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Disorder has different profound effects on superconducting thin films. For a large variety of materials,
increasing disorder reduces electronic screening which enhances electron-electron repulsion. These fermionic
effects lead to a mechanism described by Finkelstein: when disorder combined to electron-electron interactions
increases, there is a global decrease of the superconducting energy gap � and of the critical temperature Tc,
the ratio �/kBTc remaining roughly constant. In addition, in most films, an emergent granularity develops
with increasing disorder and results in the formation of inhomogeneous superconducting puddles. These gap
inhomogeneities are usually accompanied by the development of bosonic features: a pseudogap develops above
the critical temperature Tc and the energy gap � starts decoupling from Tc. Thus the mechanism(s) driving
the appearance of these gap inhomogeneities could result from a complicated interplay between fermionic and
bosonic effects. By studying the local electronic properties of an NbN film with scanning tunneling spectroscopy
(STS), we show that the inhomogeneous spatial distribution of � is locally strongly correlated to a large depletion
in the local density of states (LDOS) around the Fermi level, associated to the Altshuler-Aronov effect induced
by strong electronic interactions. By modeling quantitatively the measured LDOS suppression, we show that
the latter can be interpreted as local variations of the film resistivity. This local change in resistivity leads to a
local variation of � through a local Finkelstein mechanism. Our analysis furnishes a purely fermionic scenario
explaining quantitatively the emergent superconducting inhomogeneities, while the precise origin of the latter
remained unclear up to now.

DOI: 10.1103/PhysRevB.102.024504

I. INTRODUCTION

Nonmagnetic disorder was initially thought to have little
effect on the superconducting properties of conventional thin
films, as far as the time-reversal symmetry is preserved [1,2].
Decades of intense experimental and theoretical works have
ended to the opposite conclusion showing that beyond a
critical disorder all systems transit either to a metallic or to an
insulating state [3,4]. For thin films that are not single crystals
[5] but consist of coupled nanocrystals, two different classes
of systems were historically considered. A qualitatively differ-
ent superconducting behavior was observed between so-called
granular and homogeneous disordered thin films. In granular
ones, a poor electrical coupling between the nanocrystals
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makes the film a disordered array of Josephson junctions [3,6–
9]. Their superconducting properties are controlled by weak
Josephson couplings between phases of local superconduct-
ing order parameters attributed to individual nanocrystals. In
homogeneous ones the nanocrystals are much better electri-
cally coupled to each other. Their superconducting properties
are controlled by the subtle interplay between the nonmag-
netic disorder distribution and electron-electron interactions
[4,10–12].

Nevertheless experimental and theoretical studies per-
formed in the last ten years enabled to show that this historical
categorization between granular and homogeneous thin films
is lacking of an important link between them. At low disorder
in homogeneously disordered films, macroscopic measure-
ments show that Tc and � monotonously decrease with rising
disorder corresponding to kF l decreasing from a value much
larger than one toward unity [4,10–12] (kF being the Fermi
wave vector and l is the elastic electron mean-free path).
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This effect has been satisfactorily explained by a reduction
of the electronic screening upon increasing disorder which
reduces the diffusion constant D and is called the “fermionic”
mechanism [13,14]. Many films like, for example, Bi, Pb,
MoGe, and NbSi behave this way and follow the so-called
Finkelstein scenario down to the almost complete destruction
of superconductivity [10,11,15–17].

However a different behavior can also take place for
sufficiently large disorder in nominally homogeneous films,
i.e., typically for 1 � kF l � 3: in amorphous InOx, TiN, or
NbN, the single-particle gap probed by tunneling remains
finite and decouples from the decreasing Tc, while a pseu-
dogap emerges in a significant temperature range above Tc

[18–21]. These latter features are believed to correspond to
the so-called “bosonic” scenario, where disorder localizes
single-electron wave functions and provoke an “emergent
granularity” in the superconductor [4,22,23]. These emergent
superconducting puddles were revealed by scanning tunneling
microscopy/spectroscopy (STM/STS) in TiN, InOx, and NbN
[18,20,21,24,25]. From moderate to strong disorder, the long-
range phase coherence between the emergent neighboring
superconducting islands gradually weakens and eventually
destroys, leaving the material with residual incoherent pairing
properties [26,27].

From the above considerations one sees that in fact most
films are expected to present an interplay between “fermionic”
and “bosonic” effects for strong enough disorder before super-
conductivity disappears. Nevertheless there is a lack of exper-
imental data combining macroscopic and local measurements
on the same system to carefully explore this interplay. Such a
detailed study was conducted in NbN [21] and enabled to draw
a phase diagram, where at low disorder the fermionic mech-
anism dominates, while bosonic effects develop at stronger
disorder, as exposed above.

In this work, we show that, in contrast to the common
belief, the emergent gap inhomogeneities can be solely ex-
plained by the Finkelstein mechanism, where electron inter-
actions play a crucial role. Our claim is supported by the
fact that using scanning tunneling microscopy/spectroscopy
in NbN thin films, we found a direct spatial cross-correlation
between local superconducting gap maps and the mapping of
the Altshuler-Aronov suppression of the local density of states
(LDOS). Through appropriate modeling we demonstrate that
both effects can be linked to local variations of the film
resistance. Due to an interplay between disorder and electrons
interaction, these resistivity variations drive corresponding
spatial variations of the normal-state STS spectra and the local
energy gap values.

