presence of Fermi surfaces. Usually, the
Fermi surfaces disappear in the resultant pairing state, and
the system reaches the ground state with no more degrees of
freedom left for electrons.

On the other hand, an interesting possibility was pointed
out theoretically: the Bogoliubov particles can form stable
Fermi surfaces in some superconductors (Bogoliubov Fermi

surfaces) [7–14]. It is also known that the degrees of freedom
at the Fermi level in the superconducting state can also remain
under a supercurrent flow [15–17]. As discussed above, the
remaining Fermi surface has instabilities toward ordering, and
here it appears inside the superconducting state. Because of
the intrinsic logarithmically divergent pair susceptibility, it
is naturally expected that the system with Bogoliubov Fermi
surfaces shows a pairing state of bogolons at sufficiently low
temperatures. Such a possibility was, indeed, studied recently
[18]. In the present paper, we study the properties of both
diagonal (Pomeranchuk instability) and off-diagonal (Cooper
instability) order parameters of bogolons. In addition, in order
to clarify their nature, we dissect the bogolons into the original
electrons. Specifically, for the Cooper pairing of bogolons,
since the pairing state of original electrons is already realized,
the nature of the second pairing state inside the superconduct-
ing state is interesting but unclear. We discuss this “pairing
state of the pairing state” based on a simple model that
shows Bogoliubov Fermi surfaces. These insights can also
provide a candidate scenario for the ordered states inside the
superconducting state.

In this paper, using the j = 3/2 electron model [10,19–
21] with Bogoliubov Fermi surfaces, we identify emergent
order parameters of the original electrons that are induced
by bogolons’ diagonal and off-diagonal orderings. For this
purpose, we employ the multipole expansion in terms of orig-
inal electron degrees of freedom. The concept of electronic
multipoles originated from the spin-orbital model [22] in d-
electron systems and has been further extended to f -electron
and other systems [23–33]. Since the pairing amplitudes are
also involved in the superconducting state, we need to ex-
tend the multipole expansion to include pair amplitudes on
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equal footing. As a result, the bogolon order parameters are
represented by a mixture of diagonal and off-diagonal order
parameters of original electrons. Hence, while the ordering of
bogolons is a good physical picture, we cannot simply classify
them as either diagonal or off-diagonal orders of the original
electrons.

This paper is organized as follows. In the next section
we show the formulations for the Bogoliubov Fermi surface
and the order parameters. The numerical results are given in
Sec. III. We summarize the paper in Sec. IV and make a com-
ment on the relevance to real materials. Full lists of multipole
operators, multiplet pair amplitudes, and form factors in the
wave vector space are given in Appendixes A and B.

II. FORMULATION

A. Model Hamiltonian

We take the simplest model that has stable Bogoliubov
Fermi surfaces as introduced in Ref. [10]. We consider the
continuum model by focusing on a part of the Brillouin zone.
The Hamiltonian reads

H =
∑

k

�c†
k

[
α
(
k2 − k2

F

)
1̂ + β(k · Ĵ)2

]
�ck

+
∑

k

(
�c†

k�̂k�c†T
−k + H.c.

)
, (1)

where �ck = (ck, 3
2
, ck, 1

2
, ck,− 1

2
, ck,− 3

2
)T is the spin-3/2 spinor

composed of electron annihilation operators. The hat (̂ ) sym-
bol represents a 4 × 4 matrix. Ĵ is the angular momentum
matrix for j = 3/2 [see Eqs. (A3)–(A5)]. The parameter α is
a constant proportional to the inverse of mass, kF is the Fermi
wave vector, and β is the symmetric spin-orbit coupling. The
Fermi energy is given by εF = αk2

F. The gap parameter is
chosen as

�̂k = �1kz(kx + iky)Ê + 2√
3
�0�Ĵz(Ĵx + iĴy)�Ê , (2)

where the brackets �· · · � symmetrize the expression as
�AB� = (AB + BA)/2. We have defined the antisymmetric
tensor Ê [see Eq. (A18)]. The above Hamiltonian guaran-
tees the presence of the stable Fermi surfaces even in the
superconducting state with �0,1 �= 0 [10]. Hence, we naively
expect another phase transition at low enough temperatures.
Once the Hamiltonian is fixed in this way, we can move to a
diagonalized picture as

H =
∑

k∈HBZ

�ψ†
k Ȟk �ψk =

∑
k∈HBZ

�α†
k�̌k �αk, (3)

where �ψk = (�cT
k , �c†

−k )T is the eight-component Nambu spinor

and �αk = Ǔ †
k

�ψk is the Bogoliubov particle annihilation oper-
ators with a diagonal eigenvalue matrix �̌k and eigenvector
matrix Ǔk. The check (̌ ) symbol represents an 8 × 8 matrix.
Note that the wave vector summation is taken over the half
Brillouin zone (HBZ) to avoid double counting.

Since the low-temperature behaviors are dominated by the
degrees of freedom near the Fermi level, we can construct the
effective low-energy model involving only the HBZ. There are
doubly degenerate components near the Fermi level protected
by the particle-hole symmetry, which are labeled 1 and 2, and

Energy

FIG. 1. Illustration of the band structures of bogolons near the
Fermi level. The regions enclosed by dotted lines show the low-
energy windows relevant to instability of Bogoliubov Fermi surfaces.

the corresponding effective low-energy Hamiltonian is written
as

Heff =
∑
k∈�

(εk1α
†
k1αk1 + εk2α

†
k2αk2), (4)

where εk1 = −εk2 ≡ εk. The region � represents a wave
vector space near the Fermi surfaces. Whereas the energy
is dependent on the pseudospin index (1, 2), it is more
convenient to define another spinless fermion αk∈� = αk1

and αk∈�′ = α
†
−k,2 (see Fig. 1 for schematic pictures of band

structures and the definition of �′). Then we obtain the simple
spinless Hamiltonian

Heff =
∑

k∈�+�′
εkα

†
kαk, (5)

where the constant term is dropped. We have used the relation
ε−k = εk. Since one sees the unclosed Fermi surfaces for
k ∈ HBZ in Eq. (4), the Hamiltonian (5) is a more natural
representation where only closed Fermi surfaces exist. We
have inversion symmetry in Eq. (5), which is seen as the
particle-hole symmetry in terms of Eq. (4).

