
PHYSICAL REVIEW B 102, 024502 (2020)

Stiffnessometer: A magnetic-field-free superconducting stiffness meter and its application
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We provide a detailed account for a method to measure superconducting stiffness ρs, critical current density jc,
and coherence length ξ , in one apparatus, without subjecting the sample to magnetic field or attaching leads. The
method is based on the London equation j = −ρsA, where j is the current density and A is the vector potential.
Using a rotor free A and a measurement of j via the magnetic moment of a superconducting ring, we determine
ρs. By increasing A until the London equation fails we determine jc and ξ . The method is sensitive to very small
stiffness, which translates to penetration depth λ � 1 mm. It is also sensitive to low critical current density jc ∼
103 A mm−2 or long coherence length ξ ∼ 1 μm. Naturally the method does not suffer from demagnetization
factor complications, the presence of vortices, or out-of-equilibrium conditions. Therefore, the absolute values
of the different parameters can be determined. We demonstrate the application of this method to La2−xSrxCuO4

with x = 0.17.
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I. INTRODUCTION

Superconducting stiffness ρs is defined via the gauge
invariant relation between the current density j, the vector
potential A, and the complex order parameter � = ψ (r)eiφ(r),
with ψ (r) � 0, according to

j = ρs

(
�0

2π
∇φ − A

)
, (1)

where �0 is the superconducting flux quanta,

ρs = ψ2e∗2

m∗ (2)

is known as the stiffness, and e∗ and m∗ are the carriers
charge and mass, respectively [1–3]. ψ2 is often interpreted
as a measure of the superconducting carrier density with a
maximum value ψ2

0 . When ∇φ = 0 the London equation

j = −ρsA (3)

is obtained. ρs can be expressed in units of length via

ρs = 1

μ0λ2
, (4)

where λ is known as the penetration depth.
The two most important pieces of information on a super-

conductor (SC) are embedded in Eq. (1). First, ρs provides
an indication of the ratio between carrier density and effec-
tive mass. For example, in high temperature superconductors
(HTSC) the transition temperature Tc is found to be propor-
tional to the stiffness at low temperatures. This finding, known
as the Uemura plot, must play a key role in any theory of
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HTSC [4]. Second, the highest j for which the SC maintains
∇φ = 0 and thus the linear relation of Eq. (3) holds, sets the
critical current jc. jc also has an interpretation in terms of
coherence length via the shortest distance ξ on which φ can
vary by 2π .

However, there is no direct way to measure ρs. The
standard method is to apply magnetic field, to measure the
penetration depth of the magnetic induction B into a material,
and to use Eq. (4) to determine the stiffness [4–9]. However,
the magnetic field raises issues one must consider: first, it is
essential to take into account the sample shape via the con-
cept of demagnetization factor. This factor is known exactly
only for ellipsoidal samples, which are nearly impossible to
come by. Second, magnetic fields introduce vortices, which
can complicate the interpretation of the penetration depth
measurements. Third, all methods have an inherent length
scale window. The longest penetration depth that has been
measured to the best of our knowledge is 10 μm [5–9]. This
is far shorter than a typical sample size. Therefore, there is a
temperature range below Tc at which λ > 10 μm where the
behavior of ρs is obscured. For highly anisotropic samples,
this range could extend to temperatures well below Tc.

Similarly, there is no direct way to measure the critical
current density jc. The standard method is to connect leads,
and to determine the current at which voltage develops across
the sample [10–13]. However, this method could lead to two
transitions: First, when voltage develops and power lower
than the cooling power, is injected into the sample. Second, a
thermal runaway when the entire sample becomes normal and
the voltage grows exponentially [11]. Finally, stiffness and co-
herence length measurements require different experimental
setups.

Here we present in detail an instrument to measure stiffness
and coherence length simultaneously, in zero magnetic field
and with no leads, based on the London equation [Eq. (3)].
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FIG. 1. Experimental setup. (a) An illustration of the stiffnes-
someter: The superconducting ring is threaded by an inner coil,
placed in the center of a gradiometer, and surrounded by a main
coil that serves as a shim coil. (b) A typical inner coil, 60 mm
long with 2 mm outer diameter. Also shown are two La2−xSrxCuO4

rings with a rectangular cross section. (c) A zoom-in on other inner
coils with outer diameters ranging from 2.0 to 0.25 mm, and length
of 60 mm.