II. EXPERIMENTAL RESULTS: LOCAL STS
MEASUREMENTS OF THE GAP AND V-SHAPE LDOS

Our samples consist of ultrathin NbN films grown ex situ
on sapphire, structured in nanocrystals of lateral size 2–5 nm
[28]. Special care was taken in order to minimize the thickness
of the surface oxide layer: the freshly grown samples were
introduced into our STM setup in less than 24 hours after
their growth. We selected films having a Tc ≈ 0.25 T bulk

c =
3.8 K, so that seeming “bosonic” properties like gap inho-
mogeneities and pseudogap features have already developed.

FIG. 1. (a) Square resistance of a 2.1 nm thick NbN film, mea-
sured in the same stage where STM is performed. Tc is defined when
R� reaches zero, leading to Tc = 3.8 K. (b) Typical local dI/dV (V )
spectrum measured at T = 300 mK. Set point for spectroscopy V =
−10 mV, I = 150 pA. (c) Local dI/dV (V ) spectrum measured at
the same location and temperature as in (b) but on a larger voltage
scale. The large depletion of the LDOS seen around EF has a
characteristic V-shape due to electron-electron interactions enhanced
by disorder. The red (lighter) curve shows a power-law fit of this
V-shape dependence, according to the relation dI/dV (V ) = b × V α ,
where b is a constant.

The nominal film thickness is about 2.1 nm. We studied
their local superconducting properties by scanning tunneling
microscopy/spectroscopy (STM/STS) at 300 mK, using PtIr
tips, in an ultrahigh vacuum homemade setup. The presented
dI/dV measurements were obtained by numerical derivation
of single I (V ) curves. Tc was extracted from in situ four-
point electrical resistivity mesurements performed in the STM
stage during the same run as the STM/STS measurements.
The temperature dependence of the resistivity before the
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FIG. 2. Spatial cross-correlations between variations of the local superconducting gap �(r) and the Altshuler-Aronov exponent α(r).
Measurements done at 300 mK in zero magnetic field. (a) STM topography of a 300 × 250 nm2 area of the NbN sample (height variation
Z in nm). Scanning parameters: V = −50 mV and I = 50 pA. (b) Color-coded map showing the local energy gap �(r) (in meV) measured
in area (a) by STS. (c) Color-coded map showing the local exponent α(r) in area (a). (d) Color-coded map showing the cross-correlation
between the topography Z (x, y) shown in (a) and the gap map �(x, y) shown in (b). No cross-correlations are found. (e) Histogram of �(r)
values occurring in (b). (f) Histogram of α(r) values occurring in (c). (g) Color-coded map showing the cross-correlation between the gap
map �(x, y) shown in (b) and the exponent map α(x, y) shown in (c). A strong spatial anticorrelation is found: where local electron-electron
interactions are stronger [larger α(x, y)] �(x, y) is smaller and vice versa. (h) Representative dI/dV spectra of the regions seen in (b). Brighter
(respectively darker) spectra are measured in brighter (darker) regions of (b). (i) Same spectra as in (h) but over an energy scale 20 to 30 times
larger than �. Brighter (respectively darker) spectra are measured in brighter (darker) regions of (c).

superconducting transition is typical of 2D disordered super-
conducting films and is shown in Fig. 1(a).

STM topography measurements show that the film surface
is very flat [see Fig. 2(a)]. The size of the observed nanoscale
structures correlates well with the size of the nanocrystals
characterized independently by transmission electron mi-
croscopy (TEM) experiments. A characteristic dI/dV spec-
trum measured locally is shown in Fig. 1(b). It presents
a fully gapped LDOS with well-defined superconducting
coherence peaks. We also note that in-gap states are also
present, most probably induced by paramagnetic defects at the
NbN/sapphire interface. For energies larger than the ones of
the coherence peaks, a strong background is seen instead of
recovering a standard normal DOS, as in the Bardeen-Cooper-
Schrieffer (BCS) case. Figure 1(c) enables characterizing this
background: it presents a dI/dV spectrum measured on the
same location but over a wider energy range about 20 times
larger than �. We see that the tunneling LDOS is strongly
reduced over an energy range much larger than �. This LDOS

suppression is typical of systems where electronic correlations
combined to disorder reduce the tunneling DOS at the Fermi
level (EF ) [29,30], an effect first theoretically explained by
Altshuler and Aronov. In the following, we refer to this effect
as AA.

Figure 1(c) shows that for e|V | > � the measured LDOS
follows a power law as a function of the applied bias voltage,
dI/dV ∝ V α . Please note that here the fit is truly performed
using the functional dependence V α without any offset: this
curve goes to zero at zero voltage. Nevertheless since the
fit is performed in the energy region outside the gap, data
points exactly around zero voltages are not plotted in this
figure. Such a behavior has also being evidenced for instance
in highly disordered metallic thin films close to the insulating
transition [31].

