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Shifts in the skyrmion stabilization due to curvature effects in dome- and antidome-shaped surfaces
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The study of curvature-induced effects on the properties of nanostructures has become a cornerstone of
magnetism. However, several methodologies usually used for studying nanoscale magnetic systems present
difficulties for adequately describing curvature. In this work, we present a method that allows studying, under
specific conditions, curved dome/antidome surfaces using an equivalent system without curvature. From the
described methodology we obtain the phase diagram between easy-normal and skyrmionic magnetization
configurations, as a function of spin-orbit coupling, Dzyaloshinskii-Moriya interaction (DMI), and curvature.
The effective DMI of the dome structure increases with the curvature. Nevertheless, the effective anisotropy
presents the opposite behavior, decreasing with curvature. These results allow us to conclude that an increase
in the skyrmion stability is observed in nanostructures having positive curvature. The presented results propose
a route that could facilitate the study of curved nanofilms with intrinsic DMI from comparing them with their
planar counterparts.
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I. INTRODUCTION

During the past few decades, there has been a strong
interest in studying the effects of geometry on the properties
of nanomagnets. This interest is due to the interesting fun-
damental properties presented by magnetic elements at the
nanoscale, as well as the potential applications they offer, such
as race-track memory [1,2], nano-oscillators [3,4], shapeable
magnonics [5,6], neuromorphic computation [7], magnetic
field sensors for magnetofluidic applications [8,9], spin-wave
filters [10,11], among others. In this context, the analysis of
curvature-induced effects on the properties of nanostructures
has become a cornerstone in magnetism. The remarkable
development in the fabrication of nanomagnets has made
possible the production of architectures of curved thin films
[12] and bent nanowires [13], bringing experimental insights
into the fundamental properties of three-dimensional (3D)
curved objects [14]. At the same time, the theoretical study of
curvature effects on the magnetization of nanostructures has
revealed new emergent phenomena [15–20] of great impact
from both applied and fundamental physics.

The magnetization behavior of a nanoparticle is the result
of the competition between different interactions, such as
exchange, dipolar, anisotropy, Zeeman, and Dzyaloshinskii-
Moriya interactions (DMIs). In particular, the DMI can appear
as a result of the spin-orbit (SO) effect in the breakdown of
inversion symmetry either in volume or surface [21–26].

Together with other energy contributions, the magnetochi-
rality induced by the DMI is responsible for the nucleation
of stable skyrmions that propagate through magnetic stripes
under the action of a small current density, making them

ideal for applications in magnonic and spintronic devices
[27–30]. Recently, Gaididei et al. [15] and Hertel [16] showed
that magnetochiral effects can be driven by curvature. This
curvature-induced magnetochirality (CIM) is characteristic of
bent and curved wires [31–33] and curved surfaces [18,19,34].
Previous works have predicted that swirling spin textures such
as vortices [35–39] can appear as magnetization ground-states
on hemispherical ferromagnetic caps. Remarkably, unlike the
planar case, in which the SO-driven intrinsic DMI is re-
quired for the skyrmion stabilization, the curvature-induced
exchange-driven DMI is responsible for the appearance of a
stable skyrmion solution on a spherical shell even when SO-
driven DMI is absent [40]. Similarly, Pylypovskyi et al. [41]
studied circular nanoindentation from mapping an arbitrary
surface of revolution on a plane, obtaining coefficients for the
curvature-induced exchange-driven DMI and anisotropy, and
they showed that magnetic skyrmions can be stabilized in a
local curvature without any intrinsic SO-driven DMI.

Following these ideas, we study the effects of the SO
coupling in magnetic thin films deposited on curved substrates
[37,42]. We show that under specific conditions, the SO-
driven and the exchange-driven curvature-induced DMI can
be linearly proportional. For our calculations, we consider
dome/antidome structures that can be described by mimicking
them to an equivalent planar nanostructure with effective DMI
and anisotropy that depend on the geometrical parameters.
From analytical calculations and micromagnetic simulations
using planar nanodots, we showed that the interplay between
curvature and SO-induced DMI increases (decreases) the sta-
bility of skyrmions in dome (antidome) structures.

