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Full-bandwidth Eliashberg theory of superconductivity beyond Migdal’s approximation
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We solve the anisotropic, full-bandwidth, and nonadiabatic Eliashberg equations for phonon-mediated
superconductivity by fully including the first vertex correction in the electronic self-energy. The nonadiabatic
equations are solved numerically here without further approximations, for a one-band model system. We
compare the results to those that we obtain by adiabatic full-bandwidth, as well as Fermi-surface-restricted
Eliashberg-theory calculations. We find that nonadiabatic contributions to the superconducting gap can be
positive, negative, or negligible, depending on the dimensionality of the considered system, the degree of
nonadiabaticity, and the coupling strength. We further examine nonadiabatic effects on the transition temperature
and the electron-phonon coupling constant. Our treatment emphasizes the importance of overcoming previously
employed approximations in estimating the impact of vertex corrections on superconductivity and opens a
pathway to systematically study vertex correction effects in systems such as high-7, flat band, and low-carrier

density superconductors.

DOI: 10.1103/PhysRevB.102.024503

I. INTRODUCTION

The foundation for establishing the microscopic descrip-
tion of phonon-mediated superconductors was laid by the
pioneering work of Migdal on the electron-phonon interaction
in metals, where his famous theorem was introduced [1]. The
essence of Migdal’s theorem lies in the effective electron-
phonon coupling A times €2/er being small, where 2 is the
characteristic phonon frequency and € the Fermi energy.
Under this assumption it is possible to treat the arising infinite
Feynman series of vertex diagrams in a perturbative manner
with an expansion parameter AS2/er. Migdal’s theorem dic-
tates that when Q < €r (or in other words, in the adiabatic
limit), vertex corrections become negligible and the series can
be truncated up to first order in the coupling. For typical met-
als, where the degree of nonadiabaticity o = Q/ep ~ 1072,
such an approximation to the electron self-energy (below
referred to as Migdal’s approximation), is commonly believed
to be valid even in materials characterized by strong-coupling
A 2 O(1). Eliashberg generalized this formalism to the su-
perconducting state [2] and thereby laid the foundation for
the thus-far most successful description of a vast amount of
superconductors that deviate from the weak-coupling limit of
the Bardeen-Cooper-Schrieffer (BCS) theory [3-6].

However, the discovery of high-7, superconductors, for
example, the cuprates (for recent reviews, see, e.g., [7,8]),
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or monolayer FeSe on SrTiO; (FeSe/STO) [9-11], has put
the applicability of these conventional theories under debate
[12—14]. This is mainly due to their common ingredients,
such as a shallow electronic band near the Fermi level and
comparatively large boson frequencies [15-18]. Other striking
examples of materials that lie in the nonadiabatic regime
include the record high-7, superconductor H3S [19-21], flat
band systems like magic-angle-twisted bilayer graphene [22],
and low-carrier density superconductors, like doped SrTiO3
[23,24].

The importance of vertex corrections was studied theoreti-
cally only by a few groups [25-32], while numerical analyses
were so far carried out mainly by Pietronero and cowork-
ers [33—37]. Recently, quantum Monte Carlo simulations were
employed to address the issue [38]. Due to the huge numerical
complexity of including vertex corrections in the electronic
self-energy, studies so far have been subject to further ap-
proximations, such as taking the noninteracting limit of the
vertex correction and averaging over momenta and therefore
neglecting momentum dependence in the Eliashberg calcula-
tions [28,29]. Most of all, the standard practice is to integrate
out and therefore neglect the contributions of electrons not at
the vicinity of the Fermi surface. Here we shall refer to the
latter type of calculations as Fermi surface restricted (FSR).
This includes the original works by Migdal and Eliashberg
as well, and it is the reason why existing theories are often
formulated in terms of the coupling X, instead of the actual
scattering strength g arising in the Feynman expansion (see
Sec. I A for details).

Migdal’s theorem was originally formulated for three-
dimensional (3D) systems [1] and, based on phase-space argu-
ments, it is generally expected to be violated for lower spatial
dimensions [4]. We will discuss this point in more detail
below. The available studies of low-dimensionality effects on
the vertex corrections are scarce and they notably all make use
of the aforementioned Fermi surface and momentum isotropy

Published by the American Physical Society


https://orcid.org/0000-0001-6845-2538
https://orcid.org/0000-0002-9069-2631
https://orcid.org/0000-0002-1699-2476
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.024503&domain=pdf&date_stamp=2020-07-02
https://doi.org/10.1103/PhysRevB.102.024503
https://creativecommons.org/licenses/by/4.0/
https://www.kb.se/samverkan-och-utveckling/oppen-tillgang-och-bibsamkonsortiet/bibsamkonsortiet.html

SCHRODI, OPPENEER, AND APERIS

PHYSICAL REVIEW B 102, 024503 (2020)

assumptions to tackle the problem analytically as in the orig-
inal Migdal formulation. For example, the first vertex cor-
rection in the case of the two-dimensional (2D) electron gas
was found to be of order ~(2/er)'/? [39] instead of the 3D
result of ~(€2/€r) whereas for one-dimensional (1D) systems
conclusions could not be drawn due to the enhanced tendency
for lattice instabilities except from the special case of small-g
phonons where Migdal’s theorem was shown to hold [40].
Interestingly, the theorem breaks down in the case of such
small-g phonons in 3D systems, as Migdal himself pointed out
[1,4]. Thus far, due to the lack of direct numerical calculations
little is known about the effect of the momentum dependence
in the Fermi surface shape and the electron energies on the
solutions to the vertex-corrected Eliashberg equations. Con-
comitantly, a systematic study of the effect of reduced spatial
dimensionality on Migdal’s approximation is still missing.

Our current work is motivated by the observation that many
superconductors, including high-7.’s, depart from the per-
fect adiabatic regime, hence there is no consensus about the
smallness of vertex corrections to the bare electron-phonon
scattering diagram. In addition, many of these materials are
not purely 3D systems. Here, we address the question about
the validity of the adiabatic approximation, using a less ap-
proximative treatment compared to the available literature. It
is worthwhile to establish under which conditions an adiabatic
full bandwidth (AFB) [41-43] approach gives sufficiently ac-
curate results, when even FSR Migdal-Eliashberg calculations
[4] can be used for a successful description, and when the
usage of nonadiabatic Eliashberg theory is inevitable. We also
examine the possibility of applying a FSR isotropic approxi-
mation to the nonadiabatic Eliashberg equations as an attempt
to considerably decrease the high computational complexity
of the problem. However, as we show, such simplifications
often result in severe disagreement with the full nonadiabatic
solutions and they are therefore generally not acceptable.
Lastly, we provide a brief account on previous results and
compare them to our direct numerical solutions.