This method determines ρs directly without the use of the
penetration depth concept. When this equation breaks, and
ρs can no longer be determined, it means the critical current
has been reached. Consequently, we name the instrument
stiffnessometer. We convert the breaking point of Eq. (3) to
ξ using a mathematical solution of the full Ginzburg-Landau
equations in the relevant setup [14]. As we explain below,
the stiffnessometer can measure very weak stiffness, which
corresponds to λ ranging from tens of microns to millimeters.
This allows measurements of stiffness closer to the critical
temperature Tc than ever before, or measuring the stiffness of
very anisotropic systems. Finally, vortices or demagnetization
factor are not a problem for the stiffnessometer since the
measurement is done in zero field. The stiffnessometer was
previously used to measure the anisotropy of the stiffness in
LSCO x = 0.12 [15], but only a brief account of the details of
its operation was given.

II. EXPERIMENTAL SETUP

The method is based on the fact that outside an infinitely
long coil (defining the ẑ direction), the magnetic field is zero
while the vector potential is finite. This vector potential is
tangential and points in the ϕ̂ direction. When such an inner
coil is placed in the center of a SC ring, the vector potential
leads to a current density in the ring according to Eq. (1).
This current flows around the ring and generates a magnetic
moment, which is detected by moving the ring and the inner
coil rigidly relative to a pickup loop. The concept of the
measurement is depicted in Fig. 1(a). A typical inner coil and
two superconducting rings of the cuprate SC La2−xSrxCuO4

FIG. 2. Vector potential and magnetic field profile. Numerical
calculation of the vector potential and magnetic field per current
at z = 0 for the inner coil used in this study. The coil parameters
are: length l = 60 mm, inner diameter = 0.54 mm, outer diameter
= 0.8 mm, 2 layers, and 1940 turns. The ring position relative to the
inner-coil center is demonstrated by the double arrows. The vector
potential is very well approximated by an infinite coil over the range
of the ring as the dashed-doted green line demonstrates. Inset: Apl

ic

and Ag
ic/Apl

ic as a function of z, as explained in the main text.

(LSCO) are shown in Fig. 1(b). In Fig. 1(c) we present a
zoom-in on three different coils with outer diameters of 2,
0.8, and 0.25 mm. They have 2 to 16 layers of wires with
thickness between 10 and 100 μm, and their length is 60 mm.
Our stiffnessometer is an add-on to a Cryogenic SQUID and
to a quantum design MPMS3 magnetometers.

Both magnetometers use a second order gradiometer,
rather than a single pickup loop. The gradiometer is made of
three winding groups. The outer two are constructed from two
loops each, wound clockwise, and the inner group is made of
four loops, wound anticlockwise. This is also demonstrated in
Fig. 1(a). The gradiometer ensures that a magnetic moment
generates voltage only when it is in the vicinity of the gra-
diometer center. Also, any field uniform in space gives zero
signal even if it drifts in time. The gradiometer is connected to
a superconducting quantum interference device (SQUID). The
output voltage V of the device is proportional to the difference
between flux threading the different loops of the gradiometer.

The vector potential outside of an infinitely long coil is
given by

Aic = �ic

2πr
ϕ̂, (5)

where r is the distance from the center of the coil, and �ic

is the flux produced by the inner coil. To check the validity
of this expression in our case we calculated numerically the
magnetic field Bz and vector potential Aϕ (in the Coulomb
gauge) produced by the inner coil as a function of r and z. This
coil is 60 mm long, has an inner diameter (I.D.) of 0.54 mm,
an outer diameter (O.D.) of 0.8 mm, 2 layers, and 1940 turns
in total. The measured LSCO ring has an I.D. of 1.0 mm, an
O.D. of 2.5 mm, and a height (h) of 1.0 mm. Figure 2 shows
the result of the calculations. The approximation of an infinite
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coil, presented by the dashed-doted green line, is perfect for
our ring size and even for much larger rings. The calculation
also shows that the strongest field just outside of the inner coil
is 104 times smaller than the field at its center.

The sample is grown using an optical floating zone furnace.
It is oriented using x-ray Laue camera and cut to plates and
then into a ring shape using an ELAS master femtosecond
laser cutter. The ring’s plane is parallel to the CuO2 plane of
the sample. After cutting, the sample is annealed at 850 ◦C for
120 h in argon atmosphere.