2469-9950/2020/102(2)/024444(7) 024444-1 ©2020 American Physical Society

https://orcid.org/0000-0002-2759-2152
https://orcid.org/0000-0001-6054-5019
https://orcid.org/0000-0002-2945-4909
https://orcid.org/0000-0001-7730-8773
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.024444&domain=pdf&date_stamp=2020-07-29
https://doi.org/10.1103/PhysRevB.102.024444


VAGSON L. CARVALHO-SANTOS et al. PHYSICAL REVIEW B 102, 024444 (2020)

FIG. 1. Representation of (a) dome and (b) antidome. Part (c) il-
lustrates the parameters used in our calculations

This work is divided as follows: in Sec. II we present
the theoretical model that is used to determine the magnetic
energy of curved structures. Section III presents the applica-
tion of the theoretical model for describing the magnetization
ground state of magnetic dome/antidome nanostructures. In
Sec. IV we present the conclusions.

II. THEORETICAL MODEL

The system we studied consists of a single ferromagnetic
surface with thickness t deposited on top of a curved heavy
metal (HM) substrate, as shown in Fig. 1. The interaction
between the ferromagnetic film and the HM induces a strong
uniaxial anisotropy normal to the HM surface [43], and a
SO coupling [44]. Both curvature and spin-orbit coupling are
responsible for two contributions to the effective DM interac-
tion: the usual SO-driven DMI (SODMI) and the exchange-
driven curvature-induced DMI (ECDMI). In this context, the
skyrmion stabilization can be favored or unfavored, depending
on the substrate curvature. Magnetostatic contributions can be
included as an extra anisotropy, as shown in Refs. [45,46].
Since a rough estimation of this extra anisotropy is of the
order of 10% of the easy normal anisotropy included in our
calculation, its inclusion has no qualitative effects. Therefore,
and for simplicity, we neglected it.

For our calculations, we parametrized a thin ferromagnetic
film as X = X(u, v), where u and v are local curvilinear
coordinates. In this context, there are two vectors, defined
as n1 and n2, that represent the normals of two different
oriented local bases. By considering a surface parametrized
with generic coordinates {u, v} = {x1, x2}, a local orthogonal
basis at each point can be described by the triad {e1, e2, e3},
where eα = gα/

√
gαα , with gα = ∂α X, gαβ = gα · gβ , and

α = (1, 2). In this framework, e3 = e1 × e2 is the unitary
vector pointing along the normal to the surface direction.
From now on, we assume that the normal vectors n1 = n and
n2 = −n are related to the parametrizations B1 = {x1, x2} =
{u, v} and B2 = {x1, x2} = {v, u}, respectively. Indeed, for
B1 the local basis is {eu, ev, eu × ev}, and for B2 the local
basis is {ev, eu,−eu × ev}. The main advantage of adopting
these two different parametrizations is that such a local basis
allows us to define the normal vector pointing in (B1) or
out (B2) of the dome. That is, the dome and the antidome

FIG. 2. Schematic representation of (a) dome and (b) antidome
vector fields. Solid lines illustrate the normals to the surface, and
dotted lines depict the DMI induced by SOC.

can be identified by B1 and B2, respectively (see Fig. 2).
As will be shown, this subtle change in the local basis can
bring substantial changes in the observed behavior of the
curvature-induced anisotropy and DMI. The magnetization
can be parametrized as a vector field lying on the curvilinear
basis, m = sin θ cos φ e1 + sin θ sin φ e2 + cos θ e3.