We assume conventional (s-wave) Cooper pairing and con-
sider the first two infinite series of Feynman diagrams for the
electronic self-energy, from which it is possible to derive a
set of self-consistent equations for the mass enhancement, the
chemical potential renormalization, and the superconducting
order parameter (given below in Sec. Il A). We numerically
solve this system of equations without further approxima-
tion, i.e., the full momentum and frequency dependence is
kept. In Sec. IIB we introduce the AFB, as well as the
FSR equations which we solve to have reference points for
comparison. For completeness, we also derive and solve the
FSR isotropic Eliashberg equations with vertex corrections.
We use an effective one-band tight-binding model up to next-
nearest neighbor hopping for the electronic energies. Our final
model framework spans a huge parameter space, which allows
systematic variations in the dimensionality, the characteristic
phonon frequency, the strength of the coupling, the electronic
bandwidth, and, most importantly, the degree of nonadiabatic-
ity. In Sec. IIC we provide a heuristic discussion on the
different approaches presented here on the basis of Feynman
diagram expansions. In Sec. IIl A we study the influence of
vertex corrections on the superconducting gap in systems of

different dimensionality. We subsequently confine ourselves
to 2D systems for which we examine similar parameter space
with focus on the superconducting transition temperature and
the electron-phonon coupling constant in Sec. III B. We close
the Results Section with a discussion on previous approxima-
tions of the vertex function and provide a comparison with our
results in Sec. III C. Our final conclusions and a brief outlook
are given in Sec. IV.

II. THEORY

We want to describe phonon-mediated superconductivity
with a nonadiabatic and full bandwidth Eliashberg theory that
goes beyond the commonly employed Migdal’s approxima-
tion. As a starting point, we consider an electronic disper-
sion 5{(’, rigidly shifted by a chemical potential u, such that
& = Slf — u, with k a Brillouin zone (BZ) wave vector. For
simplicity we focus on an effective one-band situation. As
usual, e = |mkin &k| and the “shallowness,” i.e., the depth of

the band, can be controlled by u alone. Turning to the lattice
vibrations, we assume an isotropic Einstein phonon spectrum
with a characteristic frequency €2, see Sec. Il A for details.
By defining « = Q2/er we can associate the electronic and
bosonic energy scales with a parameter o which is represen-
tative for the degree of nonadiabaticity in our system.

A. Microscopic description

In the following we use by and b as bosonic annihila-
tion and creation operator. The fermionic analogues ck , and

cli »» With spin index o, are hidden in Nambu spinors vl =

(c; , €_k,} ) in the electron-phonon coupled Hamiltonian that

reads
. 1
k q

+ ) 8qtq Vg3 Yk 0
k.q
In the above we include a purely electronic part, a bosonic
term, and a coupling between both. Our focus here is solely
on the effect of the later term on superconductivity; therefore
for the sake of simplicity we will not include the impact of
Coulomb repulsion on the pairing. Here we use the Pauli
basis p;, i =0, 1, 2, 3, and describe the ion displacement by
g = (b’fl +b_q), while g4 is the electron-phonon scattering
strength.
The electronic propagator as a function of imaginary time
T reads

G(t) = —(T; Wk (1) ® ¥, (0)), 2)

where 7 is the time-ordering operator. Let w,, = 7T (2m +
1) be a fermionic Matsubara frequency with temperature T
and m € Z. The electron Green’s function in Matsubara space
obeys the Dyson equation

Gk,m = Ggm + G(]i,mi:k,m(,\;k,mv (3)

with the shorthand notation Fy ,, = F (K, iw,,) for any func-
tion F. The noninteracting Green’s function is given by

[(A;g’m]_1 = iw, po — & p3. For evaluating the electronic self-
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(a) (b)

FIG. 1. (a) First- and (b) second-order Feynman diagrams of the
electron self-energy due to the electron-phonon interaction corre-
sponding to the first and second terms of Eq. (4). Straight double
lines are full electron Green’s functions and wavy lines are bare
phonon propagators.

energy 3, we consider in Fig. 1 the first- and second-
order scattering diagrams which are shown in Figs. 1(a) and
1(b), respectively. A straight-arrowed double line represents
the renormalized electron Green’s function of Eq. (3) and
each wavy line the phonon propagator. Each vertex pair is
associated with a factor |gg|* = |gofq|*, which we rewrite
as the product of scattering strength gy and form factor
fq (max|fq] =1). The later carries the information of the
momentum dependence of the interaction. The expansion
parameter in the Feynman diagram series is therefore |go|%.

Taking into account both diagrams of Fig. 1 we find the
anisotropic electronic self-energy as

Sk =T Y Dk wmm |01 P3Ge o D3

k'm’

2 2 : §
+ T Dk*k/,mfm/Dk’fk”,m’fm”

K'm' K'm"

2 24 A A A
X |gk—k'|" |8k -k " D3Gw . P3Ger

The first term on the right-hand side of Eq. (4) corresponds to
the diagram of Fig. 1(a) and describes an infinite series of the
noncrossing, so-called rainbow diagrams. Keeping only this
term in the electronic self-energy is known as Migdal’s ap-
proximation. The second term on the right-hand side of Eq. (4)
corresponds to the diagram of Fig. 1(b) and describes an
infinite series of crossed diagrams. The inclusion of this term
yields the first vertex correction to the electronic self-energy
beyond Migdal’s approximation. Due to momentum conser-
vation we use q = k —k’ in Eq. (4). As indicated before,
the scattering amplitudes |gx_i/|> and phonon propagators
Dy _y m—ny are assumed to be branch and band independent.
The Einstein-like phonon spectrum that we consider here
leads to

Xdw
Dy |gk > = / —a’F(k, K, 0)
o No
2w
(wm - a)m’)z + (1)2

= Vk—k’,m—m’v (5)

with Vik_x m—n the electron-phonon interaction kernel. In
Eq. (5) the electron density of states (DOS) at the Fermi level
is given by Np, and o’F (k, k') = Nylgk_k' |*8(w — Q) is the
momentum-resolved Eliashberg function.

From here we follow the standard recipe of Eliashberg the-
ory and introduce the mass enhancement Z ,,, the chemical
potential renormalization xx ., and the superconducting order
parameter ¢ ,, by writing

Gir, = ionZimbpo — Ex + Xem)P3 — Gmbr.  (6)
By combining Egs. (3) to (6) it is possible to project on

channels pg, 03, and p1, and find the self-consistent equations
for corresponding prefactors in Eq. (6). After some tedious

X 03 Gk”,kurk’mf/,murm 03. @ algebra we obtain
J
T 7 - 7) -
Zk,m =1- (U_m ; kak’,mfm’ (Vé/,)n« +T Z Vk’fk”,m’fm” VIZ”,m”P]E/_gn/ yk”k’Jrk,m”m’er) ’ (7)
m
Xkom = T Z Vk—k’,m—m’ (V]E/),(,Lf +T Z Vk’—k”,m’—m” ?l?”,m’/Pli’)f;’ ?k”—k-&-k,m”—m’-&-m) s (®
k/m/ k!/m/l
¢k,m =-T Z Vk—k’,m—m’ (V;Ef{),iq/ + T Z Vk’—k”,m/—m” ?lg,m”PlE?r)n’ 7k”—k’+k,m”—m’+m> . (9)
K/ K'm"
[
For brevity we define the pseudovector 7! =
@ L0 @ , @ . -nl —nl 0
Vems YVem V) With elements %" = 0nZicm/ Ok, ms o (;’)l ( ’)m o
X _ x
Vliff,z = (Xk,m + Ek)/(ak,m and V]E(ﬁ”), = ¢k,m/®k,m~ The Pk,m - _yk,m yk,m _yk,m ’ (12)
denominators are given by 0 #) )
252 2 2 RC
®k,m = (la)m) Zk,m - (Xk,m + %k) - ¢k,m’ (10) @ 0 _ ., @
hile the matrices in Egs. (7) to (9) have the f Ve Ve
while the matrices in Egs. (7) to ave the form @) @) )
Pk,m = 0 Yk.m Yim |- (13)
_ ., @ (x) (@)
im  Yem  Viom @) 0 @
z Yo Yem Yim
P( ) — )/(X) V(Z) 0 , (11) ]
ke,m ke m k,m The superconducting gap can be found from Ay, =
—ylif’;)l 0 _VIE,ZW), ®x.m/Zx.m- The diagram in Fig. 1(a) corresponds to the left,
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while the diagram in Fig. 1(b) corresponds to the right sum-
mand in the brackets of Egs. (7) to (9).