The measurements are done in two different detection
methods. (I) DC scan mode, where we record the SQUID’s
output voltage V (z) while the relative distance between the
gradiometer and the ring changes when the ring and inner coil
move. The DC mode allows detection of the contribution from
the inner coil as well, since the entire coil can be pulled out of
the gradiometer. Our gradiometer detects magnetic moments
within a range of 15 mm on each side of its center. This sets
the length of our inner coils. When measuring over a wide
temperature range, detection of the inner-coil contribution is
important in order to determine the flux it generates at each
temperature. (II) VSM mode, where the ring vibrates around
the center of the gradiometer. In this mode the coil does not
contribute to the signal. The VSM mode is fast and allows fine
temperature scans without the need to achieve temperature
stability at each measuring point.

There is a risk that field generated in the inner coil leaks
since no coil is infinitely long or perfect. To overcome this
leak, a main coil, also shown in Fig. 1(a), acts as a shim to
cancel the field on the ring when it is at the gradiometer center.
In the Cryogenic SQUID the main coil has a field resolution of
0.1 μT. The ultralow field (ULF) capability of MPMS3 allows
for field cancellation down to 0.3 μT. Therefore, we can keep
the field on the ring as low as 0.1 μT when needed.

The measurements can be done in two different proce-
dures: One is zero gauge field cooling (ZGFC) in which we
cool the ring to a temperature below Tc, turn on the current in
the inner-coil I when the ring is superconducting, and measure
while warming. In this procedure, the SC minimizes its free
energy by setting ∇φ = 0 in Eq. (1). This value of ∇φ does
not change as A is turned on, as long as the current in the
coil is below some critical value (as explained later). In this
case Eq. (3) holds throughout the measurements. The other
procedure is gauge field cooling (GFC) in which we turn on
the current in the inner coil at a temperature above Tc, cool
the inner coil and ring below Tc, and turn the current off. To
minimize its free energy the SC sets ∇φ in Eq. (1) such that j
is as close to zero as possible. When A is turned off, ∇φ does
not change and plays the role of A in the ZGFC procedure.

To better appreciate why ∇φ = 0, even when A is ramped,
one can view φ as the phase of an in-plane arrow. Cooling
at A = 0 sets all the arrows pointing in the same direction.
Since the phase is quantized, to change φ means a twist of all
arrows in a closed loop, such that the phase between the first
arrow and last one in the loop changes by 2π . This would lead
to a discontinuity in the phase value, a procedure that costs
energy, and generates instantaneous voltage according to the
Josephson equation h̄

e∗
∂φ

∂t . A nice analog is a ferromagnetic
ring with the spins pointing in the same direction. Rotating
the last spin with respect to the first one by 2π requires us to
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FIG. 3. Raw data. SQUID signal for a LSCO x = 0.17 ring at
high temperature, when the ring is not superconducting, and at low
temperature when the ring is superconducting. The inset shows the
difference between these measurements.

break a bond. This procedure is not energetically favorable for
a ferromagnet (or the SC ring). Therefore, ramping A leaves
all arrows pointing in the same direction and ∇φ = 0, until A
exceeds a critical value. At this point, the current is too high
and it is worthwhile for the SC to “break a bond” and reduce
the current.

A typical DC mode measurement is demonstrated in
Fig. 3. The red symbols represent the signal when the en-
tire inner coil has moved through the pickup coil at T >

Tc. Before the lower end of the inner coil has reached the
gradiometer, the flux through it is zero. During the time the
lower end of the inner coil transverse the gradiometer its
contribution to the total flux changes from zero to positive to
negative and back to zero. The upper end of the inner coil
has the opposite effect; its contribution to the flux goes from
zero to negative to positive and back to zero. But there is a
time (or distance) delay between the lower-end and upper-end
contributions, leading to the observed signal. A linear drift
of the voltage can be easily evaluated as demonstrated by
the dotted lines. We define the inner-coil maximum voltage
difference �V max

ic as demonstrated in Fig. 3.
At T < Tc the ring adds its own signal, as shown in Fig. 3

by blue symbols. The ring produces current that generates
opposite flux to the one in the inner coil. The ring signal is
concentrated on a narrower range on the z axis. By subtracting
the high temperature measurement from the low temperature
one, it is possible to obtain the signal from the ring alone Vsc

as demonstrated in the inset of Fig. 3. We define the maximum
ring voltage difference �V max

sc as shown in the inset. The ratio
�V max

sc /�V max
ic stores the information on the stiffness, as will

be discussed in the Data Analysis Sec. V.