Theoretically such a dependence is expected in the frame-
work of nonperturbative extension [32–34] of the Altshuler-
Aronov theory [29,30]. Let us note that this kind of effect
is also referred to as dynamical Coulomb blockade effect in
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FIG. 3. Spatial decay of the correlation functions calculated from the radial averaging of the 2D autocorrelation or cross-correlation
functions from the data shown in Fig. 2. Each profile starts at the center of each map (corresponding to the origin 0) and extends up to
100 nm. (a) Spatial dependence of ρα (r) defined as the correlation function of the Altshuler-Aronov exponent α(r). (b) Spatial dependence of
ρ�(r) defined as the correlation function of the superconducting energy gap �(r). (c) Spatial dependence of ρcross(r) defined as the correlation
function of the 2D cross-correlation between the local Altshuler-Aronov exponent α(r) and superconducting energy gap �(r).

mesoscopic physics [32–34]. Interestingly, it was shown that
the effect of probing the tunneling DOS of an ultrasmall tunnel
junction in a 2D system with electron-electron interaction is
equivalent to dynamical Coulomb blockade formalism with
an ohmic environment [34]. We have already used such an
equivalence when modeling the superconducting proximity
effect between a Pb single nanocrystal and a 2D metallic
homogeneously disordered Pb film [35–37].

The main finding of our work is a systematic spatial
correlation between the local energy gap value �(r) and
the strength of the AA LDOS suppression, quantified by
the exponent α(r) in the power law dI/dV (r) ∝ V α(r). At
each square nanometer of the 300 × 250 nm2 area shown in
Fig. 2(a), the local gap value was extracted from the peak-
to-peak distance in each dI/dV (r) curve. The extracted map
of the gap values is shown in Fig. 2(b). The energy gap
ranges between 1 and about 1.5 meV. The histogram of the
gap values is shown in panel 2(e) and is close to a Gaussian
distribution. The spatial distribution of �(r) shows emerging
local inhomogeneities seen as lighter and darker puddles.
Using the scale bar shown in the topography Fig. 2(a), one
sees that local puddles having a constant gap identified by a
certain local color are smaller than 50 nm. Such a behavior
was reported previously in similar systems for comparable
disorder strength, but with comparatively less clean and less
dense STS spectra [18,24,25,38]. � = 1.2 meV is used below
as the average gap value of our film.

We call supergrain a local puddle with a nearly constant
gap. We define l� as the characteristic size of such supergrain.
We found l� ≈ 27 nm which is much larger than the low-T
coherence length ξ (0) ≈ 5 nm. l� corresponds to a correlation
length characterizing the spatial extent over which local gap
values are correlated. A precise way to extract it is to use the
spatial dependence of the radial averaging ρ�(r) of the 2D
autocorrelation function of �(r) (details about the numerical
computations of the correlation and cross-correlation func-
tions can be found in the appendices). The spatial decay of
ρ�(r) and l� are shown in Fig. 3(b).

We provide now for the first time a local mapping of the
disorder distribution combined to electron interactions which
together are responsible for the spatial distribution of the gap
inhomogeneities. At each location the gap value �(r) was
measured, the local AA exponent α(r) was also extracted
in the energy range 5–30 mV, separately for positive and
negative energies. We then took for α(r) the average between
the values fitted for positive and negative energies. The slight
asymmetry in our spectra between positive and negative ener-
gies probably comes from a nonconstant tip DOS.

The 2D map of the exponent α(r) is presented in Fig. 2(c)
and its histogram in Fig. 2(f). Most of the values are situated
between 0.26 and 0.43. It is seen that the exponent map also
presents emerging granularity, with some resemblance with
the gap map. Nevertheless the grainy structure of the exponent
map looks sharper than the one of the gap map. This suggests
that the correlation length lα of α(r) should be smaller than
l�. The correlation length lα is extracted following a similar
procedure as for �(r) above. The spatial dependence of the
radial averaging ρα (r) of the 2D autocorrelation function of
α(r) is shown in Fig. 3(a). lα also is indicated and yields
lα ≈ 18 nm. This value is indeed about two thirds of l�.
In order to simplify the visual comparison between the gap
map and the exponent map, we used the same color scale
for both maps but with a reversed order, which makes it
easier to see anticorrelations. This means that if statistically
anticorrelations dominate between �(r) and α(r) one expects
to see at the same place r bright puddles in both maps: where
a large gap exists (bright puddle) a low α value should also
be found (bright puddle). The situation is similar for darker
puddles. Looking precisely at both maps Figs. 2(b) and 2(c)
and trying to compare the shape and color of local puddles,
one sees that anticorrelations are indeed present.