Taking a step further from existing theories we purposely
did not perform any further energy integrations or other ap-
proximations in deriving Eqs. (7) to (9), hence our treatment
is formally exact up to second order in |go|? in the expansion
shown in Fig. 1. Keeping all dependencies as they are stated
above we solve for Zg ,;, xk.m,» and ¢ ,, in an iterative self-
consistent loop; the results are presented in Sec. III below
and we give further numerical details in the Appendix. The
algorithm for solving the nonadiabatic, anisotropic, and full
bandwidth Eliashberg equations was included in the UPPSALA
SUPERCONDUCTIVITY (UPPSC) code [41,42,44-47].

B. Simplifications to the model

Before going to our numerical results it is useful to briefly
discuss some limiting cases, with which we want to compare.

1. Adiabatic full-bandwidth equations

From Egs. (7) to (9) it is straightforward to obtain the
adiabatic limit, in which we can neglect all contributions
from the diagram in Fig. 1(b). This results in the well-known
adiabatic Eliashberg equations

/Z(dd)
d
208 = 1= 5 Ve <@ 19
M Km k', m’
(ad)
d Xk/ +‘§k’
Xliam) TZVk K ,m— mG)(T’ (15)
k/ ! k/ ’
¢l((ad)
el

where we use the label (ad) to avoid confusion with the nona-
diabatic functions. Consequently, we obtain the gap function
AGD _ (ad) /Z(ad)

k,m —

2. Fermi-surface restricted adiabatic equations

In cases where only processes at the Fermi level are
relevant to describe the interacting system it is possible to
derive a further simplified, but still anisotropic theory. Using
label (Fs), for Fermi surface, the mass renormalization and
gap function for these systems can be given as

T (S ’ Wyy!
Ze) =1+ Mo ) Oy
W K/ ]V() Gk/,m’
(Fs)
8(Ew) A
(FS)
= kK , (18)
l((F;) ; e O ek’ m'

2
with O, = /@2 + (Al(f;:) and the coupling Ak k' m—m =

NoVk—x'.m—nr- In deriving Egs. (17) and (18) one assumes an
infinite electronic bandwidth of a system at half-filling [4].

3. Fermi-surface restricted, isotropic approximation to the
nonadiabatic equations

For completeness, we will also study the case where we
apply the same approximations as in the derivation of the

FSR adiabatic equations to the nonadiabatic Egs. (7) to (9).
Given the very high computational complexity of numerically
solving Egs. (7) to (9), it is worth investigating how well such
simplified nonadiabatic equations compare to the full Egs. (7)
to (9). For the isotropic electron-phonon interaction that we
adopt here, the equations derived below can be considered
as the nonadiabatic extensions of Eqs. (17) and (18). As we
show in Sec. III, such simplified nonadiabatic equations are
unfortunately not reliable.

We focus on the second term on the right-hand side of
Eq. (4). Following the same procedure as in deriving Egs. (7)
to (9) we obtain the following expression for the nonadiabatic
part of the self-energy:

300 — 72p Z p Y
m',m"
X )63(@/71’b3§m”i)3§m”*m’+mb3s (19)

where we use the label (iso) for “isotropic.” The constant P is
defined as

P_i Z 3(&K)8(&k )8 (i )d( ) (20)
_Ng &0 (6 )8 (51 )8 (S —w 1)

kK, K"

and reflects the momentum conservation of processes at the
Fermi level. The propagator g,, is obtained by integrating the
electron Green’s function over energy

o0
Biom = / de G (©), @)
—0oQ
and the result is furthermore assumed to be isotropic,
8x.m = 8m- We get
iwmPo + AU
gn = —m e DL (22)
W+ (A5™)

With the above considerations, the resulting Eliashberg equa-
tions are

Z(ISO) 1 + — Z)\m m’ym
m
372
7T
+P > Dot -
O m,m’
(@), (D), (D) (A),, (@), (D)
( )/ 7/ 4 J/m”—m +m + J/m )/ 4 J/m” —m'+m
(A),,(A), () (@), (0), ()
Yo Yo Vor—m4m — YV Vi Vi m’+m)’ (23)
(is0) _
Anl150 (1so) Z)Lm m )/ /

73T?
PW Z )‘«mfm/)‘m’fm”
m / //

( (a),,(8), (D)

(), (@), (A)
)/m/ ym” ym” —m'+m

ym’ J/m” ym”—m '+m

@).,(A), @) @)@, @
V0 Vi Vi = Yot Yo Yoormim)- (24

o2
Above we use ¥ =w,/y o+ (AY) and y®) =
A/ R + (A5
m m *
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In Sec. III, we perform a parameter space exploration
following each of these four different approaches. We have
the AFB Egs. (14) to (16), the FSR Egs. (17) and (18), the
full bandwidth nonadiabatic description, that includes both
diagrams of Fig. 1, in Egs. (7) to (9), and lastly the isotropic
FSR approximated nonadiabatic Eqs. (23) and (24). These
last two sets of equations are the respective nonadiabatic
extensions including the first vertex correction of the former
two sets of Migdal-Eliashberg equations.

4. Details on the solved model

For the electronic energies we use a tight-binding descrip-
tion up to the next-nearest neighbor, reading

£ = — Z tl.(l)cos(k[)

=x,y,2

= >[I 7 costky) — . (25)

I=X,Y,Z j=X,),2;jF#I
For simplicity we assume equal hopping energies along all
three spatial directions and write 7. = t(D¢;, 1 = V1@c;.
The ¢; are conveniently used to control the dimensionality

(from 1D to 3D) of our system, hence ¢, = 1 and ¢;, € [0, 1].
Inserting in Eq. (25) gives

f=—1tD Z c; cos(k;)

i=x,y,2

—@ 3 []  ejeostky) — . (26)

i=X,,2 j=x,,2;jF1

from which we find the electronic bandwidth as W =
|mkax & — rr}(in &|. By fixing W we are able to obtain the

nearest-neighbor hopping from

¢ =W/<2 Z c,->. (27)

i=x,y,z

We further take +® =¢)/2 as the next-nearest neighbor
hopping. For an initial choice of characteristic phonon fre-
quency 2 and degree of nonadiabaticity o one can deduce
the shallowness of our dispersion & by € = Q/a = |mljn &,

which uniquely determines the global chemical potential 1.