III. TESTS

To ensure that our signal is not due to leakage of magnetic
field from the inner coil or any other field source, we perform
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FIG. 4. Experimental tests. (a) The signal with a current of 0.3 mA in the inner coil and 0.1 μT fields demonstrating the quality of the field
canceling procedure. (b) The SQUID signal for open and closed rings when the field is zero and the vector potential is finite. (c) The SQUID
signal for open and closed rings when the vector potential is zero but the field is finite. (d) Demonstrating that when λ is much smaller than the
sample size the signal is material independent.

three tests. In the first one we apply current in the inner coil,
measure the field leakage at the ring position using an open
ring, and cancel it using the main coil. Then we increase the
field by only 0.1 μT. The measurements before and after the
field increase are depicted in Fig. 4(a). They indicate that we
can cancel the field in the ring position to better than 0.1 μT.
Clearly in zero field there is no signal. In the second test
we measure the stiffness (zero field and applied current in
the inner coil) of closed and open rings, which are otherwise
identical in size. The results are shown in Fig. 4(b). The signal
from a closed ring is much bigger than the background from
an open one. In Fig. 4(c) we repeat this measurement with
an applied field in the main coil of 0.1 mT, and no current in
the inner coil. In this case both open and closed rings give
strong and similar signals. The difference between the two
signals is consistent with the missing mass in the open ring.
These tests confirm that the field leakage is not relevant to
our stiffness measurement. Our ability to determine small
stiffness depends on how well we can cancel the field at the
ring position.

Another important test of the stiffnessometer comes from
comparing the signal from rings of exactly the same dimen-
sions, but made from different materials. At temperatures well
below Tc the stiffness is expected to be strong, namely, the
penetration depth should be much shorter than all the ring
dimensions. In this case, as the current is turned on, and flux
in the inner-coil �ic changes, an electric field is generated in
the SC ring Esc according to

Esc = 1

2πr

∂�ic

∂t
= −∂Asc

∂t
,

where Asc is the vector potential of the ring. This leads to

�sc = 2πrAsc = −�ic,

where �sc is the flux generated by the SC ring at its center. In
other words, when λ is short compared to the ring dimensions,
the SC produces flux which exactly cancels the applied flux
through it, regardless of the material used. Therefore, all ma-
terials should produce the same signal. This is demonstrated
in Fig. 4(d) for niobium (Nb), lead (Pb), and LSCO. They all
have the same �Vsc.

IV. MEASUREMENTS

In this section we present mainly stiffnessometer raw data
out of which we are able to extract ρs, ξ , and jc as a function
of temperature in favorable conditions.

A. Stiffness and its temperature dependence

In Fig. 5 we present the stiffnessometer signal evolution
with temperature for the LSCO x = 0.17 ring as measured
by the DC mode and ZGFC procedure with I = 0.8 mA. At
temperatures between 3.0 and 34.7 K there is no change in
the signal. But, between 34.7 K and Tc = 35.53 K the signal
diminishes rapidly, as expected. The inset of Fig. 5 shows
�V max

sc /�V max
ic from both ZGFC and GFC measurement pro-

tocols. There is no difference between the two strategies.

B. Critical current and its temperature dependence

The stiffnessometer can also be used to measure critical
currents. This is depicted in Fig. 6 for the LSCO ring at
various temperatures. The signal from the ring �V max

sc grows
linearly with I at each T , but abruptly becomes I independent
at a critical current Ic(T ), presented in the inset. It means that
the SC can generate only a finite amount of opposing flux.
Therefore, we are detecting jc of the SC.