In order to mathematically quantify the cross-correlations
existing between �(r) and α(r), we computed their 2D
normalized cross-correlation function, which is shown in
Fig. 2(g). A very large anticorrelation of about −0.55 at
coincident points is found. This confirms that the larger is
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FIG. 4. Linecut of twelve dI/dV (r) spectra (shown by black
curves) measured along the line indicated by a white rectangle in
Fig. 2(c). This linecut starts at a bright puddle with larger local
gap and smaller exponent. 33 nm away it ends at a dark puddle
with smaller gap and larger exponent. Each spectrum is spaced by
3 nm from the previous one. Vertically each spectrum is offset by
one for clarity including the first spectrum which is the bottom one.
Each dI/dV (r) curve is superposed with its fitted curve (shown by
red lines) using a power law b × V α(r). Set point for spectroscopy
V = −10 mV and I = 150 pA.

the local energy gap value �(r), the smaller is the local AA
exponent α(r) and vice versa, as illustrated on Figs. 2(h) and
2(i). The dI/dV (r) spectrum with a large �(r) has a flatter
AA background (red curve), and vice versa (blue curve). To
extract the spatial extent over which local cross-correlations
exist, we calculated the radial averaging ρcross(r) of the 2D
cross-correlation function presented in Fig. 2(g). Its spatial
dependence is shown on panel Fig. 3(c). One sees that the
typical correlation length of the cross-correlations is lcross ≈
25 nm. This is larger than lα and close to l�.

To show the robustness of our results, we present in Fig. 4
a line cut of twelve dI/dV (r) spectra measured along the line
indicated by a white rectangle in Fig. 2(c). This linecut starts
at a bright puddle with larger local gap and smaller exponent.
It corresponds to the bottom dI/dV spectrum. 33 nm away,
this line cut ends at a dark puddle with smaller gap and larger
exponent. The end corresponds to the top dI/dV spectrum.
Each spectrum is spaced by 3 nm from the previous one. It is
seen that each individual dI/dV (r) curve is well-fitted by a
power law dI/dV (r) = b × V α(r), where b is a constant.

One could naively think that a direct one-to-one correspon-
dence could exist between the spatial distribution of the NbN
nanocrystals encoded in the STM topography and the gap map
or AA exponent map. In fact, we found no cross-correlation
between the local gap or exponent values and the topography
of the probed area [see Fig. 2(d)]. This is in agreement
with our previous work [38]. It could be partly due to the
inhomogeneous oxidation of the NbN surface if this pro-
cess would change the one-to-one correspondence between
the NbN crystallites distribution and the STM topography.
This nevertheless seems unlikely regarding the size of the

nanostructures seen in STM which agree well with the size
of the nanocrystals measured from TEM experiments.

In contrast, the present results furnish a new way of char-
acterizing locally and quantitatively the underlying disorder
distribution combined to electron interaction effects which
lead to the appearance of supergrains of size l�. Indeed, our
results provide a new type of information that was not reported
before, to our knowledge. For instance, in Ref. [20] or [25],
the focus of the STS studies is set on the comparison between
local gap values and local peak height values.

We finish this experimental section by giving the numerical
values of relevant microscopic parameters that will be used
hereafter in our theoretical analysis. The low-temperature
coherence length can be estimated as ξ (0) = √

h̄D/� ≈ 5.2
nm. It corresponds to the diffusion coefficient D ≈ 0.5
cm2/s obtained from dBc2(T )/dT data close to Tc, see
Ref. [28]. It is also consistent with our own electrical
resistivity measurements in perpendicular high-magnetic
field [38] on similar films. Taking for the elastic mean free
path l ≈ 0.5 nm [28], we find for the elastic scattering time:
τ = l2/3D ≈ 1.7 × 10−15 s.

III. THEORETICAL MODELING

Our theoretical explanation of the observed results is based
on the standard understanding of (i) the Altshuler-Aronov
anomaly [29,30], properly generalized beyond perturbation
theory for both weak and strong coupling [33,39]; and (ii)
the disorder-induced suppression of Tc in superconducting
films [13,14]. Both effects have been described for a spatially
homogeneous case. Both have thus to be properly generalized
to an inhomogeneous situation, since this corresponds to the
case of our experimental results.

The main physical mechanism leading to the suppression
of Tc in dirty superconductors is through the enhancement
of Coulomb repulsion, which in turn reduces the effective
attraction in the Cooper channel. An important distinction
should here be made between the case of 2D and 3D
superconductors. In the 3D case, the whole effect can be
simply described in terms of the Coulomb pseudopotential
[40]. However, our NbN ultrathin film is a 2D superconductor.
Here, in contrast to the 3D situation, one cannot reduce the
effect of Coulomb interaction to the modification of just a
single Cooper coupling constant. In 2D one should instead
track the whole energy dependence of the effective Cooper
coupling, which changes considerably within the relevant
energy scale of Tc. This requires a more sophisticated
analysis, which can be done via a renormalization group
technique developed by Finkelstein [13,14].

In 2D, the effects (i) and (ii) listed above are essentially
determined by the film resistivity. Since we want to describe
an inhomogeneous situation for these two effects, we assume
a model, where the local resistivity ρ(r) fluctuates with the
correlation length lα . With particular details relegated to Ap-
pendices, we summarize below the main findings.