B. Order parameter and susceptibility

With the Hamiltonian (5), the analogy to spinless fermions
can be used, and now we are ready to define the possible
order parameters of bogolons. We have two kinds of order
parameters, i.e., diagonal (Pomeranchuk instability) and off-
diagonal (Cooper instability) ones. The former is defined by

ND,η =
∑

k∈�+�′
gη(k)α†

kαk, (6)

where the symbol D represents a diagonal component.
η represents polynomials such as gη=xy(k) ∝ kxky (see
Appendix B for more details), which determines the spatial
structure. In principle, one can also consider the combination
of these types, for example, gη(k) ∝ kx + iky. The instability
toward these orders can be studied based on the susceptibility
defined by

χD,η =
∫ 1/T

0
dτ 〈ND,η(τ )N †

D,η〉. (7)

The Heisenberg picture with imaginary time is defined as
O (τ ) = eτHeff Oe−τHeff , and the brackets 〈· · · 〉 indicate the
quantum statistical average using Heff . The physical meaning
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(a) Pomeranchuk (b) Cooper

kx
kz

FIG. 2. Schematic pictures for (a) diagonal and (b) off-diagonal
orders of the η = z type [gz(k) ∝ kz]. The dashed line shows the
bare Fermi surface without ordering. The solid line in (a) shows
the deformed Fermi surface due to the Pomeranchuk instability. The
shaded area in (b) shows the magnitude of the gap induced by the
Cooper instability.

of this quantity is how much of the order parameter is induced
as 〈ND,η〉 = χD,ηhD,η under the test field hD,η conjugate to
ND,η. The schematic picture of Pomeranchuk instability is
shown in Fig. 2(a). As shown later, this is simply evaluated
to give χD,η ∼ ρ, with ρ being a density of states at the Fermi
level.

If the interaction term Hint = −UN 2
D,η with U > 0 is

present in the Hamiltonian, this susceptibility is enhanced
by the factor (1 − UχD,η )−1 according to the random-phase
approximation justified in the weak-coupling limit. Hence,
the ordering occurs when the Stoner condition ρU � 1 is
satisfied. On the other hand, it is hard to tell which type of
interaction is most relevant since it is dependent on the form
of the interactions among the original electrons, which are,
in general, dressed by the phonons and spin and/or orbital
fluctuations. Hence, below we assume the existence of the one
relevant interaction which favors the appearance of the order
parameter 〈ND,η〉.

At this point, we introduce the matrix Ôη′
related to the

multipoles, where η′ again represents polynomial functions.
The full functional forms are given in Appendix A and are
classified into one monopole (Ô1 ∼ 1̂ with the identity 1̂),
three dipoles (e.g., Ôx = Ĵx), five quadrupoles (e.g., Ôxy ∼
Ĵx Ĵy), and seven octupoles (e.g., Ôxyz ∼ Ĵx ĴyĴz). These are
called electronic multipoles in this paper. With the above 16
matrices, any 4 × 4 matrix can be expanded. For example, the
spin-orbit interaction term with β [Eq. (1)] is expressed by
the quadrupoles. We can also classify the pairing amplitudes
by the matrix Ôη′

Ê as spin singlet (η′ = 1), spin triplet (e.g.,
ÔxÊ ), spin quintet (e.g., ÔxyÊ ), and spin septet (e.g., ÔxyzÊ ),
which are called electronic multiplet pairs. Our choice of the
pair potential in Eq. (2) is regarded as a mixture of the spin
singlet and spin quintet [10].

It is interesting to see the bogolons’ physical quantities in
terms of the original electrons. The operator for the bogolons’
order parameter is expanded by the multipole operators of
electrons as

ND,η =
∑
k∈�

∑
η′

∑
ξ ′=D,D̄,O,Ō

Cξ ′η′
D,η (k) �ψ†

k Ǒξ ′η′ �ψk + const (8)

≡
∑
ξ ′η′

M ξ ′η′
D,η + const. (9)

The 8 × 8 matrix Ǒξ ′η′
composed of Ôη′

and Ê specifies the
type of electron multipole defined in Appendix A 3. Equation
(9) shows that the operator ND for bogolons includes the
diagonal component M ξ ′=D,D̄, where D and D̄ represent even-
parity and odd-parity multipoles. These two types (ξ ′ = D, D̄)
can be constructed due to the enlargement of the single-
particle Hilbert space involving the k and −k components.
Note that the internal j = 3/2 degrees of freedom are re-
garded as independent from the parity here (k parity). We also
have the off-diagonal components M ξ ′=O,Ō of the original
electrons due to the gauge symmetry breaking by �̂k, where
the symbol O shows an electron pair (c†c† type) and Ō shows
a hole pair (cc type). The expansion coefficient C in Eq. (9)
will be evaluated in the next section.

The above discussion is also extended to the pairing state
of bogolons [18]:

NO,η =
∑

k∈�+�′
gη(k)α†

kα
†
−k, (10)

where the symbol O in the left-hand side represents an
off-diagonal component (Cooper pairing). Since the present
Bogoliubov Fermi surfaces do not have internal degrees of
freedom, the form factor must satisfy gη(−k) = −gη(k) (odd
parity) due to the Pauli principle. The multipole expansion is
performed as

NO,η =
∑
k∈�

∑
ξ ′η′

Cξ ′η′
O,η (k) �ψ†

k Ǒξ ′η′ �ψk (11)

≡
∑
ξ ′η′

M ξ ′η′
O,η . (12)

The noninteracting pair susceptibility χO,η, which is defined
in a manner similar to Eq. (7), is evaluated to give χO,η ∼
ρ ln(ωc/T ), with ωc being a cutoff energy. When the attractive
interaction Hint = UNO,ηN

†
O,η with U < 0 exists, the pairing

susceptibility is enhanced by the factor (1 + UχO,η )−1, and
the logarithmic divergence gives rise to the pairing state
below the finite transition temperature Tc ∼ ωc exp(− 1

ρ|U | ).
The schematic picture of the Cooper instability is shown in
Fig. 2(b).