Another degree of freedom in our calculations is the
coupling strength, which is commonly measured as A, and
treated here as a parameter that is varied from weak to strong
coupling. As stated in Sec. IT A, the momentum dependence
of the interaction kernel is gq = gofq, S0 we can write

lgofyl” 29
)\q,mfm’ = NOVq,mfm’ = No Qq Q2+ qz (28)

In the case of a FSR calculation, as in Egs. (17) and (18), the
coupling can be extracted by a double momentum average at
the Fermi level:

A= ((Aqm—m'=0)k, )k, - (29)

Combining Egs. (28) and (29) allows us to solve for the
scattering strength

AQ2 1

_—— 30
2No ({1fq) )k, ), G0

lgol* =

which can then be used to calculate a kernel corresponding to
A for the adiabatic or nonadiabatic full-bandwidth equations.

To summarize, within the here-presented setup we have the
freedom to choose the systems dimensionality via c;, the char-
acteristic phonon frequency €2, the degree of nonadiabaticity
a, the coupling strength A and the momentum structure of
the electron-phonon interaction. All subsequent results follow
from the considerations in this section.

C. Diagrammatic analysis

Before proceeding to present our numerical results in
Sec. III, we will elucidate further each of the approaches
discussed in the previous section by means of a heuristic
discussion based on Feynman diagrams. Figure 2 shows a few
low-order self-energy diagrams in terms of the noninteracting
electron Green’s function of Eq. (3) that are contained in
the infinite series implied in the diagrams of Fig. 1. These
bare electron propagators are drawn with straight arrowed
lines whereas the phonon propagators are drawn with wavy
lines, as usual. Bare vertices are drawn with solid circles. The
numbers in Fig. 2 designate four-momenta carried by respec-
tive propagators, i.e., 1 = (K, ), 1 =243 = (k; —k, +
k3, o, — wm, + 0y, ), and so on. Although we do not draw
the ingoing/outgoing electron propagators we nevertheless
have chosen to show their corresponding four-momenta so as
to keep track of the momentum and energy conservation for
each diagram.

The blue ellipses below each diagram are Fermi surface
cartoons. Straight lines with arrows connecting two such four-
momenta in these cartoons represent particle scattering events.
These arrow lines can be seen as vectors whose direction and
amplitude follows from momentum and energy conservation
at each vertex as we read the diagram from left to right.
Lines connecting points on the ellipse describe scattering at
the Fermi surface whereas for processes away from the Fermi
level the edge of these lines moves further apart from the
blue ellipse. Increasing the nonadiabatic ratio « in this picture
simply means that these lines are allowed to extend further
away from the Fermi surface ellipse, i.e., the phase-space for
processes relevant to each diagram increases.

Following the discussion of the authors of [4] for the
non-superconducting state, and for the sake of simplicity,
we neglect any contribution of the phonon propagator poles
and consider that the major contributions in Eq. (4) come
from poles in the electron Green’s functions. The closer to
the Fermi level, the more pronounced are the poles of these
Green’s functions. Therefore, processes with lines connecting
points on the ellipses are dominant. Diagrams with more lines,
i.e., with more scattering events become less likely to contain
sharp poles either because of eventually reduced phase-space
or because they inherently involve processes away from the
Fermi level.

Figure 2(a) shows the lowest-order noncrossing diagram
of the adiabatic self-energy. Particles with (k;, wy,, ) scatter
off a virtual phonon to a state (ky, w,,) before scattering
back to their initial state (K;, @y, ). This is shown pictorially
in Fig. 2(d) where a Fermi surface process is shown. All
diagrams belonging to the Migdal’s approximation exhibit
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FIG. 2. Lowest-order diagrams contributing to the electron self-
energy of Fig. 1. Graphs (a), (b), and (c) are examples of noncrossing
diagrams retained in Migdal’s approximation. Plots (d), (e), and (f)
show Fermi surface sketches (blue ellipses) where arrows depict
scattering processes corresponding to panels (a), (b), and (c), respec-
tively. Graphs (g) and (h) are examples of the first-vertex-corrected
crossing diagrams beyond Migdal’s approximation. Plots (i) and (j)
depict the corresponding scattering processes near the Fermi surface.

N,
<‘
w

this behavior. The FSR Migdal-Eliashberg Eqs. (17) and (18)
correspond to diagrams in the first row of Figs. 2 where
additionally all processes take place at the Fermi surface as
depicted in Figs. 2(d) to 2(f). When « increases, processes
with at least one line connecting states away from the ellipses
in Figs. 2(d) to 2(f) become increasingly relevant due to the
enlarged phase-space, thus the AFB Eliashberg Egs. (14) to
(16) become relevant.

On the other hand, for crossing diagrams, like, e.g.,
Figs. 2(g) and 2(h), particles scatter to different intermediate
states. This means that for a Fermi surface without good
nesting or when the electron-phonon interaction is not peaked
at small-g, some of the intermediate states need to lie away
from the Fermi level. When « is small, the limited available
phase-space for such processes, as can be inferred by Figs. 2(i)
and 2(j), results in the suppression of the crossing diagrams.
If we additionally consider only Fermi-surface processes,
this suppression is further enhanced and the contribution of
these diagrams becomes negligible. This is Migdal’s theorem.
As already stated the theorem can break down for small-¢g
phonons or well-nested Fermi surfaces. We will not address
cases where the electron-phonon interaction is momentum
dependent here. Apart from potential changes in the scaling
of the vertex correction [39], reduced dimensionality may

generally also lead to deviations from Migdal’s theorem due
to enhanced nesting conditions. Therefore, in one dimension
where nesting is perfect Migdal’s theorem should not hold [4].

For arbitrary values of o but assuming only near Fermi
surface processes, one retrieves the momentum conservation
constraint of Eq. (20) and the corresponding nonadiabatic
Eliashberg equations in this approximation are given by
Egs. (23) and (24). By construction and given the preceding
discussion, these equations can have a significant effect only
in the case of enhanced nesting conditions. On the contrary,
the solution of the full vertex-corrected Eliashberg Eqs.(7)
to (9) presents the most general case where all processes are
considered and no assumption is made on the value of . Thus,
all diagrams are properly taken into account in this case.

We now turn to discuss our numerical solutions in the next
section.

III. RESULTS

The full parameter space introduced in Sec. II B is too big
for a complete numerical analysis, especially for 3D systems.
We confine ourselves to a characteristic phonon frequency
of 2 = 50meV, fix the electronic bandwidth at W = 1.5eV
and impose an isotropic coupling, fq = 14. Due to the fact
that existing theories of nonadiabatic superconductivity are
confined to the Fermi surface [33-35] we perform a variation
in A to make a comparison easier. By means of Eq. (30) we
have a tool to translate this variation into the expansion pa-
rameter |go|?, which is more meaningful in our full-bandwidth
treatment. For the here-presented results we are interested in
reaching a qualitative understanding rather than quantitative
absolute numbers since we stay on a model basis.

A. Dimensionality

We want to compare our self-consistent full-bandwidth
nonadiabatic results with AFB, adiabatic FSR, and nonadia-
batic FSR isotropic calculations. For this purpose we consider
the maximum superconducting gap as a function of coupling
strength for different degrees of nonadiabaticity «, repeated
for each possible dimensionality. Further, we fix the tempera-
ture at 7 = 20 K in the current section.