A. Link between the tunneling LDOS suppression
and the local resistance

According to Refs. [29,30,32,33,39] the tunneling DOS
suppression in an interacting diffusive normal metal, ν(E ), is
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determined by the spreading resistance between the diffusive
scale and the field propagation scale (see Appendix B 1).
Relevant eV values (dozens of mV) are much smaller than
h̄/τ ≈ 0.33 eV, justifying well the diffusive regime. In the
2D geometry, the log-normal dependence of ν(E ) [33,39]
can be approximated by a power law with a weakly energy-
dependent exponent

α(V ) = R�
2πRQ

ln
h̄ω0

eV
, (1)

where RQ = h/e2 = 25.8 k
 is the resistance quantum and ω0

is the plasma frequency. Taking h̄ω0 ≈ 10 eV from Ref. [28],
V = 10 mV [typical voltage scale for experimental deter-
mination of α, see Fig. 1(c)] and R� = 6.8 k
 [maximal
sheet resistance Rmax

� before the transition, see Fig. 1(a)],
we obtain α = 0.29. This value is quite close to the mean
value 0.35 measured experimentally. A small discrepancy
could be related to the use of an underestimated Rmax

� that is
significantly affected by thermal amplitude superconducting
fluctuations, whereas the Altshuler-Aronov effect involves
larger frequencies, where this suppression is less efficient. We
conclude that the mean value of the AA exponent 〈α(r)〉 is
well described by the theory developed in Refs. [33,39].

The key point in our explanation of inhomogeneity seen in
α(r) and �(r) is an assumption that they both originate from
fluctuations of the local 2D resistivity ρ(r) = R� + δρ(r).
Using the concept of the spreading resistance to calculate
δα(r,V ), we obtain (see Appendix B 2):

δα(r,V ) = δρ(r)

2πRQ
ln

eV

h̄D/l2
α

. (2)

Using the experimentally measured dispersion of the AA
exponent σα = 0.028 extracted from panel 2f, its correla-
tion length lα ≈ 18 nm and taking V = 10 mV, we find
eV/(h̄D/l2

α ) ≈ 70 and hence obtain the sheet resistance dis-
persion σρ = 1.1 k
. This value corresponds to 16 % of Rmax

� .
This dispersion value among local resistivities seems quite
reasonable regarding the moderate but not too strong disorder
existing in our NbN thin films.

We would like here to comment on the justification and
meaning associated with the definition of a local resistivity.
The correlation length lα ≈ 18 nm of the fluctuations of α

exceeds well the electronic mean free path l ≈ 0.5 nm. This
implies that our sample is deep in the diffusive regime for the
considered energy scale corresponding to α and its variations,
thus the local resistivity can be defined. Since the spatial
fluctuations of the AA exponent are mainly controlled by
the diffusive length scale (the diffusive length L is related
to the energy E through the relation L = √

h̄D/E ), these
fluctuations enable us to probe the local film resistivity.

B. Link between the local gap inhomogeneities
and the local resistances

The additional suppression of the superconducting order
parameter in regions with larger local resistivity is explained
by the Finkelstein mechanism. In general, one should distin-
guish between spatial fluctuations coming from small (q <

qD) and large (q > qD) momenta, where qD = √
ωD/D with

ωD the Debye frequency. For our NbN film, we estimate

h̄ωD ≈ 300 K, qD ≈ 1 nm−1. The low-momentum contribu-
tion is given by the usual logarithm-cube 2D expression

δ�(r)

〈�〉 ≈ − δρ(r)

6πRQ
ln3 h̄ωD

�(0)
, (3)

cut off at the Debye frequency (see Appendix C 1). The
high-momentum contribution can be expressed in terms of
the renormalization of the BCS coupling constant λ(r). Sub-
stituting the resistivity dispersion σρ = 1.1 k
 into Eq. (3),
we obtain for the relative gap dispersion σ�/〈�〉 = 0.074,
whereas the experimental value is 0.057 [see Fig. 2(e)]. Note
that Eq. (3) contains a large degree of uncertainty: the precise
value of h̄ωD being unknown, σ� can only be determined with
roughly 50 % accuracy.

Nevertheless, the fact that Eq. (3) nearly describes the
measured gap dispersion indicates that the high-momentum
contribution to spatial fluctuations of �(r) is absent. This
case could physically correspond to a situation, where the
2D resistivity would spatially fluctuate due to the variations
of interface resistance between neighboring crystallites (that
would lead to small q < qD momenta contribution), while the
3D resistivity within each crystallite would remain identical
(no change in the contribution of the q > qD momenta).

IV. DISCUSSION

We have shown that local probe spectroscopic studies are
able to demonstrate a direct relation between the properties
of the electronic excitation spectrum pertinent to the lowest-
energy scale: the superconducting gap (∼1 meV) on one
hand, and to much higher energy scales (few dozens of meV)
relevant to the Coulomb anomaly induced by the Altshuler-
Aronov effect on the other hand. This supports the relevance
of the “fermionic” mechanism and Finkelstein theory for
superconductivity suppression by moderate disorder in NbN
thin films not only at the global scale but also locally.