024502-4



STIFFNESSOMETER: A MAGNETIC-FIELD-FREE … PHYSICAL REVIEW B 102, 024502 (2020)

-10 0 10
-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06 T(K) =
3
34.5
34.60
34.71
34.79
34.81
34.83
34.85
34.87
34.89
34.91
34.93
34.95
34.97
34.99
35.01
35.03
35.05
35.07
35.09
35.5
35.60
35.70
35.80
35.90
35.11
35.15
40.00

V
sc
(V
)

z (mm)

MPMS3 LSCO x=0.17 I=0.8 (mA)

20 25 30 35 40

0.0

0.2

0.4

ZGFC
GFC ΔV

m
ax
sc
/Δ
V
m
ax
ic

Temperature (K)

FIG. 5. Temperature dependence. The SQUID signal Vsc for a
La2−xSrxCuO4 x = 0.17 ring with the CuO2 planes perpendicular to
the ring symmetry axis, at different temperatures. The inset shows
�V max

sc /�V max
ic in the ZGFC and GFC procedures as a function of

temperature.

As I exceeds Ic, vortices start to flow into the center of the
ring, so that j in the ring never exceeds jc. In other words,
once the critical current in the sample is crossed, ∇φ is no
longer zero and becomes ∇φ = m/r with m �= 0. The SC
selects m such that j is fixed. Therefore, for I > Ic, the current
in the ring and �V max

sc are fixed.

V. DATA ANALYSIS

Analyzing the stiffnessometer signal is done in steps: (A)
we consider a single pickup loop and then a gradiometer. (B)
The order parameter magnitude |�| is taken to be constant in
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FIG. 6. Critical currents. The SC ring signal �V max
sc as a function

of applied current in the inner-coil I , for different temperatures
approaching Tc. The inset shows critical current Ic, where the signal
becomes current independent, as a function of temperature.

space and the stiffness is weak. Weak stiffness means that the
vector potential on the ring is only due to the applied current.
The vector potential generated by the internal current of the
ring is ignored. This approximation is valid when the ring’s
current density is smaller than jc and the penetration length
is longer than the sample dimensions. The weak stiffness
analysis is analytical, and valid close (but not too close) to
Tc. (C) The order parameter is still assumed to be constant
in space but now the stiffness is strong. In this case, the self-
vector potential is taken into account. This leads to a partial
differential equation (PDE), which we solve numerically with
relatively simple means. (D) A full solution of the coupled
Ginzburg-Landau equations allowing for both |�| and A to be
space dependent. This level of analysis is required only when
the SC is nearly destroyed by the internal currents, and it is
good for extracting jc and ξ . The case of a very tall hollow
cylinder is covered in Ref. [14]. Consequently, at present we
can only place limits on jc and ξ .

A. Single pickup loop and gradiometer

Had we used a single pickup loop, the voltage would have
been proportional to the flux threading it � = 2πRplA(Rpl ),
where Rpl = 13 mm and Rpl = 8.5 mm for the Cryogenic and
MPMS3 pickup-loop radii, respectively. Above Tc, maximum
voltage is achieved when the pickup loop is at the center of the
inner coil so that V max

ic = k2πRplAic(Rpl, z = 0) where k is a
proportionality constant. Similarly, a ring at the center of and
parallel with a pickup loop would generate a maximum volt-
age proportional to its own flux, V max

sc = k2πRplAsc(Rpl, z =
0), where Asc is the vector potential generated by the ring.
Therefore,

V max
sc

V max
ic

= Asc(Rpl, z = 0)

Aic(Rpl, z = 0)
. (6)

Next, we convert between the signal detected by a gra-
diometer to the signal that would have been detected by a
single pickup loop. We find a conversion factor G from the
vector potential evaluated on a single pickup-loop Apl to the
differences in the vector potential generated by the gradiome-
ter �Ag. This has to be done for both the ring and the inner
coil. The vector potential of a ring with magnetic moment m
on the pickup loop depends on the moment’s height z from
the plane of the loop according to A = 2πmR2

pl/(R2
pl + z2)3/2.