Summing up the above expressions, we can rewrite the
linear response formula 〈Nξη〉 = χξηhξη as〈

M ξ ′η′
ξη

〉 = χ
ξ ′η′
ξη hξη, (13)

χ
ξ ′η′
ξη =

∫ 1/T

0
dτ

〈
M ξ ′η′

ξη (τ )N †
ξη

〉
, (14)

with the sum rule

χξη =
∑
ξ ′η′

χ
ξ ′η′
ξη . (15)

The physical meaning of χ
ξ ′η′
ξη in Eq. (13) is as follows: once

the internal test field hξη corresponds to the diagonal (ξ = D)
or off-diagonal (ξ = O) ordering of bogolons, the conjugate
order parameter 〈Nξη〉 of bogolons is induced simultaneously,
which is composed of the multipoles (ξ ′ = D, D̄) and mul-
tiplet pairs (ξ ′ = O, Ō) of original electrons of type η′ (see
Table I). Simply speaking, the susceptibility gives information
on what types of electron multipoles or Cooper pairs are
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TABLE I. List of meanings of the susceptibility tensor χ
ξ ′η′
ξη ,

where (a) the index (ξ, η) represents information for bogolons and
(b) the index (ξ ′, η′) represents information for the original j = 3/2
electrons.

Symbols Meanings

(a) Operators for bogolons Nξη

ξ D Diagonal (Pomeranchuk)
O Off-diagonal (Cooper)

η 1 s wave (even parity)
x, y, z p wave (odd parity)

xy, yz, zx, 3z2 − r2, x2 − y2 d wave (even parity)
xyz, x(5z2 − r2), y(5z2 − r2) f wave (odd parity)

z(5z2 − 3r2), z(x2 − y2)
x(x2 − 3y2), y(3x2 − y2)

... g wave, · · ·
(b) Operators for j = 3/2 electrons M ξ ′η′

ξη

ξ ′ D/D̄ Even-/odd-parity multipole
O/Ō Electron/hole multiplet pair

η′ 1 Monopole or singlet
x, y, z Dipole or triplet

xy, yz, zx, 3z2 − r2, x2 − y2 Quadrupole or quintet
xyz, x(5z2 − r2), y(5z2 − r2) Octupole or septet

z(5z2 − 3r2), z(x2 − y2)
x(x2 − 3y2), y(3x2 − y2)

induced by the bogolons’ ordering. While we have a number
of susceptibilities, in our model we can utilize a continuous
rotational symmetry in the xy plane, and some components
are found to be identical to each other.

To avoid confusion, we note the rules of the notation
in this paper: the symbols (ξ, η) and those with primes
(ξ ′, η′) in the quantity χ

ξ ′η′
ξη refer to the bogolons and original

j = 3/2 electrons, respectively. For example, let us consider
χ

ξ ′=D,η′=xy
ξ=D,η=x . This quantity tells us how much of the quadrupole

of Ôxy (∼Ĵx Ĵy) type is induced by the ordering of p-wave-type
diagonal order (sometimes called the electron nematic state)
of bogolons. For χ

ξ ′=O,η′=xyz
ξ=O,η=x , on the other hand, it means how

much of the spin-septet pairs (with odd parity) is induced by
the p-wave pairing state of bogolons. The other combinations
are interpreted in a similar manner.

C. Evaluation of susceptibility tensor

Here we show the method to calculate the susceptibility in-
troduced in the last section. The order parameter of bogolons
can be written in the form

Nξη =
∑
k∈�

gη(k)�α†
k ňξη �αk. (16)

Note that the wave vector summation is performed within �

(see Fig. 1). The matrix elements are defined by

ňDη =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−(−1)η

0
0

0
0

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(17)

and

ňOη =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 − (−1)η

0 0
0

0
0

0
0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (18)

where the first and second rows and columns indicate the Bo-
goliubov particles that have Fermi surfaces and the others are
away from the Fermi level. The sign is defined by the parity
relation gη(−k) = (−1)ηgη(k). The multipole expansions in
Eqs. (9) and (12) are explicitly performed as

M ξ ′η′
ξη =

∑
k

Cξ ′η′
ξη (k) �ψ†

k Ǒξ ′η′ �ψk, (19)

Cξ ′η′
ξη (k) = gη(k) Tr (Ǒξ ′η′†ǓkňξηǓ †

k ). (20)

See Appendix A 3 for the definition of the 8 × 8 matrices. We
then obtain the susceptibility

χ
ξ ′η′
ξη = −T

∑
nk

|gη(k)|2Tr (Ǒξ ′η′†ǓkňξηǓ †
k )

× Tr [Ǔ †
k Ǒξ ′η′

ǓkǦk(iωn)ň†
ξηǦk(iωn)], (21)

where we have defined the Green’s function

Ǧk(iωn) = (iωn1̌ − �̌k)−1, (22)

with the fermionic Matsubara frequency ωn = (2n + 1)πT .
Let us make a brief comment on the structure of the frequency
dependence: if one stops at this expression and looks at the
frequency structure, one can study the contributions of even-
and odd-frequency multiplet pairs [34], although we focus on
the static properties in this paper. Then the odd-frequency
(even-frequency) components appears together with even-
parity (odd-parity) components due to the Pauli principle.
More generically, the expansion in the four-dimensional
space-time is possible, including both the diagonal and off-
diagonal components [35].

The Matsubara summation is performed, and we obtain the
simpler expression

χ
ξ ′η′
ξη =

∑
k

Pξ (εk)
∣∣Cξ ′η′

ξη (k)
∣∣2

, (23)
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where the energy-dependent function is given by

Pξ=D(ε) = −∂ f (ε)

∂ε
, (24)

Pξ=O(ε) = − f (ε) − f (−ε)

2ε
. (25)

We have introduced the Fermi distribution function f (ε) =
1/(eε/T + 1).