1. 3D systems

It is well established that Migdal’s theorem is valid in three
spatial dimensions, hence we expect vertex corrections to be
small, provided that o < 1. Choosing o = 0.05 and ¢, =
¢y = ¢; = 1, we test this aspect in Fig. 3(a) by comparing the
adiabatic maximum gap (green circles) and the FSR results
(blue crosses) with outcomes from our complete nonadiabatic
Egs. (7) to (9) (red stars) and the FSR isotropic nonadiabatic
Egs. (23) and (24) (yellow diamonds). Our 3D solutions for
the later approximation coincide almost perfectly with the
ones obtained from FSR nonadiabatic calculations, as can be
seen in all panels of Fig. 3. We will return to this point at the
end of the section. As is directly apparent, the vertex cor-
rections in such an adiabatic situation are indeed very small.
Additionally we find good agreement also with A®S) which
points towards purely Fermi-surface-based Cooper pairing
and indicates that a FSR approximation is sufficient in this
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FIG. 3. Maximum superconducting gap as function of coupling
strength A in 3D systems. Red stars, green circles, blue crosses,
and yellow diamonds show results for our complete nonadiabatic
algorithm, the AFB calculation and FSR equations, and the FSR
isotropic approximation to the nonadiabatic equations, respectively.
Nonadiabaticity parameter (a) @ = 0.05; (b) « = 0.1;and (c) @ = 1.

parameter regime. The observations hold true for all couplings
we tested, hence the essential ingredients are the 3D character
of the system and smallness of «. We checked that there is
good agreement between all four approaches for @ < 0.05.

Next we examine the effect of making the system less
adiabatic, = 0.1. In a similar color code as before we show
the outcomes in Fig. 3(b). For increasing coupling strength the
difference between FSR and AFB calculations grows larger.
Further we find for all A values that A®Y in this setup is an
underestimation of the vertex-corrected maximum gap size A.
We observe that these trends persist when further increasing
« in Fig. 3(c). Here A is far too small compared to nona-
diabatic results. Note that this property stems from the fact
that the FSR theory of Eqs. (17) and (18) does not explicitly
depend on & since we here assume a momentum independent
electron-phonon coupling gy. Therefore it is independent of
a. In other words, due to taking gq = go, Egs. (17) and (18)
assume the form of the usual isotropic Eliashberg equations
[5]. Further, we find A > A@® throughout the whole range of
couplings, while their relative difference stays comparatively
small. In both Figs. 3(b) and 3(c) we get a deviation of
[(A — A@DY/A| ~ 20% in the large coupling limit. This can
be explained in terms of the expansion parameter |go|?, which
is smaller for Fig. 3(c) than for Fig. 3(b). Hence there is an
increased importance of nonadiabatic effects which, however,
are weighted less. It is worth mentioning that Fig. 3(c) may be
relevant to the situation encountered in H3S where o ~ 1 and
A ~ 2 [20,21] and in SrTiO3; where @ > 1 and A ~ 0.1-0.4
[23].

Previously, solving the linearized Eliashberg equations for
H3S gave that T is reduced when considering the full energy
dependence of the electronic DOS in comparison to using
the constant DOS approximation [48]. These two approaches
compare to the linearized versions of the here discussed AFB
and FSR approaches. If we associate the superconducting gap
maximum with the expected magnitude of the corresponding
T., the results of [48] regarding these two approaches are
opposite to our findings shown in Fig. 3(c). In our case, we
find that the AFB approach yields a higher 7. as compared
to FSR calculations for 3D systems. A possible reason for
this difference may be the fact that the calculations shown in

Figs. 4 and 5 of [48] are one-shot, i.e., not self-consistent.
Nevertheless, our findings are in line with results obtained
for the case of dihydrogen sulphide, H,S [48]. In addition,
vertex corrections were shown to reduce 7, in these mate-
rials [48]. This again is in contrast to our results shown in
Fig. 3(c). We believe that this discrepancy is a consequence
of the approximations adopted in [48] when including the
vertex corrections, especially taking the static limit of the
vertex function. These approximations are similar to those
introduced in [29] which we discuss in more detail further
below in Sec. III C.

2. 2D systems

Next we treat the 2D case by setting ¢, = ¢, =1 and
¢, = 0. For this situation there is no proof that vertex correc-
tions are negligible, even for o < 1. It is furthermore excep-
tionally interesting to examine possible effects in this setup
because many high-7;. superconductors are either quasi-2D
[7,49] or pure 2D systems [9,10,50,51]. We choose similar pa-
rameters as before, « = 0.05, « = 0.1, and @ = 1, the results
of which we plot in Figs. 4(a), 4(b), and 4(c), respectively.
The color code and choice of axes (coupling versus maximum
superconducting gap) is the same as in Fig. 3. A common
observation in all three panels of Fig. 4 is a rather small
deviation between results from FSR and AFB calculations.
This hints towards small tendencies of Cooper pairing away
from the Fermi level in the parameter space we examine
here [41,43]. Turning to the maximum superconducting gap
from our nonadiabatic theory we find A < AFY < A@D for
all couplings considered in Fig. 4(a). By neglecting vertex
corrections one therefore overestimates the gap size to an
extent that depends on A. As we discuss in Sec. III B below,
this overestimation is not restricted to the superconducting
gap, but translates also to the transition temperature.

Before discussing the intermediate case of Fig. 4(b), let
us first turn to o = 1 in Fig. 4(c). Here we find an opposite
trend to before, i.e., an underestimation of the nonadiabatic
gap by both adiabatic algorithms and for all A. Again referring
to Sec. III B below, this trend is similarly true for 7.. An ex-
ample of a superconductor where Fig. 4(c) may be relevant is
FeSe/SrTiO; where o ~ 1.6-2 and A ~ 0.2-0.4 [10,41,52].
Despite the fact that we here assumed a plain electron-phonon
coupling, instead of the small-g interaction that is at play
in FeSe/SrTiO3, our results provide further support that the
later mechanism is capable of mediating the observed high-T..
Moreover, our findings coincide qualitatively with nonadia-
batic, but FSR calculations carried out on small-g scattering
(see also Sec. III C) in Cgp compounds [12,13].

Let us now turn to the intermediate situation o = 0.1 in
Fig. 4(b). For sufficiently large couplings we retrieve the
situation of o« = 1, while results for small A resemble more
closely the situation in Fig. 4(a). It can hence be argued that
the transition from the adiabatic (¢ < 1) to the nonadiabatic
regime (o ~ 1) is smooth, where in an intermediate situation
as in Fig. 4(b), the over or underestimation of A®Y and
AT with respect to vertex-corrected results depends on the
coupling strength only. It is interesting to note, lastly, that
cuprates [7] and iron pnictides [49] fall in this intermediate
regime.
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FIG. 4. Comparison of maximum superconducting gaps in 2D
systems. Our results are self-consistently computed from the four
approaches discussed in this work, using the same color code and
degrees of nonadiabaticity « as in Fig. 3. (a) o = 0.05; (b) « = 0.1;
and (c) o = 1.