We characterized the nanoscale low-temperature granu-
larity that develops in the superconducting NbN film and
have shown that electron-electron interactions play a cru-
cial role in determining this precise granularity. A natural
generalization then would be to study and understand the
temperature evolution of the inhomogeneity of �(r) and α(r),
in particular around and above Tc, to connect to the pseu-
dogap phenomenon and its current understanding in various
materials. Indeed, we point out that for the present ultrathin
film the ratio �(0)/kBTc ≈ 3.7 is twice larger than the BCS
theory prediction 1.76, and significantly larger than the value
2.1 known for thicker and less disordered NbN films [28],
fabricated using the same setup, procedures, and recipes than
in the present work.

The increase of the �(0)/kBTc ratio with the sheet re-
sistance can be understood within the usual mechanism of
strong thermal phase fluctuations [41], which are known
to be important in 2D superconducting systems with small
superfluid density (suppressed due to strong disorder). Indeed,
the width of the Gaussian thermal fluctuational region in
2D, as seen from conductivity measurements, can be esti-
mated by comparing the Aslamazov-Larkin paraconductivity
σ 2D

AL = (e2/16h̄) ln(T/Tc0) and normal-state conductivity as
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Gi = (e2/16h̄)R�, where Tc0 is the mean-field transition tem-
perature. Taking into account that phase fluctuations are about
three times stronger than Gi [42], we obtain an estimate for
the renormalized Tc, which coincides with the Berezinskii-
Kosterlitz-Thouless transition: (Tc0 − Tc)/Tc0 ≈ 3 Gi. With
the normal-state resistance R� ≈ 7 KOhm [see Fig. 1(a)],
this gives Tc0 ≈ 1.4Tc. Thus we conclude that the major part
of the increase of the �(0)/kBTc ratio can be understood as
being due to fluctuation suppression of the measured Tc with
respect to the mean-field value Tc0, which should be compared
to the gap width �(0). The same conclusion was reached in
Ref. [21], where much thicker (actually 3D) NbN films were
studied.

The above explanation of the enhanced �(0)/kBTc and
pseudogap phenomenon (discussed in more details in the
previous paper [38]) refers to the “bosonic” mechanism of
phase fluctuations, while local correlation between Altshuler-
Aronov exponent α(r) and the low-temperature gap value
�(r) are nicely explained within the “fermionic” mechanism.
In that sense, NbN films seem to demonstrate simultane-
ous action of different superconductivity suppression mech-
anisms. It would be interesting to see if strongly disordered
NbN films exhibit a double-gap behavior found recently in
InOx films [43]. Other methods such as the ones address-
ing local coherence through scanning Josephson microscopy
[44] by mapping the local critical current might also shed
important new light [45], when compared to other local
spectroscopic properties such as the local gap map or peak
height map. Finally, addressing the LDOS measurements and
its mesoscopic fluctuations near Tc in disordered thin films
similar to ours would also help testing and comparing with
recent theoretical predictions [46–48].

V. CONCLUSION

In conclusion, we have demonstrated sharp spatial anticor-
relations in highly resistive NbN thin films between the local
magnitude of the superconducting energy gap �(r) and the
value of the exponent α(r) characterizing the local density
of states suppression at the Fermi level due to the Altshuler-
Aronov effect induced by Coulomb repulsion. The correlation
lengths characteristic of the emergent inhomogeneities at
T � Tc are l� ≈ 27 nm for �(r) and lα ≈ 18 nm for α(r),
while the cross-correlation length lcross between �(r) and
α(r) is lcross ≈ 25 nm. Our results are in agreement with the
predictions of a local version of the Finkelstein theory for
the “fermionic” mechanism of superconductivity suppression
by disorder. This behavior is generally expected for any 2D
superconducting materials satisfying: (a) a strong Coulomb
interaction between conduction electrons and (b) a spatial
scale lα characteristic of the inhomogeneities of the Altshuler-
Aronov density of states suppression much larger than the
superconducting coherence length ξ (0). Our results suggest
that in NbN films the emerging granularity can be fully
described by a “fermionic” mechanism. Additional theoretical
and experimental work is needed to see if the same claim is
valid for other recently discovered 2D disordered materials,
including monolayer or bilayer dichalcogenides [49,50], bi-
layer graphene [51], or interface oxides [52].
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APPENDIX A: NUMERICAL COMPUTATIONS
OF THE AUTOCORRELATION

AND CROSS-CORRELATION FUNCTIONS

The autocorrelation functions calculated from the gap map
presented in Fig. 2(b) and the exponent map in Fig. 2(c)
are computed using the 2D expression (A1) with periodic
boundary conditions to treat the finite size spectroscopic data.
We chose such periodic boundary conditions for simplicity.
Nevertheless, these latter conditions do not affect the global
behavior of the autocorrelation function since the correlation
lengths that are extracted from the dependence of the auto-
correlation functions are about 1/10–1/20 of the image size.
Thus the spatial dependence of the autocorrelation function is
not affected by boundary conditions in our case.