Now we perform the k integral. Since our system has
rotational symmetry around the z axis, the cylindrical co-
ordinate k = (k, φ, kz ) with kx = k cos φ and ky = k sin φ is
convenient. The unitary matrix that diagonalizes the orig-
inal Hamiltonian is transformed by the rotation along the
kz axis as

Ǔk = Ǔ (k, φ, kz ) = Ř(φ)Ǔ (k, 0, kz ), (26)

Ř(φ) =
(

exp
[ − i

(
Ĵz − 1

2 1̂
)
φ
]

0̂

0̂ exp
[
i
(
Ĵz − 1

2 1̂
)
φ
]
)

. (27)

The matrix Ř represents a rotation around the kz axis, which
connects different k points in the xy plane. Since the form
factor gη is written as gη(k) = g′

η(k, kz ) fη(φ) (see Appendix B
for its concrete form), the φ integral in evaluating the suscep-
tibility can be performed analytically, and the other integrals
are considered within the kx-kz plane. It is also convenient to
change the coordinate system as (k, kz ) → (k⊥, k‖), which is
the k coordinates normal and parallel to the Fermi surface.
The coordinate k⊥ can be changed into the energy integral
as dε = vdk⊥, where v is the Fermi velocity. After some
calculations, one reaches the expression

χ
ξ ′η′
ξη � 1

(2π )2

∫ ωc

−ωc

dεPξ (ε)
∫

kx,kz>0
dk‖

kx(k‖)|g′
η(k‖)|2

|v(k‖)|
×

∑
i jkl

Oξ ′η′†
i j [Ǔ (k‖)ňξηǓ †(k‖)] ji�

η

i jkl

× Oξ ′η′
kl [Ǔ (k‖)ň†

ξηǓ †(k‖)]lk, (28)

where we have introduced the cutoff energy ωc and have
simplified the expression by assuming that the dominant
contribution comes from the Fermi surface, i.e., ε = 0. This
expression is based on the energy separation εBF � ωc �
T as in the standard BCS theory, where εBF is the Fermi
energy for the Bogoliubov Fermi surface. The φ-integral part
is separately given as

�
η

i jkl =
∫

dφ

2π
| fη(φ)|2ei(ni−n j+nk−nl )φ, (29)

where the integer ni is defined by Rii(φ) = e−iniφ . The func-
tion �

η

i jkl can be evaluated by using the information in
Appendix B. Thus, we have to evaluate only the k‖ line inte-
gral along the Fermi surface, which is performed numerically
with the discretized mesh. Since the wave vector k belongs to
�, the k‖ integral is performed within the region of kx, kz > 0.

D. Interpretation in terms of Landau theory

Before showing the numerical results, let us discuss the
Landau free energy relevant to Pomeranchuk and Cooper
instabilities of bogolons to understand the induced electron

multipoles and multiplet pairs. We consider one of the bo-
golon orderings whose order parameter is denoted as n
(=〈Nξη〉), where we have omitted the index (ξ, η) for sim-
plicity. The corresponding physical quantities for original
electrons are written as mi (∼〈M ξ ′η′

ξη 〉), where we have used
the short-hand notation i = (ξ ′η′). Since some of the electron
multipoles are finite from the beginning in our model, mi is
defined as a deviation from its equilibrium point. The Landau
free energy is explicitly written down as

F = an2 + bn4 − hextn +
∑

i

ginmi +
∑

i

a′
im

2
i . (30)

Here hext is an imaginary test field for bogolons, and gi

is the coupling between the bogolons’ and electrons’ order
parameters. We assume a′

i > 0 and b > 0, which guarantees
the thermodynamic stability.

The first term on the right-hand side represents a distance
to the critical point and is rewritten as

an2 = a0n2 − hMF(n)n, (31)

where a−1
0 (>0) is a free susceptibility without interactions

and hMF = In is the internal mean field induced by an ef-
fective interaction I . In order to have intuition for Eq. (31),
let us consider the two examples. First, if the noninteracting
susceptibility shows Curie law as a0(T )−1 ∼ 1

T , we have in
the presence of interaction the Curie-Weiss law a(T )−1 ∼

1
T −Tc

, with the Curie temperature Tc ∼ I determined by the
condition a = 0. Second, if we consider a pairing state of
electrons, we have a0(T )−1 ∼ ρ ln ωc

T from the Fermi surface
instability. Then the full inverse susceptibility is given by
a(T ) ∼ ρI2 ln T

Tc
, with the superconducting transition tem-

perature Tc ∼ ωc exp(− 1
ρI ), which corresponds to a standard

result of the BCS theory. We note that, as seen below, the
transition temperature is modified once the order parameter
n couples to the other ones (mi) linearly.

Above the transition temperature of the bogolon ordering,
the order parameters n, mi are just induced by the external
field. The resultant order parameters are given by

n = χhext, (32)

mi = fin = fiχhext, (33)

where the susceptibility χ and the factor fi are

χ =
(

2a −
∑

i

2a′
i f 2

i

)−1

, (34)

fi = − gi

2a′
i

. (35)

According to Eq. (15), there is the sum rule n = ∑
i mi, or∑

i

fi = 1. (36)

Thus, the magnitude of the electron order parameter induced
by external field for bogolons is controlled by the factor fi.
What we have calculated in Eq. (28) is equivalent to the
quantity fi. Although the interactions in general modify the
coefficients, we have assumed the weak-coupling limit, and
the corrections are regarded as irrelevant for a′

i, gi, and b in the
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leading-order contribution. We remark that near the transition
temperature the interaction effect is relevant for the coefficient
a even in the weak-coupling limit, but the quantity fi (as will
be shown in Sec. III B) is not dependent on a.

If one traces out mi from the equations of state, only the
order parameter n enters the Landau theory, and the coefficient
a is replaced by χ−1/2. The n-only model corresponds to the
effective low-energy model in Eq. (5), which does not include
the information for the original electrons.

Below the transition temperature determined by χ−1 = 0,
on the other hand, the bogolon order parameter and corre-
sponding electron order parameters are induced by the self-
consistent internal field as

n = 1

I
hMF, (37)

mi = fin = fi

I
hMF, (38)

where 1/I plays the role of susceptibility for the internal mean
field. Note that the factor fi is the same as the one above
the transition temperature. Hence, if we would like to know
the electrons’ multipole components in the bogolons’ ordered
state, we have to calculate only the factor fi in the bogolons’
disordered phase. In the next section, we show the numerical
results for fi calculated in the presence of Bogoliubov Fermi
surfaces.