The total energy density is given by E = Ex + Ea +
ED, where Ex, Ea, and ED are, respectively, the exchange,
anisotropy, and SO-driven DMI energy densities. From the
described parametrization, the exchange energy density can
be written as [15]

Ex = A[∇θ − �]2 + A
[

sin θ (∇φ − �) − cos θ
∂�

∂φ

]2

,

(1)
where A is the stiffness constant, � = H ε(φ ), with Hαβ =
(gαα gββ )−1/2(e1 × e2) · ∂β gα , ε(φ ) = cos φ e1 + sin φ e2,
and � is the modified spin-connection [15], which is
a quantity used to define both torsion and curvature,
whose components are given by �α = (gαα )−1/2e1 · ∂α e2.
Additionally, the anisotropy energy density is defined as
Ea = −λ cos2 θ , where λ > 0 is the easy-normal anisotropy
constant depending on the material parameters. Finally, the
DMI energy density is given by [40,47]

ED =Dε · ∇θ+D sin θ cos θ ∂φ ε · (∇φ − �) − DH cos2 θ,

(2)
where D is the DMI constant and H is the mean curvature. It is
worthwhile to notice that Eq. (1) contains an exchange-driven
curvature-induced DM term and anisotropy, while Eq. (2)
evidences the appearance of an effective DMI-driven uniaxial
anisotropy proportional to the mean curvature. Therefore,
such curvature-induced interactions must play an important
role in describing the magnetization ground state in curvilin-
ear films.

III. SKYRMION STABILITY IN DOME/ANTIDOME
STRUCTURES

Looking for the possibility of describing curved magnetic
films from the study of equivalent planar structures, we
rewrite the magnetic energy density coming from Eqs. (1) and
(2) as E = Ex

eff + Ea
eff + ED

eff , where

Ex
eff = A[(∇θ )2 + sin2 θ (∇φ − �)2], (3a)

Ea
eff = A[cos2 θ (∂φ �)2 + �2] − λ cos2 θ − DH cos2 θ, (3b)

ED
eff = ξ · ∇θ + sin θ cos θ ∂φ ξ · (∇φ − �), (3c)

with ξ = Dε − 2A�. A very interesting property appears
whenever ε is proportional to �, that is, when ε = κD�, where
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κD is a constant. As shown below, this proportionality occurs
when there is a spherical surface. In this case, we can rewrite
ξ = D̃ ε, where D̃ = D − 2AκD. Additionally, except for a
constant that does not account for the energy minimization,
Eq. (3b) can be rewritten as Ea

eff = −λ̃ cos2 θ , where λ̃ =
λ − A/κ2

D + DH. The condition of linear proportionality be-
tween ε and � is reached when the elements of the H matrix
are Hαβ = h δαβ , with h constant. We will now adopt these
conditions on an arbitrary geometry with azimuthal symmetry,
parametrized as X = (� cos ϕ, � sin ϕ, f (�)). In this case, we
have that

H�� = Hϕϕ = h ⇒ f ′′(�)

1 + f ′(�)2
= f ′(�)

�
, (4)

whose solutions are f (�) = const and f (�) =
√

R2 − �2.
That is, the described approximation is valid for a spherical
surface with radius R. Based on this, we will obtain the energy
density associated with domelike and antidomelike structures,
as shown in Fig. 1. Such structures are described by the radius
of the dome/antidome basis a and the curvature radius R.
Additionally, ϑ defines the zenith angle [see Fig. 1(c)]. These
variables are related by sin ϑ = a/R in such a way that the
parametrization of each dome or antidome is

X(u, v) = (R sin(u/R) cos v, R sin(u/R) sin v, cos(u/R)),
(5)

with u ∈ [0, Rϑ] and v ∈ [0, 2π ]. Assuming two different
parametrizations, B1 = {u, v} and B2 = {v, u}, the local basis
allows us to define the normal vector pointing in (B1) or out
(B2) of the dome. That is, the dome and the antidome can be
identified by B1 and B2, respectively (see Fig. 2).

From now on, we will consider that the magnetization
profile on the dome/antidome presents a typical solution with
the form θ = θ (u) and φ = φ 0. In this case, we obtain that
the normalized energy density for the dome/antidome is

E = A(∂uθ )2 + A
R2

sin2 θ cot2(u/R)

+ D̃
±

cos φ [∂uθ + (1/R) sin θ cos θ cot(u/R)]

+ A
R2

− λ̃± cos2 θ, (6)

where

D̃
± = 2A

R
± D, λ̃± = λ − A

R2
± 2D

R
. (7)