In order to ensure proper normalization, the autocorrelation
functions are calculated by subtracting the mean value of the
variable of interest and by dividing by the standard deviation
σ of this variable. For instance for the local gap values �(r)
the 2D autocorrelation function ρ�(r) is defined by

ρ�(r) =
∑

r′

(�(r′) − 〈�〉)(�(r′ − r) − 〈�〉)
Nσ 2

�

, (A1)

where N is the total number of pixels in the �(r) gap map. The
2D autocorrelation functions were calculated in this way for
both �(r) and α(r) data presented in Fig. 2. Since ρ�(r) and
ρα (r) were rather isotropic we decided to circularly average
them to extract the correlation lengths l� and lα . The result
of the circular averaging of ρ�(r) and ρα (r) is presented in
Fig. 3, where the spatial dependence of ρ�(r) and ρα (r) is
plotted as a function of the distance r. The correlation lengths
are determined in such a way that the correlation functions
remain above the noise level close to zero.

The 2D cross-correlation function ρcross(r) between �(r)
and α(r) is calculated in the same way as above using also
periodic boundary conditions with the following formula:

ρcross(r) =
∑

r′

(�(r′) − 〈�〉)(α(r′ − r) − 〈α〉)
Nσ�σα

. (A2)

ρcross(r) is plotted in panel (g) of Fig. 2. The 2D cross-
correlation function between �(r) and the topography Z (r)
presented in panel (a) of Fig. 2 is calculated in the same way,
α(r) in (A2) being replaced by Z (r). Finally since ρcross(r)
has a rather isotropic behavior, as seen on Fig. 2(g), it was
circularly averaged in order to extract the cross-correlation
length lcross from the spatial dependence of ρcross(r).
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APPENDIX B: ALTSHULER-ARONOV ANOMALY IN
INHOMOGENEOUS FILMS

We consider the tunneling density of states ν(E ) in a
diffusive normal film, where the local resistivity fluctuates
with the correlation length a. The mean free path l , the film
thickness d and other parameters satisfy the experimentally
relevant set of inequalities: l � d � √

D/E � a. Here and
below we use the system of units with kB = h̄ = 1.

1. Homogeneous film

The theory of the Altshuler-Aronov anomaly, also called
zero-bias anomaly [29,30,32,33,39,53], predicts that the
Coulomb-induced suppression of the tunneling density of
states can be written in the form ν(E ) = ν0e−S(E ), where ν0 is
the bare density of states at the Fermi level in the absence of
interaction. The function S(E ) can be considered as the gauge
phase correlation function [39,53] or the instanton action [33].
In the case of diffusive electron motion, it can be written in the
form

S(E ) = 2

RQ

∫ 1/τ

E

dω

ω
R(ω), (B1)

where RQ = h/e2 is the resistance quantum and R(ω) is the
spreading resistance between the diffusive length rin(ω) =√

D/ω and electromagnetic field propagation length rout(ω) =√
Dω0/ω2, where ω0 is the plasma frequency. In the 2D

geometry with a constant sheet resistance R�,

R(ω) = R�
2π

ln
rout(ω)

rin(ω)
= R�

4π
ln

ω0

ω
. (B2)

Taking the integral in Eq. (B1) we arrive at the standard result
for homogeneous films:

Shomo(E ) = R�
4πRQ

(
ln2 ω0

E
− ln2 ω0τ

)
. (B3)

For practical purposes, the slow log-normal energy depen-
dence of ν(E ) predicted by Eq. (B3) can be replaced by the
power law ν(E ) ∝ Eα , with an almost energy-independent
index α(E ) = −∂Shomo(E )/∂ ln E , leading to Eq. (1).

2. Inhomogeneous film

Consider now the Altshuler-Aronov anomaly in an inho-
mogeneous film. We will treat inhomogeneity in a simple
model, where the local sheet resistance can be written as
ρ(r) = R� + δρ(r), with δρ(r) being a Gaussian noise with
zero average and the correlation length a. The spreading
resistance R(r0, ω) now depends on the tunneling position
r0 and can be estimated using logarithmic dependence of
resistance in 2D. Therefore, with logarithmic accuracy, one
may calculate R(r0, ω) replacing ρ(r) by ρ(r0) for |r − r0| <

a and by R� for |r − r0| > a.
In the experimentally relevant case, E 
 D/a2, and there-

fore rin(ω) � a. Then the spreading resistance R(r, ω) can be
estimated as

R(r, ω) = ρ(r)

2π
ln

a

rin(ω)
+ R�

2π
ln

rout(ω)

a
. (B4)

Substituting that into Eq. (B1), we get

S(r, E ) = Shomo(E ) + δρ(r)

4πRQ

(
ln2 1/τ

D/a2
− ln2 E

D/a2

)
,

(B5)
where Shomo(E ) is given by Eq. (B3). Taking the derivative,
we see that the AA exponent fluctuates according to Eq. (2),
where we identify a with lα .

APPENDIX C: GAP FLUCTUATIONS IN
INHOMOGENEOUS FILMS

If the correlation length of the local resistivity fluctuations
exceeds the superconducting coherence length, a 
 ξ (0),
then the spectral gap at a given point r is determined by
the order parameter � in a homogeneous system with the
resistivity ρ = ρ(r). The dependence of � on ρ results from
the Coulomb repulsion enhanced in a diffusive media [30].
Assuming the effect can be treated perturbatively, we will
rederive the known expression [54–57] focusing on proper
cutoffs of energy and momentum integrals.