III. NUMERICAL RESULTS

A. Bogoliubov Fermi surfaces

Before showing the susceptibilities, let us first discuss the
Bogoliubov Fermi surfaces in our setup. Figures 3(a) and 3(b)
show the shapes of Fermi surfaces in the presence of the pair
potential, where the parameters are chosen to be β = 0.1,
�0 = 0.1, �1 = 0.5 with the energy unit εF = αk2

F = 1. In
this case we have two Fermi surfaces in the first quadrant of
the kx-kz plane, which are separately shown in Figs. 3(a) and
3(b). Depending on the choice of parameters, the number of
Fermi surfaces changes, and we can have four Fermi surfaces
in total, as shown in Figs. 3(c) and 3(d) for the parameters
β = 0.3, �0 = 0.1, �1 = 0.5. In fact, the shapes of the Fermi
surfaces in Figs. 3(a) and 3(b) [and also Figs. 3(c) and 3(d)]
are the same if they are inverted at the kz = kx line since
the eigenenergies of Ȟ (kx, 0, kz ) are identical to those of
Ȟ (kz, 0, kx ).

For comparison, the normal-state Fermi surfaces without
pair potentials are also drawn with yellow lines. We can see
from Figs. 3(a) and 3(b) that the Fermi surfaces near the kz

and kx axes are not much modified, and away from the axes
the deviation becomes larger. The wave function on the Fermi
surface also remains unchanged near the axes, i.e., no mixture
of electrons and holes, which is related to the disappearance
of the pair potential proportional to �1 in �k.

The green-shaded area enclosed by the Fermi surface is
related to the three-dimensional Fermi volume if one rotates
the plane around the kz axis. Then the Fermi volume near the
kz axis is pancakelike, and the one near the kx axis is donutlike
[10]. The Fermi surfaces around the kx axis in Figs. 3(b) and
3(d) are away from the kz axis, and the volume is much larger
than the ones around the kz axis. The Fermi volume near the

(b)

(c)

(a)

(d)

FIG. 3. Shapes of Bogoliubov Fermi surfaces. The parameters
are chosen as β/εF = 0.1, �0/εF = 0.1, �1/εF = 0.5 for (a) and
(b) and β/εF = 0.3, �0/εF = 0.1, �1/εF = 0.5 for (c) and (d). The
electron Fermi surfaces without pair potentials are drawn by yellow
solid lines. The blue dots show the Bogoliubov Fermi surface with
the enclosed Fermi volume shaded in green.

kz axis is roughly ten times smaller than the one near the kx

axis. Although the larger Fermi volume induces the larger
instability toward ordering, which Fermi surface dominantly
contributes depends on the form factor gη(k).

We comment on another system that exhibits Bogoliubov
Fermi surfaces. The Bogoliubov Fermi surfaces inside the
superconducting states are also proposed in the context of
the Kondo lattice, which is one of the basic models for
heavy-electron materials [36–40]. Here the origin of the pe-
culiar superconductivity is the nontrivial effective hybridiza-
tion between conduction and localized electrons, and the
time-reversal symmetry breaking is not necessary for the
mechanism. These systems should also show further ordering
instabilities similar to those discussed in our paper.

B. Susceptibility tensors

According to the results in the last section, the noninteract-
ing susceptibility can be written as

χ
ξ ′η′
ξη (T ) = χ̃

ξ ′η′
ξη Qξ (T ), (39)

where QD(T ) = 1 and QO(T ) = ln (2eγ ωc/πT ), with the
Euler’s constant γ � 0.577. Since the temperature-dependent
part is not affected by the choice of η, η′, we have to numer-
ically evaluate only the temperature-independent coefficient
χ̃

ξ ′η′
ξη (> 0). The overall tendency of these physical quantities

is not sensitive to the choice of the parameters. Hence, below
we concentrate on the results for the parameters β = 0.1,
�0 = 0.1, �1 = 0.5, whose Fermi surfaces are shown in
Figs. 3(a) and 3(b). The information on Fermi surfaces is
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FIG. 4. Electron multipole components χ
ξ ′η′
D,1 induced by the increased chemical potential for bogolons which form the Fermi surfaces. The

sum of the heights of bars is normalized to 100%. The parameters are chosen to be β/εF = 0.1, �0/εF = 0.1, �1/εF = 0.5.

extracted by dividing the kx-kz plane around the Fermi surface
with 100 × 400 grids and by using the linear interpolation. We
have checked that, quantitatively, the same results are obtained
for the finer mesh.

Figure 4 shows the normalized susceptibility coefficient
χ̃

ξ ′η′
ξη defined in Eq. (39). Here ξ = D and η = 1 (s wave)

are chosen for the bogolon component, and the values are
normalized by the constant Cξη = ∑

ξ ′η′ χ̃
ξ ′η′
ξη to be 100% in

total. This (ξ = D, η = 1) component indicates the deviation
induced by the symmetric chemical potential field for bo-
golons, which does not break the symmetry of the original
Hamiltonian in Eq. (5). Hence, the finite values in Fig. 4
indicate the components that are originally finite without
Pomeranchuk or Cooper instabilities. Note that some compo-
nents (e.g., η′ = x and η′ = y) have the same value due to the
symmetry.

One may have the impression that the finite η′ = x com-
ponent (∼Ĵx) breaks the rotational symmetry around the z
axis and is not consistent with the disordered situation. This
discrepancy, at first sight, is rationalized by noticing the fact
that the multipole component in Fig. 4 concerns the internal
degrees of freedom of the j = 3/2 electron. The quantity is
evaluated by the k integral in Eq. (23), and the k dependence
does not explicitly appear. Hence, if one considers the mul-
tipole expansions in k space, the combination of (kx, ky, kz )
and Ĵx can lead to a scalar component which does not break
the original symmetry. One can also show that the η′ = x
component, which is absent in the original Hamiltonian, is
induced in the Green’s function in Eq. (22), which is more di-
rectly connected to the physical quantities. On the other hand,
the odd-parity component and the spin-triplet and -septet pair
amplitudes cannot appear with a scalar form. Then one needs
spontaneous symmetry breaking by either the Pomeranchuk
or Cooper instability.