3. 1D systems

For completeness, we briefly discuss here results when
lowering the system’s dimensionality to one dimenstion via
¢y = 1 and ¢, = ¢; = 0. In one dimension, it was not possible
to solve the FSR isotropic approximation to the nonadiabatic
Eliashberg equations (23) and (24) due to the phase-space
constraint imposed by the prefactor P of Eq. (20). In Fig. 5 we
show again the comparison of results from Egs. (7) to (9) with
outcomes of Egs. (14) to (16) and Egs. (17) and (18) for 1D
systems, just as is done in Figs. 3 and 4. For &« = 0.1 (the case
o = 0.05 has similar trends), we observe very small effects
due to vertex corrections [see Fig. 5(a)]. Although a slight
deviation from A can be found for large A, all three curves
lie almost on top of each other. From this we can conclude
that AFB, and even FSR calculations in one dimension are
very accurate with respect to the maximum superconducting
gap, provided that o < O(0.1). Further we note that A >
A®D > AF) for all couplings shown. An increased influ-
ence of nonadiabatic effects is found with enhanced o = 1
in Fig. 5(b). When comparing A and A®Y the situation is
similar as in Fig. 4(b), i.e., the adiabatic results are an over
or an underestimation depending on the coupling strength. In
addition we find a result unique to this 1D simulation: Among

max A (meV)

FIG. 5. Maximum superconducting gaps in 1D systems for A,
A® and A® self-consistently computed from Egs. (7) to (9), (14)
to (16), and (17) to (18), respectively. The same color code as in
Figs.3and 4 isused. (a) o = 0.1, (b) ¢ = 1.

our three approaches, FSR calculations lead to the largest gaps
for all coupling strengths we consider.

From Figs. 5(a) and 3(a) one sees that in one dimension,
Migdal’s approximation stays valid for larger values of the
nonadiabaticity parameter as compared to the 3D case. This
result is unexpected since in 1D Migdal’s theorem should
not hold [4]. It is worth mentioning that in one dimension
the nesting properties of the Fermi surface (that now consists
of two points) enhance the tendency of the system towards
the formation of a charge density wave (CDW) or Peierls
instability [53]. In principle, such a tendency should be taken
into account by including both superconducting and CDW
orders on equal footing in the Eliashberg equations. However,
doing this in the presence of vertex corrections is out of the
scope of the present work.

4. Discussion of FSR isotropic nonadiabatic approach

We close this section with a comment on the validity of
the FSR isotropic approximation to the nonadiabatic Eliash-
berg equations, namely Eqs. (23) and (24). We solved these
equations for the 3D and 2D cases. Similar to what we found
in three dimensions, these solutions follow closely the FSR
adiabatic results in the 2D case as well. According to the anal-
ysis of Sec. II C, the reason for this behavior is that Egs. (23)
and (24) neglect non-Fermi surface contributions. In addition,
the small deviations between the FSR adiabatic and the FSR
isotropic nonadiabatic results in 2D can be understood as a
manifestation of slightly enhanced nesting conditions when
dimensionality is reduced from three to two dimensions.
Taking also into account the big discrepancy between the
nonadiabatic FSR isotropic results and the solutions of the
complete nonadiabatic Egs. (7) to (9) we can safely conclude
that the FSR isotropic approximation severely underestimates
the effect of the first vertex correction and is therefore not
valid.

B. Possible implications for 2D systems

From results in Sec. Il A we learn that, depending on
system specifics such as dimensionality, an increase or de-
crease of the gap size due to nonadiabatic vertex corrections
is possible. So far we did, however, focus only on max A and
similar conclusions about the transition temperature 7;. cannot
be drawn without further investigation. Strictly speaking, an
enhancement in A might either lead to a larger T, or simply to
achange in 2A¢/kpT;, with Ay = }1&}) (max A). This ratio is a

common measure for how strongly coupled a superconductor
is. Henceforth we closer examine 2D systems (c; = ¢, = 1,
c; = 0) with degrees of nonadiabaticity o« = 0.05, o = 0.1,
and o = 1, all at a coupling strength A = 1.5. Note that an
exploration of 7. in a comparable parameter space as in
Sec. IIT A is hardly feasible due to tremendous computational
costs. Figure 6(a) shows the electronic energies along high-
symmetry lines of the BZ with colors as indicated in the cor-
responding legend. The associated Fermi surfaces are drawn
in Fig. 6(b). As evident from these graphs, by changing the
chemical potential u we accomplish shallow Fermi surface
pockets, which result in an increased o since 2 = 50 meV
is kept constant. In Fig. 6(c) we draw a comparison of the
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FIG. 6. (a) Electronic energies along high symmetry lines of
the two-dimensional BZ, shown for three different values of « as
indicated in the legend. (b) Fermi surfaces of the dispersions shown
in panel (a), using similar color code. (c) Self-consistently obtained
superconducting gaps as function of temperature. Dashed and solid
curves refer, respectively, to the nonadiabatic and the adiabatic
approach. Our simulation results for the former are marked explicitly
by crosses/circles/stars, while the dashed lines are obtained by a fit.
Colors are the same as in panels (a) and (b). For comparison we show
outcomes of the FSR calculation by the dotted blue curve.

temperature-dependent maximum gap for different o and
for each of the full bandwidth nonadiabatic, AFB, and FSR
approaches as indicated in the legend. We do not include the
FSR isotropic approximation to the nonadiabatic equations in
this section (see discussion at the end of Sec. III A).

Let us start with the results from AFB calculations, shown
as solid lines with similar color code as in Figs. 6(a) and 6(b).
Our results for 7, and A®Y(T) do not change significantly
as a function of «. With growing nonadiabaticity we detect
a small decrease in the transition temperature and the zero-
temperature superconducting gap A((,ad) ~ AT = 10K).
When considering A9, shown as the dotted blue line, the
gap size and transition temperature decrease further, but are
still in the same range as the full bandwidth calculations.
The here-detected difference is due to Cooper pairing away
from the Fermi level [41,43], which is neglected when solving
Egs. (17) and (18), and is almost negligible in the current
model system. From the discussion of our adiabatic cal-
culations one can conclude that 7 ~ T.F) ~ 100 K and
Ag‘d) ~ AY®Y ~20meV almost independently of &, which
then leads to 2AY /kgT.D ~ 2AS™ /kpT ™ ~ 4.64. This
value reflects the strong coupling nature of the system, within
our chosen parameters.

The inclusion of vertex corrections introduces some rather
drastic changes compared to the adiabatic picture; the results
of including these are shown as dashed lines in Fig. 6(c).
For o = 0.05 (plotted in orange), both Ay ~ 15meV and
T. ~ 75K are heavily reduced compared to the adiabatic
counterparts, while 2A/kpT. is enhanced to ~4.97, giving
rise to a seemingly more strongly coupled behavior. From
Fig. 4 we can readily see that Ay > A(()a ) > AE)FS) when a =
0.1. In addition we see from data plotted by the dashed green
line that 7, is enhanced to approximately 120 K, which gives
again a stronger coupling 2A¢/kgT, ~ 4.84 when combined
with Ay ~ 25 meV. For even shallower bands, o« = 1, we find
the dashed purple line in Fig. 6(c) to give Ay ~ 31 meV and
T. ~ 135K, and hence a very strong coupling situation of
2A¢/kgT. ~ 5.33. If we consider changes in the transition
temperature with the degree of nonadiabaticity for the vertex-
corrected theory, our results for the current model system
suggest that T, increases with «. Interestingly, the trend for
the maximum gap size in the limit 7 — 0 is reversed when
comparing to the AFB outcomes, i.e., we find Af)ad)lazo,os >
A(()ad)|a¢=o.1 > A(()ad)la=1 without and Agle=0.05 < Aole=0.1 <
Aple=1 With vertex corrections. We similarly find the largest
(smallest) T, (Tc(ad) ) for the highest (lowest) .