Here the sign + (−) refers to the dome (antidome) energy
density. The term Dx

eff = 2A/R corresponds to the ECDMI,
and λani-exc = λ − A

R2 is the effective anisotropy coming from
the exchange interaction. In Fig. 3 we illustrate the ECDMI
term and λani-exc as a function of ϑ for different values of
a, which is directly related to the dome/antidome curva-
ture. We can observe that ECDMI depends on ϑ . Indeed,
we can rewrite Dexc

eff = 2A/R = 2A sin ϑ/a, and therefore
the increase in the dome curvature induces an increase in
the ECDMI. This behavior is also evidenced by changing the
values of the radius a. The curvature-induced anisotropy can
also be represented as a function of ϑ as λani-exc

eff = λ − A sin2 ϑ
a2 ,

in such a way that the increase in the dome curvature induces
the decrease of the effective anisotropy. The main results are

FIG. 3. (a) Exchange-driven curvature-induced DMI and (b) ef-
fective anisotropy as a function of ϑ for different values of a.
Blue-solid, red-dashed, and green-dotted lines show, respectively, the
obtained results for a = 30, 50, and 70 nm.

presented in Fig. 3(b), where we can observe that λani-exc
eff

decrease with both ϑ and a. Indeed, the difference between
the anisotropies of the domes is more prominent for ϑ =
0.5. In this case, domes with a = 50 nm (red-dashed line)
present a reduction of ∼0.04% in the effective anisotropy
when comparing the values for ϑ = 0.1 and 0.5. On the other
hand, this difference increases to ∼0.53% when a = 30 nm
(green-dotted line).

Now, assuming that the skyrmion radius u0 is of the order
of the characteristic length �ch = √

A/λ coming from the
competition between exchange and anisotropy, and that R �
3 w, we can consider that cot(u/R) → R/u, R sin(u/R) → u,
and the total energy, evaluated as E = t

∫
Eda, with da =

2πR sin(u/R)du, can be obtained from E = 2πt
∫

E′udu,
where the normalized energy density now reads

E′ = A
[

(∂uθ )2 + 1

u2
sin2 θ

]
− λ̃± cos2 θ

+D̃
±

cos φ 0

[
∂uθ + 1

u
sin θ cos θ

]
+ A

R2
. (8)

Equation (8) is equivalent to the energy of a skyrmion in
a planar disk with DMI and uniaxial anisotropy constants
given by D̃ and λ̃, respectively. The corresponding planar disk
radius is u, with u ∈ [0, ϑR]. Therefore, a dome/antidome
nanomagnet can be analyzed using an equivalent magnetic
disk, under the transformation

Dd → 2A
R

± D,

λd → λ − A
R2

± 2D
R

,

ud → ϑR. (9)

This result allows us to conclude that skyrmions lying on
a magnetic dome/antidome can be studied using a nanodisk
with external radius ud whose magnetic parameters—DMI
and anisotropy—are given, respectively, by Dd and λd . Fig-
ure 4 depicts the two analyzed magnetization configurations
lying in a dome with easy-normal (EN) anisotropy. For θEN =
0, the magnetization describes an easy-normal configuration
[see Fig. 4(a)], while θSK = 2 atan(exp ( − (u0 − u)/w)) de-
scribes a solitonlike pattern (SK) [see Fig. 4(b)]. The parame-
ters w and u0 define, respectively, the profile and the radius of
the soliton.
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FIG. 4. Schematic representation of the magnetization profile of
the radial component of the magnetization in a dome. (a) An easy-
normal (EN) configuration and (b) a soliton (SK) configuration.