Therefore, for a ring and our gradiometer

Ag
sc(Rpl, z)

Apl
sc(Rpl, z = 0)

= −2R3
pl[

R2
pl + (z + �zpl)2

]3/2 + 4R3
pl(

R2
pl + z2

)3/2

+ −2R3
pl[

R2
pl + (z − �zpl)2

]3/2 , (7)

where �zpl = 7.0 mm and �zpl = 8.0 mm is the separation
between the different groups of gradiometer windings for
Cryogenic and MPMS3 magnetometers, respectively. The
difference between the maximum and minimum of this func-
tion is �Ag

sc/Apl
R = 1.70 and 3.37, again respectively, are the

conversion factor for the ring.
To convert from Apl

ic to �Ag
ic we plot by the green line in

the inset of Fig. 2 the vector potential generated by our coil at
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Rpl as a function of z, Apl
ic (z). The plot is specific for �zpl =

7.0 mm. The function

Ag
ic(z)

Apl
ic

= −2Apl
ic (z + �zpl) + 4Apl

ic (z) − 2Apl
ic (z − �zpl)

Apl
ic (0)

(8)

is also plotted in the inset by the blue line. The difference
between the maximum and minimum of this function is the
conversion factor for the inner coil. We find numerically that
�Ag

ic/Apl
ic = 0.47. Thus

�V max
sc

�V max
ic

= G
Apl

sc

Apl
ic

, (9)

with G = 3.62 and 3.07 for Cryogenic and MPMS3 magne-
tometers, respectively. By measuring �V max

sc /�V max
ic one can

predict the expected vector potential ratio between the coil
and the ring at the pickup-loop position. As we show below,
G could also be calibrated experimentally.

As for the VSM method, the magnetic moment m of the
ring and Apl

sc are related by

m

�V max
ic

= F
Apl

sc

Apl
ic

, (10)

where F is a calibration factor. In the GFC procedure �V max
ic

is measured before the coil current is turned off. F is deter-
mined by measuring m, and calculating Apl

sc/Apl
ic in conditions

that are not sensitive to the stiffness, as demonstrated in
Sec. III.

B. Weak stiffness, |ψ(r)| = ψ0

The current from each ring element is j(r)hdr where h
is the ring height and dr is a ring element width. Using the
London equation, the magnetic moment generated by each
ring element is dm = rρs�ich

2c dr. Integrating from the inner
to the outer radii yields the total moment of the ring m =
ρs�ich

4c (r2
out − r2

in), and

Asc = m

r2
. (11)

Using Eq. (4), the penetration depth is given by

λ2 = h(r2
out − r2

in)

8Rpl

Aic(Rpl)

Asc(Rpl)
. (12)

Since all the dimensions of the ring and pickup loop are on
the order of 1 mm, and we can measure voltage ratios to better
than 5%, we can measure λ on the order of 1 mm.

C. Strong stiffness, |ψ(r)| = ψ0

In the strong stiffness case, the total vector potential ex-
perienced by the ring At is the sum of Aic and Asc. Using
Faraday’s and London’s equations, with B = ∇ × A, and the
transformation ψ (r)/ψ0 → ψ (r), one finds that

∇2Asc = ψ2(r)

λ2

(
�ic

2πr
ϕ̂ + Asc

)
, (13)

where ψ (r) = 1 inside the SC and zero outside. The Coulomb
gauge is built into Eq. (8) inside the ring since for any vector
field F, ∇ · ∇ × F = 0. Outside of the ring this gauge has to be

FIG. 7. At distribution inside the ring. The total vector potential
obtained from the solution of Eq. (15) and the vector potential of
the inner-coil Aic, as a function of r and z for λ/Rpl = 0.1/13, rin =
1 mm, rout = 2.5 mm, h = 1 mm.

imposed separately. In cylindrical coordinates Asc = A(z, r)ϕ̂,
and with the coordinate transformation

r/Rpl → r, Asc/Aic(Rpl ) → A, λ/Rpl → λ, (14)

the equation in the ring becomes

∂2A

∂z2
+ ∂2A

∂r2
+ 1

r

∂A

∂r
− A

r2
= ψ2(r)

λ2

(
A + 1

r

)
, (15)

with r, z, and λ in units of Rpl, and A is in units of Aic(Rpl).
The solution of this equation, evaluated at Rpl, is the quantity
one would measure with a single pickup loop as indicated in
Eq. (6).