1. Order parameter suppression in homogeneous films

Coulomb suppression of superconductivity [53] can be
described in terms of the energy-dependent correction to the
Cooper channel interaction constant [47]:

δλε,ε′ = − 1

2πν

∫
(dq)

1

Dq2 + ε + ε′ , (C1)

where ν is the 3D density of states at the Fermi energy per
one spin projection, both Matsubara energies, ε and ε′, are
assumed to be larger than Tc, and

∫
(dq) f (q2) ≡ 1

d

∫
dqxdqy

(2π )2

∞∑
n=0

f
[
q2

x + q2
y + (πn/d )2

]
.

(C2)
Perturbative account of δλε,ε′ in the normal state reproduces
the log-cube shift of Tc [54–57]. In the superconducting state,
it leads to the shift of the order parameter compared to the
clean case. In the low-temperature limit (T � Tc), this shift is
given by [47]

δ�

�0
=

∫ ωD

�

dε

ε

dε′

ε′ δλε,ε′ , (C3)

where �0 is the gap value in the clean system. This formula
generalizes the BCS relation δ�/� = δλ/λ2 to the case of an
energy-dependent coupling constant.

Since the energies ε and ε′ in Eq. (C3) are limited by ωD,
one can represent the general expression (C1) as

δλε,ε′ ≈ δλlow
ε,ε′ + δλhigh, (C4)

where δλlow
ε,ε′ is the energy-dependent contribution from low

(q < qD) momenta and δλhigh is the energy-independent con-
tribution from high (q > qD) momenta:

δλlow
ε,ε′ = − 1

2πν

∫
(dq)

θ (qD − q)

Dq2 + ε + ε′ , (C5)

δλhigh = − 1

2πν

∫
(dq)

θ (q − qD)

Dq2
, (C6)
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and qD = √
ωD/D is determined by the Debye frequency.

The high-momentum contribution δλhigh is just a correction
to the Cooper channel constant. According to Eq. (C3) it
leads to the perturbative suppression of the order parame-
ter: δ�high/� = δλhigh/λ2. This expression can be extended
beyond the perturbation theory using the BCS relation that
results in the renormalization of the bare gap: �0 → �1,
where

�1 = �0 exp[1/λ − 1/(λ + λhigh)]. (C7)

Once the high-momentum contribution is incorporated into
�1, the perturbative shift of the gap due to the low-momentum
part δλlow

ε,ε′ should be determined by Eq. (C3) with �0 replaced
by �1.

In order to estimate the low-momentum contribution δλlow
ε,ε′

for our NbN films, we have to compare ωD ≈ 300 K and
the transverse Thouless energy h̄D(π/d )2 ≈ 950 K. Since
the latter is larger, one can leave only the n = 0 mode in
Eq. (C2), leading to the 2D contribution (the 2D resistivity
is ρ = RQ/4πνDd)

δλlow
ε,ε′ = − ρ

2πRQ
ln

ωD

max(ε, ε′)
(C8)

and hence to the following shift of �:

δ�low

�1
= − ρ

6πRQ
ln3 ωD

�
. (C9)

For our NbN films with ρ = Rmax
� = 6.8 k
, h̄ωD ≈

300 K, and � = 12 K, the low-momentum contribution

to the gap suppression according to Eq. (C9) is given by
δ�low/�1 ≈ 0.55, which is at the border of applicability of
the perturbation theory. At the same time, λhigh in Eq. (C5) is
determined by the 3D diffusion which should be cut off at q ∼
1/l: δλhigh ∼ −(ρ/π2RQ)(d/l ) ∼ 0.1, yet with an unknown
prefactor. Depending on the latter, �1/�0 is in the range of
several tens of percent, that is a bit too small to describe
experimental data.

2. Inhomogeneous films

In Appendix C 1, we calculated the gap suppression δ�

with respect to the clean case (ρ → 0). To get gap fluctuations
δ�(r) in an inhomogeneous system with long-range fluctua-
tions of ρ(r), we simply replace ρ by δρ(r):

δ�(r)

〈�〉 = − δρ(r)

6πRQ
ln3 ωD

�
+ δλhigh(r) ln2 ωD

�
, (C10)

where δλhigh(r) contains the large-momenta contribution:

δλhigh(r) = −2d δρ(r)

RQ

∫
(dq)

θ (q − qD)

q2
. (C11)

Equation (C10) is derived in the model, where the re-
sistivity [both the 3D ρ3(x, y) and the 2D ρ(x, y) related
via ρ3 = ρ/d] exhibits small spatial fluctuations. In a more
realistic model presumably applicable to our NbN films, these
are the crystalline interfaces that are the sources of resistance
fluctuations at scales larger that a few nm. For such a model
of structural disorder, high-momentum fluctuations of δhigh(r)
are absent, and one arrives at Eq. (3).
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