Next, we discuss the results for symmetry-broken states of
bogolons. Since the results for p-wave ordering are similar
to those for f -wave ordering, here we focus on the case
with η = z, x. Although we can also consider the d-wave
components for the Pomeranchuk instability as in Table I(a),
the results are similar to the s-wave case in Fig. 4. This
is because the k dependences do not explicitly enter in our
multipole expansion, as discussed above. For the type of
η = xy, for example, we have the kxky-type order parameter

within the charge sector (ξ ′ = D, η′ = 1), which is zero in
the disordered phase but finite below Tc. However, this type
of order parameter cannot be explicitly seen in plots such
as in Fig. 4, where one sees only the k-summed multipole
expansion coefficients with respect to the internal degrees
of freedom of j = 3/2 electrons. In order to look at the
symmetry breakings of d-wave type, spectral decomposition
in terms of the angle φ functions is necessary. Moreover, for
a material-specific case, the Fermi surfaces are, in general,
anisotropic, and classification based on irreducible represen-
tations is necessary [11]. This decomposition is, in principle,
possible, but here we focus on the typical cases of p-wave
types to demonstrate the concept of the bogolon orderings
and their interpretation in terms of j = 3/2 internal degrees
of freedom of original electrons.

Figure 5 shows the results for the bogolon ordering of
p-wave types. As shown in Figs. 5(a) and 5(b), which are
plots for Pomeranchuk instabilities (ξ = D), all the com-
ponents, i.e., odd-parity multipoles and triplet and septet
pair amplitudes, are regarded as order parameters since they
are zero in Fig. 4 without symmetry breaking. Since the
tendencies for η = z and η = x are similar, let us take a
close look at the η = z case in Fig. 5(a). The magnitudes of
diagonal and off-diagonal components are nearly 70% and
30%, respectively. Namely, the major part of the contributions
is from diagonal ones. Among them, the dominant one is
the η′ = 1 (monopole, or electron charge) component, which
occupies 25%. Hence, although we consider the Pomeranchuk
instability of bogolons, the dominant contribution is the same
as that of electrons with a monopole where internal degrees
of freedom are not reflected. Note that the other components
also give contributions to the susceptibility, although they are
smaller than the monopole contribution.

Actually, the dominant component from (ξ ′, η′) = (D̄, 1)
can be evaluated analytically since the multipole matrix
Ǒξ ′=D̄,η′=1 is proportional to the identity matrix. Then the
expression for the susceptibility is substantially simplified,
and we obtain

χ D̄,1
ξη = Tr ňξη Tr ň†

ξη

Tr [ňξηň†
ξη] Tr 1̌

χξη. (40)

Hence, the value of 25% in Figs. 5(a) and 5(b) is the exact
figure. This expression also explains the disappearance of the
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FIG. 5. Electron multipole components induced by p-wave (a,b) Pomeranchuk (ξ = D) and (c,d) Cooper (ξ = O) instabilities of bogolons
with the form factors (a,c) gη=z(k) ∝ kz and (b,d) gη=x (k) ∝ kx . The parameters are chosen to be β/εF = 0.1, �0/εF = 0.1, �1/εF = 0.5.

electron monopole contribution for the off-diagonal bogolon
ordering discussed next since the matrix ňO,η is traceless.

In Figs. 5(c) and 5(d) we show the susceptibility tensor for
the order parameters of electrons induced by Cooper insta-
bility of bogolons (η = z, x). Since we expand the bogolon
pair amplitude α

†
kα

†
−k, which is a non-Hermitian operator, the

induced electron and hole pairs (ξ ′ = O, Ō) have different
magnitudes, in contrast to Figs. 5(a) and 5(b). In the case
of η = z in Fig. 5(c), the magnitudes for diagonal and off-
diagonal components are nearly 30% and 70%, respectively,
and the main contributions come from off-diagonal ones. The
dominant contributions are the septet pairing with types η′ =
y(3x2 − y2), x(x2 − 3y2) (each value is � 10%). However,
these components are not as remarkable as the monopole in
Figs. 5(a) and 5(b), and many pair amplitudes are induced
simultaneously with comparable magnitudes. The basic trends
for the η = x case in Fig. 5(d) are similar to the η = z case,

but the maximum contribution is the spin-triplet pair of η′ = x
type. Hence, we conclude that the bogolons’ Cooper pairs
are dominantly contributed by the electron and hole pairs,
while the main contribution of pair amplitudes is dependent
on the types of bogolon order parameters. We note that
the diagonal order parameters (electron multipoles) also give
non-negligible contributions to bogolon Cooper pairs. Similar
features are seen also in f -wave pairs of bogolons.

In this way the bogolon orderings partially inherit the
properties of original electrons. However, the bogolons’ or-
der parameter cannot be simply identified as one domi-
nant component of the electrons’ order parameter. Hence,
if one encounters the second phase transition inside the
superconducting state, one cannot simply determine diagonal
or off-diagonal order of the original electrons, and we should
consider the possibility of bogolon orders, where the electron
diagonal and off-diagonal order components are substantially
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mixed with each other. In relation to this point, the possible
relevance to real materials is discussed in the next section.

IV. SUMMARY AND DISCUSSION

In this paper we have theoretically studied the possibility
of the Pomeranchuk and Cooper instabilities of Bogoliubov
Fermi surfaces below the superconducting transition tempera-
ture. Using the j = 3/2 electron model with symmetric spin-
orbit interaction plus time-reversal symmetry-broken even-
parity pair potentials, we studied the physics arising from the
remaining bogolon degrees of freedom at low temperatures
in the weak-interaction limit. Based on the linear response
theory, the bogolons’ order parameters are systematically
classified by using the multipole expansion for both diagonal
and off-diagonal physical quantities of the original electrons,
i.e., multipoles and multiplet pairs. These are also interpreted
in the context of Landau free energy.

We numerically calculated the multipole expansion coeffi-
cients for the bogolons’ order parameters. For Pomeranchuk
instability of bogolons, the main contribution comes from the
monopole of electrons, and hence, the Pomeranchuk instabil-
ity of electron charge mainly occurs. For Cooper instability
of bogolons, the main contribution is the pair amplitudes of
the original electrons. Thus, the characters of electrons are
partially inherited by bogolons. We emphasize that the other
minor components also give a non-negligible contribution to
bogolon’s order parameters. Hence, below the superconduct-
ing transition temperature, there is no clear-cut answer for
determining multipoles (diagonal) or multiplets (off-diagonal)
as an order parameter for the second phase transition. Al-
though we have used the concrete model of j = 3/2 electrons,
our analysis relies on the presence of the Bogoliubov Fermi
surfaces and can be applied to a wider class of materials. As a
future perspective, while we have assumed the weak-coupling
limit and the realization of one specific bogolon’s ordering, it
is an interesting problem to consider the concrete interaction
in terms of the original electrons and to study the resultant
ordering state of bogolons.