We solved Eq. (15) for different λ values and our LSCO
ring parameters with both the COMSOL 5.2a and FREEFEM

[16] softwares. We used finite elements in a box [−Lz, Lz] ×
[0, Lr] where Lz = Lr = 8. Dirichlet boundary conditions are
imposed at z = ±Lz, r = 0, and r = Lr . Maximal mesh spac-
ing is set to be h = 0.01 in the ring and its immediate vicinity,
and h = 0.25 elsewhere. The total vector potential At for
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2
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(R
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)
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2

FIG. 8. Solution of the stiffnessometer PDE. A semi-log plot
of the solution of Eq. (15) evaluated at the pickup-coil radius, for
different values of (Rpl/λ)2. The inset shows the behavior for large
λ. The solid line is given by Eq. (12).
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λ/Rpl = 0.1/13, and for all values of r and z in the ring cross
section is presented in Fig. 7. Clearly the vector potential,
hence the current, is strongest close to the inner radius of the
ring. They decay towards the center of the ring. The solutions
at r = 1 and z = 0 and our ring parameters, for a range of λ

values, and different magnetometers, are presented in Fig. 8
on a semi-log plot. The inset is a zoom-in on the long λ region
emphasized by a yellow rectangle. The solid line represents
Eq. (12) again with our LSCO ring parameters. There is a
good agreement between the PDE solution at long λ and the
weak-stiffness approximation.

In Fig. 8 we see that when the penetration depth is very
short, Apl

sc/Apl
ic = −0.16 for the MPMS3. Multiplying the abso-

lute value of this number by the MPMS3 G = 3.07 we expect
a saturation value of �V max

sc /�V max
ic = 0.49. The measured

value, however, is 0.516 as seen in the inset of Fig. 5. The
calculated and experimental G factors are somewhat different.
The experimental “G factor” is determined by dividing the
measured saturation voltage ratios by the numerical saturation
value. For the presented data of LSCO x = 0.17 this yields
G = 3.22.

D. Ginzburg-Landau

When the current j somewhere in the SC is strong enough
to destroy superconductivity, ψ becomes space dependent
even inside the SC. One has to solve two Ginzburg-Landau
equations simultaneously. Consider a hollow long cylinder.
Using the transformation 2πRplAsc/�0 → Asc and normaliz-
ing all lengths by Rpl these equations are given by

∂2Asc

∂r2
+ 1

r

∂Asc

∂r
− Asc

r2
= ψ2(r)

λ2

(
Asc + J

r

)
(16)

and

ξ 2

(
∂2ψ

∂r2
+ 1

r

∂ψ

∂r

)
= ψ3 −

[
1 − ξ 2

(
Asc + J

r

)2
]
ψ. (17)

The applied flux is now expressed explicitly in the
equations by

J = �ic/�0 (18)

and Asc(0) = Asc(∞) = 0. For r inside the SC, ψ (r) � 0, out-
side ψ (r) = 0. The other boundary conditions are ψ ′(rin ) =
ψ ′(rout ) = 0. The analysis of Eqs. (16) and (17) for the case
ξ 
 λ 
 1 is described in Ref. [14].

The emerging picture is that when J is small, the analysis
of Sec. V C is valid. Only for J > r2

in/
√

8ξλ, the order pa-
rameter’s magnitude ψ begins to diminish in the inner rim of
the cylinder and the cylinder’s hole is effectively larger than
rin. Nevertheless, the SC still expels the flux of the inner coil
and no critical point appears in Asc(Rpl). The effective hole
size reff

in increases with increasing J , until ψ survives only on
a boundary layer of width λ at rout. At even larger J , the SC
is no longer able to expel the applied flux, Asc does no longer
grow with I , and vortices are expected to penetrate into the SC
hole. These vortices are manifested in an increase of ∇φ. This
behavior occurs at a folding point given by

Jfold � r2
out√
8ξλ

. (19)

The name “folding” means that increasing J past Jfold does
not change the solution. The smaller ξ and λ, the better the
approximation of Jfold is.

To evaluate the critical current jc, we realize that when j is
pushed to a boundary layer of width λ at rout, it is still capable
of expelling the inner-coil flux, but higher current will destroy
SC completely. Therefore, �ic = μ0 jcλπr2

out. Using Eqs. (18)
and (19) we find

jc �
�0√

8πμ0λ2ξ
, (20)

where now λ and ξ are in units of length.
Although Eq. (19) is derived for a tall cylinder, we antici-

pate that it is valid for our ring. As long as λ is smaller than
all dimensions of the ring, currents will flow on the boundaries
of the “effective ring,” as in Fig. 7 and will be strongest at the
inner rim of the effective ring, but with a J dependent reff

in . A
change in behavior of the signal will take place only when
reff

in � rout − λ as in the cylinder case.