It is interesting to see how the just-discussed trends in crit-
ical temperature compare to effects in the effective electron-
phonon coupling constant, which is given by

I = (28N pg = 1 (31)

This quantity is a measure for the coupling strength, renormal-
ized due to interactions, and it is, in general, not equivalent
to the here-used bare coupling A = 1.5, except for purely
Fermi-surface-based calculations. Note that a large number
of Matsubara frequencies is needed to numerically confirm
A(ZFS) = A. In the case of the nonadiabatic treatment we know
from Eq. (7) that contributions due to both scattering diagrams
enter the mass renormalization in an additive way. It is there-
fore convenient to define

Az = (Zk’mz())kl,|T>TL_’T>E(ad)’T>E(Fs) —1
1 2
=24+, (32)

where A(Z]) and A(Zz) arise from the first and second diagrams
in Fig. 1, respectively. For comparison it is useful to choose a
temperature larger than 7,7, 7.9 and T, when evaluating
Eq. (32). For full-bandwidth calculations we show results
obtained for the coupling constant as function of « in Table 1.

From the first row we learn that non-Fermi surface pro-
cesses give rise to coupling constants that are clearly dif-
ferent from the initial A = 1.5. The trend of how A is
modified as we increase the nonadiabaticity is not apparent.
We note, however, that « = 1 leads to the smallest deviations
in both [A — A8Y) = [A0Y — 28| and |, — 74D, com-
pare Fig. 6(c). Let us now consider solutions to the nonadia-
batic Egs. (7) to (9). As already mentioned, A(ZI) corresponds
to the first-order scattering diagram of Fig. 1(a), and hence can
be compared to )\(Zad). By comparing the first and second rows
in Table I we observe that indeed A(Z“d) >~ A(Zl). However, the
deviation between these two quantities grows as « increases.
This is due to the increasing importance of the feedback of
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TABLE 1. Calculated electron-phonon coupling constants as
function of nonadiabaticity «. The rows correspond to the theoretical
approach used for calculating the results, i.e., either adiabatic or
nonadiabatic full-bandwidth simulations, compare Eqs. (31) and
(32).

o =0.05 a=0.1 a=1
A 1.4016 1.5971 1.4723
pas 1.4015 1.5972 1.4671
pa —0.5496 —0.0462 0.4060
Az 0.8519 1.5510 1.8731

the nonadiabatic terms on the adiabatic ones within the self-
consistent iterative loop. The vertex corrections introduce the
correction X(ZD, which, according to the third row in Table I,
increases significantly with «. For the most adiabatic situation
shown here, o = 0.05, we find )»(Zz) < 0, hence the overall
coupling constant is drastically reduced. In the case of o =
0.1 we similarly get a negative A(Zz), but the magnitude is

very small. Therefore the sum Az = A(Zl) + A(Zz) is closer to
the bare coupling constant A. Increasing the nonadiabatic-
ity further to o = 1, the contributions due to the second-
order diagram become nonnegligibly positive and give rise,
together with A(Zl), to a stronger electron-phonon coupling
constant.

Through a closer inspection of the results for A, we
can give a qualitative explanation of trends for the critical
temperatures as they are observed in Fig. 6(c). In the AFB
calculations all couplings )L(Zad) lie within a narrow window
of +0.1 around the bare coupling A = 1.5. It is therefore
intuitive that corresponding values of 7,4 do also not differ
drastically from each other. When solving the nonadiabatic
Eliashberg equations (7) to (9) we get an additional coupling
contribution A(ZZ), which heavily depends on «. For the most
adiabatic situation the effective final coupling A is compar-
atively weak, hence the critical temperature is smallest for
a = 0.05. By increasing the degree of nonadiabaticity, we
get pairing contributions from A(ZZ) which make the overall
coupling stronger. This, in turn, leads to a rather pronounced
enhancement of 7, as shown in Fig. 6(c).

C. Static versus dynamical limit and the momentum structure
of the vertex function

As we discussed already, due to the fact that a direct nu-
merical solution of the Eliashberg equations with the vertex-
corrected self-energy of Eq. (4) has so far been missing,
much of the current understanding on the subject relies on a
series of approximations. We analyzed previous approaches
on the simplification of the Eliashberg equations and their
solution like, e.g., the FSR and isotropic approximations in
the previous sections. Another frequent approach, which we
address here, is to introduce further assumptions to simplify
the momentum and frequency structure of the vertex function
itself. We will discuss this approach by focusing on two
seminal papers by Pietronero et al. [28,29].

It is worth pointing out that these works consider the
normal state vertex function and neglect the self-consistent

1+17© (c)

,m=0

1+

FIG. 7. Self-consistently calculated vertex renormalization func-
tion 1 + Fé?};;o in the full two-dimensional BZ. Panels (a), (b), and
(c) show results for « = 0.05, 0.1, and 1, and A = 1.5 corresponding

to the panels (a)—(c) of Fig. 4, respectively.

renormalization of the vertex due to the full electron propa-
gator, e.g., no backreaction of the superconducting gap or the
mass renormalization is taken into account. In other words, the
Eliashberg equations in [29] were derived from an electron
self-energy that contains the diagram of Fig. 1(a) for the
Migdal part and the diagram of Fig. 2(g) for the vertex
correction part. In contrast, we solve for the full self-energy
of Fig. 1. In addition, despite the fact that the bare electron-
phonon interaction in [29] is taken as peaked at small-g, the
derived Eliashberg equations correspond to isotropic, FSR
Eliashberg equations, in our notation. This is due to the fact
that the vertex function that contains the bare interaction, g,
is averaged over Fermi surface momenta before it is plugged
into the Eliashberg equations [12,13,29]. Here, although we
consider an isotropic bare interaction [fq =1 in Eq. (30)],
our numerical solutions do include the full momentum de-
pendence of the resulting self-consistent vertex function. We
leave the case of a momentum-dependent bare interaction for
a future investigation.

By averaging the vertex function over both momentum and
frequency, Pietronero et al. found that the vertex function is
positive if it peaks at small-g, whereas it is negative when
the vertex function is weakly momentum dependent, i.e., it is
almost isotropic [28]. Moreover, by approximating the vertex
function as peaked at small-g, they studied the behavior of
the vertex correction in the static and the dynamical limit.
In the static limit, one first takes w,, — 0 and then q — 0
in the vertex function, whereas in the dynamical limit one
takes the limits in reversed order ¢ — 0, w,, — 0. They found
that the static limit leads to a negative vertex function [28]
in agreement with prior results in the small-g limit [54].
In contrast, the vertex function was found positive in the
dynamical limit [28].

Given that our own numerical solutions are free of any
approximation to the vertex function, we turn to compare
our results to these previous findings and discuss briefly the
validity of such approximations. For this purpose, we rewrite
Eq. (4) as

Sin =T Y VP3G D3(1 + Prciomm), — (33)
k'm’

where the term in the parentheses is the 2 x 2 matrix vertex
renormalization function and Vx_y' jm—m = Viy—ny since in this
work we have taken an isotropic bare interaction. After some
straightforward algebra we find that the corresponding vertex
renormalization function is given by (—1)"(1 4+ Ik m.m)s
where v = 1, 0, or O for the ¢, Z, and x channel, respectively.
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For the purely adiabatic part, V,,,_,,, we set m = m’ and arrive
at the equation for the vertex function

0 _ @) @
ro = TZV e’ Y (Ko Vi s qu

k//
0,00 @
— Vi Vierram' T Vi Virqm)s 34

where q = k — k' so that T}, = T'{") . Focusing on the 2D
case and using our self—con51stently calculated full Green’s
function, we find the momentum and frequency dependent
vertex function. To investigate the resulting self-consistent
momentum structure of the vertex correction, we plot in Fig. 7
the (q, m = 0)-dependent vertex function of Eq. (34) for « =
0.05, 0.1, and 1 that corresponds to panels Figs. 4(a) to 4(c)
when A = 1.5. We note that, in this context, taking w,, — 0 in
Eq. (34) does not correspond to taking the static or dynamical
limit since the vertex has already been calculated with full
frequency and momentum dependence.