Aiming at showing that the presented analytical model can
describe a dome with magnetic parameters given by D and
λ from considering a disk having magnetic parameters Dd

and λd , we obtain the energy gap between EN the SK excited
state in both structures. From considering a high easy-normal
anisotropy constant, λ � 106 J/m3, the magnetization ground
state of both nanodisk and nanodome are given by θEN. That
is, the lower energy state is described by an EN. The energy
gap between EN and SK for both structures is presented in
Fig. 5, which illustrates the energy density difference �ε =
ε(θSK ) − ε(θEN) as a function of u for a dome (red dotted
line) and for a disk (black solid line). In those figures, ε(θSK )
and ε(θEN) are the energy densities for the easy-normal and
soliton configurations, respectively. For the dome, we define
ε = 2πRtE sin u/R, and for the disk, we define ε = 2πtE′u.
For small values of u0 (small soliton radius), we observe that
�ε is practically equal for both disk and dome, in such a
way that both geometries should present the same stable and
metastable magnetization configurations. For large values of
u0 (large soliton radius), the energy density difference for
a disk, �εdisk, is lower than the energy density difference
of a dome structure, �εdome. For instance, for u0 = 45 nm,
(�εdisk − �εdome) × 100%/�εdisk ≈ 13% [see Fig. 5(b)]. In
this case, for large u0 values, the proposed methodology
proposed is not strictly valid. Nevertheless, since the radius

FIG. 5. �ε as a function of u for a dome and for a disk (a) for
u0 = 15 nm and (b) for u0 = 45 nm.

of solitons induced by SOC are in the order of 15 nm, our
model can be used in a large range of applications.

The range of validity of our model allows us to use the
equivalence previously described to obtain the phase diagram
of curved surfaces using micromagnetic simulations with the
MUMAX3 [48] public software. We have then performed
micromagnetic simulations to obtain stable states in a planar
disk having effective exchange, anisotropy, and DMI con-
stants given by the set of Eqs. (7). Therefore, the simulated
structure consists in a straight disk that by changing energy
strengths represents a dome described by the geometrical
parameters a, R, and ϑ related by sin ϑ = a/R (see Fig. 1). For
our simulations we use the exchange stiffness A = 16 pJ/m,
saturation magnetization Ms = 1.1 MJ/m3, a damping param-
eter α = 0.1, and perpendicular anisotropy magnetization λ =
0.75 MJ/m3. These parameters correspond to the system
described in a previous work [49]. For our calculations, we
vary the DMI constant between 0.0 and 3.5 mJ/m2. The initial
state consists in a soliton at the center of the disk, and we relax
the magnetization in a disk with radius ϑR and parameters Dd

and λd that, according to our previous calculations, represent
a dome with magnetic parameters D and λ, and geometric pa-
rameters ϑ and a = R sin ϑ . The considered parameters yield
an EN as the lower energy state, as illustrated in Fig. 4(a).
However, due to the topological protection of skyrmions, our
simulations revealed that solitonlike configuration can appear
as a metastable state in the considered structures, depending
on the geometrical parameters.

From our calculations, we obtain the phase diagram pre-
senting the magnetization relaxed states with a = 30, 50, and
70 nm (see Fig. 6). To obtain such a phase diagram, we
allow the magnetization to relax from an initial configuration
suitable to reach solitonlike configurations. Black triangles
correspond to states with an easy-normal (EN) configuration,
while red dots represent skyrmion (SK) states. The ground
state has been obtained as a function of D±

eff and ϑ , where
the considered dots have radius ϑR, where ϑ ∈ [0.1, 0.5].
We have performed the micromagnetic simulations describing
the dome structures. The solutions for the antidome were
obtained from the transformations θ− = θ+ + π and φ− =
−φ+ − π/2. The main results are presented in Fig. 6, in
which we show the transition line separating the EN and SK
states as a function of the SODMI and curvature. Due to the
appearance of an ECDMI, the value of SODMI that stabilizes
the skyrmion decreases. Indeed, from Fig. 6(a) we observe
that a decrease of a increases the skyrmion stabilization in
such a way that for very small values of a (large curvature), the
skyrmion can be stabilized even if there is no SODMI. This re-
sult agrees with the obtained in Ref. [40], in which the authors
showed that when the radius of the sphere is larger than 2w,
hedgehog-like magnetization configurations are stabilized in
this geometry. Nevertheless, a different behavior occurs when
we analyze the magnetization ground state of an antidome.
In this case, because SODMI is subtracted in the effective
DMI [see Eq. (7)], there is a competition between SODMI and
ECDMI in such a way that the soliton state appears only for
SODMI values larger than a critical value given by Dcrit > D.
Aiming at showing that the obtained results from micromag-
netic simulations in nanodisks effectively describe the relaxed
states of magnetic nanodomes, we determine the radii of the
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FIG. 6. Phase diagram (ϑ, D) for a dome (right side) and an antidome (left side) for different a values. Black triangles depict states with
an easy-normal (EN) configuration, while red dots represent skyrmion (SK) states.