The bogolon orderings discussed in this paper could be
a possible scenario for materials which possess a phase
transition inside the superconducting phase. In U1−xThxBe13

[41–44], two successive superconducting transitions have
been observed. The first transition at higher temperature can
be identified as the superconducting order parameter, but the
origin and the order parameter for the second transition have
been argued. The candidates are magnetic ordering and the
second superconducting order parameter with time-reversal
symmetry breaking [43,44]. In light of the present paper, we
propose that the second transition cannot be simply classified
into either diagonal (e.g., magnetic order) or off-diagonal (i.e.,
pairing state) orders in a strict sense, but rather, they are mixed
with each other in the presence of spin-orbital coupling.

On the other hand, in U1−xThxBe13 when applying pres-
sure, whereas the second transition is not observed, the finite
specific heat coefficient is found at temperatures much lower
than the transition point [45]. The remaining specific heat co-
efficient is also observed in the recently found superconductor
UTe2 [46,47], and the remaining Fermi surface is suspected
to be one of the possible origins [48]. Hence, one expects

some second orderings utilizing the degrees of freedom from
Fermi surfaces at further low temperatures or by tuning
the system. Indeed, the various superconducting phases with
multiple phase transitions were recently identified in UTe2

under pressure and magnetic field [49,50]. Although ordinary
superconductors do not have degrees of freedom below the
transition temperature, the existence of the second phase
transition indicates the presence of the remaining degrees
of freedom, which could be the existing Bogoliubov Fermi
surfaces.

For another class of superconducting materials, recently,
the rotational symmetry breaking was found in Bi2Se3- and
iron-based materials [51–55] only in the superconducting
state, which is called nematic superconductivity [56]. It was
proposed in Ref. [57] that the superconducting state itself can
produce the rotational symmetry breaking. On the other hand,
if the second transition is identified as it is separated from the
first superconducting transition, there could be the possibility
of ordering instability of the remaining Fermi surface degrees
of freedom. Thus, the insights in this paper will be useful for
identifying the mechanisms and for analyzing the properties
of superconductors which have second phase transitions.
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APPENDIX A: MULTIPOLE AND MULTIPLET
PAIR OPERATORS

1. Multipoles

We consider the electronic multipole operator in Eq. (9),
which is composed of

Mη′
(k) = �c†

kÔη′ �ck. (A1)

The matrices are defined by

Ô1 =
√

5

4
1̂ (A2)

for the monopole (charge),

Ôy = Ĵy = i

2

⎛
⎜⎜⎜⎝

0 −√
3√

3 0 −2

2 0 −√
3√

3 0

⎞
⎟⎟⎟⎠, (A3)

Ôz = Ĵz = 1

2

⎛
⎜⎜⎝

3
1

−1
−3

⎞
⎟⎟⎠, (A4)

Ôx = Ĵx = 1

2

⎛
⎜⎜⎜⎝

0
√

3√
3 0 2

2 0
√

3√
3 0

⎞
⎟⎟⎟⎠ (A5)
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for the dipole,

Ôxy =
√

5

3
�Ĵx Ĵy�, (A6)

Ôyz =
√

5

3
�ĴyĴz�, (A7)

Ô3z2−r2 =
√

5

36

(
3Ĵ2

z − Ĵ
2)

, (A8)

Ôzx =
√

5

3
�ĴzĴx�, (A9)

Ôx2−y2 =
√

5

12

(
Ĵ2

x − Ĵ2
y

)
(A10)

for the quadrupole, and

Ôy(3x2−y2 ) =
√

5

18

⌈
Ĵy

(
3Ĵ2

x − Ĵ2
y

)⌋
, (A11)

Ôxyz =
√

20

3
�Ĵx ĴyĴz�, (A12)

Ôy(5z2−r2 ) =
√

5

30

⌈
Ĵy

(
5Ĵ2

z − Ĵ
2)⌋

, (A13)

Ôz(5z2−3r2 ) =
√

5

45
Ĵz

(
5Ĵ2

z − 3Ĵ
2)

, (A14)

Ôx(5z2−r2 ) =
√

5

30

⌈
Ĵx

(
5Ĵ2

z − Ĵ
2)⌋

, (A15)

Ôz(x2−y2 ) =
√

5

3

⌈
Ĵz

(
Ĵ2

x − Ĵ2
y

)⌋
, (A16)

Ôx(x2−3y2 ) =
√

5

18

⌈
Ĵx

(
Ĵ2

x − 3Ĵ2
y

)⌋
(A17)

for the octupole, where the square brackets �· · · � make
the operators symmetric and Hermitian as �ABC� = (ABC +
ACB + BCA + BAC + CAB + CBA)/3!, for example. The
above matrices are normalized as Tr [(Ôη′

)2] = 5.

2. Multiplet pairs

We also define the antisymmetric tensor

Ê =

⎛
⎜⎝

1
−1

1
−1

⎞
⎟⎠, (A18)

with which the pairing amplitude for electrons is defined as

Pη′
(k) = �c†

kÔη′
Ê �c†T

−k. (A19)

Here the meaning of Ôη′
Ê can be intuitively understood by

comparing it with the two-body wave function composed
of j = 3/2 spins. Let us consider the two-body wave func-
tion |JM〉 (M ∈ [−J, J]) composed of two j = 3/2 spins
with the single-body wave function |m〉 (m ∈ [− j, j]), which
mimics the Cooper pair made of two electrons. The wave
function is classified by the total spins J = 0, 1, 2, 3, which
correspond to the spin-singlet, spin-triplet, spin-quintet, and
spin-septet states. More specifically, we define the two-body

wave function

|η′〉 =
∑
mm′

(Ôη′
Ê )mm′ |m〉1|m′〉2, (A20)

and the full correspondence between the two-body states |η′〉
and |JM〉 is given as

|η′ = 1〉 ∝ |0, 0〉 (A21)

for the spin-singlet state,

|η′ = y〉 ∝ |1, 1〉 + |1,−1〉, (A22)

|η′ = z〉 ∝ |1, 0〉, (A23)