As seen in Fig. 7, the resulting vertex function for the
cases « = 0.1 and 1 where the vertex correction enhances 7,
exhibits little momentum anisotropy and by no means has a
small-g structure. In the case @ = 0.05 where the corrections
suppress superconductivity as compared to the adiabatic case,
the vertex is significantly momentum dependent but again it
is not small-g. Given these results, we thus conclude that the
vertex function cannot be a priori approximated as small-g.
However, one cannot exclude that this might be possible for a
bare vertex that is already strongly peaked at small-q [29,55],
although this point deserves further investigation. From Fig. 7
one can also observe that, as we increase the nonadiabatic
ratio «, the vertex function not only becomes overall more
positive but also less momentum anisotropic. Hence, we see
that the more isotropic the resulting vertex function is, the
more positive its effect on the pairing becomes. Interestingly,
these results are opposite to those found in [28].

Lastly, based on our results we cannot rule out the validity
of neither the static nor the dynamical limit but we believe
that the choice of either limit depends on the specifics of the
system under study. However, we point out that the vertex
function Fffr)nzo appears to have a negative effect when « is
very small, as can be seen clearly in Fig. 4(a) for the 2D case.
In combination with the fact that the FSR isotropic approx-
imation to the nonadiabatic Eliashberg equations seems to
systematically produce a negative correction (see, e.g., Figs. 3
and 4) we are lead to believe that the static limit may be more
relevant to systems where processes away from the Fermi
level are not important, i.e., systems with low nonadiabaticity.

IV. CONCLUSION AND OUTLOOK

We investigated the influence of vertex corrections to
the electronic self-energy on electron-phonon mediated,
anisotropic, and full-bandwidth Eliashberg theory. To our
knowledge the present investigation is the first numerical
study to approach the challenge of nonadiabaticity in super-
conductors without involving further approximation, such as
Fermi surface averages [12,33,56-58] or momentum space
clustering [32,59]. Our calculations numerically confirm the
validity of Migdal’s theorem for 3D systems. For this dimen-
sionality we found, within the explored parameter space, that

the AFB calculations always resemble the vertex-corrected
results to a good degree regardless of «, which is, however, by
no means true for FSR calculations. Contrarily, the observed
trends in 2D systems suggest that nonadiabatic contributions
are only negligible for rather small coupling strengths. We
found that adiabatic results for the superconducting gap and
T. can both be an over or underestimation of the vertex
corrected ones. In 1D systems we observe all corrections
due to nonadiabaticity to be rather small. Adiabatic FSR, as
well as AFB calculations start to become less accurate for
a 2 O(1) and large couplings. We also investigated to what
extent the full nonadiabatic equations can be approximated by
simpler isotropic and FSR counterparts so as to reduce the
huge computational effort. Our results prove that this is not
possible and that the full nonadiabatic equations need to be
solved, instead.

Lastly, we analyzed the momentum structure of the calcu-
lated vertex function and compared it to previous solutions
that were obtained in the small-g, static, or dynamical limit.
Notably, our results indicate that in nonadiabatic systems
vertex corrections can enhance superconductivity more effi-
ciently when the resulting vertex function is less anisotropic,
in contrast to previous findings [28], obtained under more
restrictive assumptions. Overall, our results emphasize the
importance of going beyond previously employed approxi-
mations in estimating the impact of vertex corrections on the
superconducting properties.

The model introduced in Sec. IIB gives rise to a huge
parameter space, which we partially explored here. There is
a large amount of extensions as well as applications that go
beyond the scope of the present work. One example is to study
anisotropy effects, i.e., cases when the bare pairing interaction
is momentum dependent [41,42]. This includes electronic
pairing mechanisms. For example, it was shown that no
analog of Migdal’s theorem exists for spin fluctuations, which
means that vertex corrections are of similar order as the bare
vertex [60]. Lastly, the here-presented methods can, in prin-
ciple, be made compatible with ab initio input from density
functional theory (DFT) based calculations [44,47,61]. The
current caveat in this respect is of numerical nature since the
computational complexity (see the Appendix) prohibits the
usage of multiple electronic bands and very dense momentum
grids. Nevertheless, such a nonadiabatic treatment would be
an important step towards an even more realistic description
of superconductivity in actual materials.
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APPENDIX: NUMERICAL DETAILS

Here we describe some important aspects needed for the
numerical implementation of Egs. (7) to (9).
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1. Computational complexity

For discussing the costs of solving the multicompo-
nent, nonadiabatic, anisotropic, and full-bandwidth Eliash-
berg equations let us denote the number of Matsubara fre-
quencies by N 4. Further let Ny, Ny, and N, be the number of
k-points along the three spatial directions. The most expensive
part of the computation in Egs. (7) to (9) is by far the double
summations over momenta and frequencies in the nonadia-
batic terms, which correspond to diagram Fig. 1(b). This is
why we consider all remainders as constant, complexity-wise.
Regarding the wave vectors, we need to execute one loop
explicitly, inside of which we carry out a Fourier convolution,
which gives roughly a scaling of O[N?N}N? 10g(N,N,N;)].

A similar scaling of O[N}, log(Na4)] can be achieved for
the number of Matsubara frequencies by employing Fourier
summation techniques. Putting these observations together we
get the scaling

O[N}N;N?N3, 1og(N:N,N-Nas)], (A1)

for solving the nonadiabatic Eliashberg equations. This result
is only correct in the sense of computational complexity, the
actual computation is even heavier since several operations

must be carried out multiple times. From expression (Al) it is
clear that all symmetries in momenta and frequencies must be
exploited to be able to solve the nonadiabatic equations in a
variational manner as is done in Sec. III.

2. Tail fitting

In the iterative cycle of solving the equations, a faithful
interpolation along the frequency axis is needed. To be more
specific, after each iteration we have access only to the current
grids of functions Zg ,;, Xk.m, and ¢k ,,. In momentum space
this is sufficient to solve for the same quantities in the next
iteration due to periodicity in the BZ. However, along the
frequency axis we have a different situation since we need, in
particular, the term Yk x4k m”—m'+m» where each one of m, m’,
and m” can take values in [-M, M — 1]. Here we use M €
N to denote the numerical cutoff for the Matsubara frequency
grid. The value of M is found from convergence studies in
the number of Matsubara frequencies. There is no periodicity
in w,,, so the grid has to be enlarged to [—3 M, 3M — 1]
by performing a reliable extrapolation. One possible way of
achieving this is to fit the tails on the frequency axis to a
polynomial in 1/|w,,|. This procedure works in a reliable
way, provided that the tails of functions in Egs. (7) to (9) are
sufficiently decayed already on the interval [- M, M — 1].
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