VI. RESULTS

Figure 9(a) depicts �V max
sc /�V max

ic obtained by DC mea-
surements. The signal is flat at low T and drops close to Tc.
As the current decreases, the drop of the signal is postponed
to higher temperatures. At currents below I = 0.4 mA a knee
develops in the middle of the phase transition. Nevertheless,
there is one Tc = 35.53 K for all currents. Isolated islands of
SC with stronger stiffness cannot be the origin of these knees
since only macroscopic closed lopes of SC can contribute to
the signal. We speculate that these knees are related to SC
surface states [17], with very small critical currents. In fact,
knees were seen before in a magnetization measurement on
needle shaped LSCO, at very low fields, but they were not
given much attention [9]. The inset of Fig. 9(a) shows the full
temperature range demonstrating that the normalized signal
is independent of the applied coil current. In Fig. 9(b) we
show the m/�V max

ic data collected using the VSM method.
Quantitatively, it looks the same as the DC measurement but
less sharp and with few glitches of the signal. The knees
disappear or smear and the uprise of the signal when cooling
from Tc is less abrupt. The inset again demonstrates that at
low temperature the magnetic moment is proportional to the
applied current as is mirrored in �V max

ic .
Using the measurements presented in Fig. 9(a), the experi-

mentally determined conversion factor G, and the solution of
Eq. (15) presented in Fig. 8, we extract the penetration depth
as if the solution is valid for all temperatures. The extracted
λ versus temperature with two applied currents I = 0.8 mA
and I = 0.2 mA is depicted in Fig. 10 on a log scale. Ideally
we would like to find the I → 0 limit of λ. However, at low
temperatures where the signal saturates, the determination of
λ is noise. Close to Tc there is a major behavior change at low
current due to the knee. Moreover, a full Ginzburg-Landau
analysis requires λ 
 Rpl. This leaves a small window where
we can properly analyze our data. This window is marked by a
yellow circle in Fig. 9(a), and by yellow shade in Fig. 10. We
zoom-in on the shaded area in the inset of Fig. 10 and show
with arrows the temperature range where our analysis is valid.
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FIG. 9. Temperature dependence of normalized signals
(a) �V max

sc /�V max
ic obtained by DC measurements [see Eq. (9)] as

a function of temperature close to the phase transition. The yellow
shade is the region where the full Ginzburg-Landau analysis is valid.
The inset is a zoom-out on the entire temperature range. (b) The
magnetic moment normalized by the coil signal [see Eq. (10)]
obtained by VSM measurements. Again, the inset is a zoom-out on
a broader temperature range.
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FIG. 11. Temperature dependence of the penetration depth and
coherence length. λ(T ) and ξ (T ) extracted from the data using the
full Ginzburg-Landau analysis at a small temperature region where
all approximations are valid and the stiffnessometer is not saturated.

As for ξ and jc; in Fig. 6 �V max
sc (I ) is measured at tem-

peratures approaching Tc but before the knee. We identify Ic

in this figure with Jfold of Eq. (19). Calculating λ at currents
much lower than Ic, the flux generated by the coil at Ic based
on Fig. 2, and Jfold from Eq. (19) we extract ξ . The results for
both λ and ξ are depicted in Fig. 11. Since ξ 
 λ there is a
small temperature region where the Ginzburg-Landau analysis
is self-consistent. Using Eq. (20), we find that the critical
current density is on the order of 103 A mm−2 at the relevant
temperature range, in agreement with measurements done in
a field of 0.03 T on similar samples [18].

VII. CONCLUSIONS

We demonstrated that the stiffnessometer can measure
penetration depth on a scale of millimeters, two orders of
magnitude longer than ever before. This allows us to perform
measurement closer to Tc and explore the nature of the super-
conducting phase transition, or determine the stiffness at low
T in cases where it is naturally very weak as in thin films [19].
The stiffnessometer also allows measurements of very long
coherence length ξ on the order of micrometers, equivalent
to small critical current density on the order of 103 A mm−2,
properties which again are useful close to Tc. The measure-
ments are done in a single apparatus, at zero magnetic field,
and with no leads, thus avoiding demagnetization, vortices,
and out-of-equilibrium issues.
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