relaxed SK states. Because the obtained skyrmion radii are in
the range of u0 � 15 nm, we can state that in the range of the
studied systems, (�εdisk − �εdome) × 100%/�εdisk � 1.5%
[see Fig. 5(a)]. In this context, we can state that both methods
(analytical and micromagnetic calculations) are equivalent.

IV. CONCLUSIONS

Using a theoretical model, we performed an analysis
of the curvature-induced DMI and anisotropy for curved
structures with azimuthal symmetry. Our results evidence
that the dome/antidome geometries can be addressed as a
noncurved disk when spin-orbit-driven and exchange-driven
DM interactions are linearly proportional. We then analyzed
the energy density describing magnetic dome and antidome
shells, and we obtained the curvature-induced DMI and the
anisotropy as a function of the curvature. The dome struc-
ture presents an increase in the effective DMI when the
curvature increases. Nevertheless, the effective anisotropy
presents the opposite behavior, decreasing with curvature. The

obtained results suggest that, for some specific conditions
regarding the skyrmion width, the magnetic ground-state for
dome/antidome nanoshells can be obtained by analyzing a
planar disk with DMI and anisotropy constants changed by
factors depending on the curvature. Using these transforma-
tions, we obtained the phase diagram for the easy-normal and
skyrmion magnetization configurations as a function of the
spin-orbit coupling DMI and curvature. This result allows us
to conclude that the presence of curvature increases skyrmion
stability. Our results propose a route that could facilitate the
study of curved nanofilms with intrinsic DMI.
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APPENDIX: FIELD TRANSFORMATIONS

The field transformations θ− = θ+ + π and φ− = −φ+ − π/2 were obtained in the following way:

m1 = sin θ 1 cos φ 1eu + sin θ 1 sin φ 1ev + cos θ 1eu × ev

m2 = sin θ 2 cos φ 2ev + sin θ 2 sin φ 2eu + cos θ 1ev × ev

⇒
sin θ 1 cos φ 1 = sin θ 2 sin φ 2

sin θ 1 sin φ 1 = sin θ 2 cos φ 2

cos θ 1 = − cos θ 2,

(A1)

where m1 is for the parametrization B1, and m2 is for the parametrization B2.
If we consider that eu · ev = δuv , we obtain

∇u(δuv ) = ∇u(eu · ev ) ⇒ 0 = (∇ueu) · ev + eu · (∇uev ) = �
(1)
1 + �

(2)
2 = 0, (A2)

∇v (δuv ) = ∇v (eu · ev ) ⇒ 0 = (∇veu) · ev + eu · (∇vev ) = �
(1)
2 + �

(2)
1 = 0. (A3)

The above result implies that under the transformations θ− = θ+ + π and φ− = −φ+ − π/2, the modified spin-connections are
related by �

(1)
1 = −�

(2)
2 and �

(1)
2 = −�

(2)
1 .
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From defining X(3)
αβ = (eu × ev ) · ∂βXα/

√
gααgββ , and con-

sidering that X(3)
uv = X(3)

vu = 0, we obtain that the matrix H
elements are given by

H (1) =
(

X(3)
uu 0
0 X(3)

vv

)
, (A4)

H (2) =
(−X(3)

vv 0
0 −X(3)

uu

)
. (A5)

If we define T with T11 = T22 = 0 and T12 = T21 = −1,
we have that �(1)

α = Tαβ�
(2)
β and H (1)

αβ = Tαγ H (2)
γ β .

In this context, using the described transformation for
fields, we can obtain that the energy (1) is invariant un-
der the transformations θ− = θ+ + π and φ− = −φ+ − π/2,
since the DMI term for the energy is replaced as follows:
D → −D.
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