|η′ = x〉 ∝ |1, 1〉 − |1,−1〉 (A24)

for the spin-triplet states,

|η′ = xy〉 ∝ |2, 2〉 − |2,−2〉, (A25)

|η′ = yz〉 ∝ |2, 1〉 + |2,−1〉, (A26)

|η′ = 3z2 − r2〉 ∝ |2, 0〉, (A27)

|η′ = zx〉 ∝ |2, 1〉 − |2,−1〉, (A28)

|η′ = x2 − y2〉 ∝ |2, 2〉 + |2,−2〉 (A29)

for the spin-quintet states, and

|η′ = y(3x2 − y2)〉 ∝ |3, 3〉 + |3,−3〉, (A30)

|η′ = xyz〉 ∝ |3, 2〉 − |3,−2〉, (A31)

|η′ = y(5z2 − r2)〉 ∝ |3, 1〉 + |3,−1〉, (A32)

|η′ = z(5z2 − 3r2)〉 ∝ |3, 0〉, (A33)

|η′ = x(5z2 − r2)〉 ∝ |3, 1〉 − |3,−1〉, (A34)

|η′ = z(x2 − y2)〉 ∝ |3, 2〉 + |3,−2〉, (A35)

|η′ = x(x2 − 3y2)〉 ∝ |3, 3〉 − |3,−3〉 (A36)

for the spin-septet states. These relations are checked by the
construction using Clebsch-Gordan coefficients. Obviously,
we can see the analogy to the s, p, d, f electrons’ wave
functions of the hydrogen atom written by polynomials of
spatial coordinates. For the electron pair amplitudes, we only
have to replace |m〉1 by c†

km and |m′〉2 by c†
−k,m′ .

3. Orthonormality

With the above matrices, we define the 8 × 8 matrices by

ǑDη′ =
√

1

10

(
Ôη′

0̂
0̂ −Ôη′T

)
, (A37)

ǑD̄η′ =
√

1

10

(
Ôη′

0̂
0̂ Ôη′T

)
, (A38)

ǑOη′ =
√

1

5

(
0̂ Ôη′

Ê
0̂ 0̂

)
, (A39)

ǑŌη′ =
√

1

5

(
0̂ 0̂

Ê†Ôη′† 0̂

)
, (A40)
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which correspond to even-parity (ξ ′ = D) and odd-parity
(ξ ′ = D̄) multipoles and electron-pair (ξ ′ = O) and hole-pair
(ξ ′ = Ō) amplitudes of the original electrons, respectively.
Here the information for parity enters into the expression since
the top left block of Ǒ originates from �ck and the bottom
right block originates from �c−k. Note that further higher-
order multipoles are not necessary. These matrices satisfy the
orthonormal relation

Tr (Ǒξ ′
1η

′
1†Ǒξ ′

2η
′
2 ) = δξ ′

1ξ
′
2
δη′

1η
′
2
. (A41)

Then any 8 × 8 matrix Ǎ can be expanded as

Ǎ =
∑
ξ ′η′

aξ ′η′
Ǒξ ′η′

, (A42)

and the expansion coefficients are extracted as

aξ ′η′ = Tr (Ǒξ ′η′†Ǎ). (A43)

Hence, the series of above matrices (A37)–(A40) can be
regarded as complete. With this property one can show the
relation ∑

ξ ′η′
Tr (Ǒξ ′η′†Ǎ) Tr (Ǒξ ′η′

B̌) = Tr (ǍB̌) (A44)

for arbitrary matrices Ǎ and B̌. This relation is useful in
confirming the sum rule (15) in the main text.

APPENDIX B: k-DEPENDENT FORM FACTORS

In Eqs. (6) and (10), we consider the k-dependent form
factor

gη(k) = g′
η(k, kz ) fη(φ), (B1)

with the cylindrical coordinate system k = (k, φ, kz ). The
complete functional forms are given by

g′
1 =

√
1

4π
, f1 = 1 (B2)

for s waves,

g′
y =

√
3

4π

k

|k| , fy = sin φ, (B3)

g′
z =

√
3

4π

kz

|k| , fz = 1, (B4)

g′
x =

√
3

4π

k

|k| , fx = cos φ (B5)

for p waves,

g′
xy =

√
15

16π

k2

|k|2 , fxy = sin 2φ, (B6)

g′
yz =

√
15

4π

kkz

|k|2 , fyz = sin φ, (B7)

g′
3z2−r2 =

√
5

16π

3k2
z − |k|2
|k|2 , f3z2−r2 = 1, (B8)

g′
zx =

√
15

4π

kkz

|k|2 , fzx = cos φ, (B9)

g′
x2−y2 =

√
15

16π

k2

|k|2 , fx2−y2 = cos 2φ (B10)

for d waves, and

g′
y(3x2−y2 ) =

√
35

32π

k3

|k|3 , fy(3x2−y2 ) = sin 3φ, (B11)

g′
xyz =

√
105

16π

k2kz

|k|3 , fxyz = sin 2φ, (B12)

g′
y(5z2−r2 ) =

√
21

32π

k
(
5k2

z − |k|2)
|k|3 , fy(5z2−r2 ) = sin φ,

(B13)

g′
z(5z2−3r2 ) =

√
7

16π

kz
(
5k2

z − 3|k|2)
|k|3 , fz(5z2−3r2 ) = 1,

(B14)

g′
x(5z2−r2 ) =

√
21

32π

k
(
5k2

z − |k|2)
|k|3 , fx(5z2−r2 ) = cos φ,

(B15)

g′
z(x2−y2 ) =

√
105

16π

k2kz

|k|3 , fz(x2−y2 ) = cos 2φ, (B16)

g′
x(x2−3y2 ) =

√
35

32π

k3

|k|3 , fx(x2−3y2 ) = cos 3φ (B17)

for f waves, where |k| = √
k2 + k2

z . The coefficients are
determined by the normalization condition∫

d�k|gη(k)|2 = 1, (B18)

where
∫

d�k means the integral over the spherical surface.
Note that one can consider further higher-order functions
since there is an infinite number of degrees of freedom in
k space. If one uses the Fourier expansion by utilizing the
function fη(φ), one can, in principle, decompose χ

ξ ′η′
ξη further

depending on the rotational symmetry breaking in the xy
plane.
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