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Quantum walk versus classical wave: Distinguishing ground states of quantum
magnets by spacetime dynamics
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We investigate wave packet spreading after a single spin flip in prototypical two-dimensional ferromagnetic
and antiferromagnetic quantum spin systems. We find characteristic spatial magnon density profiles: While the
ferromagnet shows a square-shaped pattern reflecting the underlying lattice structure, as exhibited by quantum
walkers, the antiferromagnet shows a circular-shaped pattern which hides the lattice structure and instead
resembles a classical wave pattern. We trace these fundamentally different behaviors back to the distinctly
different magnon energy-momentum dispersion relations and also provide a real-space interpretation. Our
findings point to opportunities for real-time, real-space imaging of quantum magnets both in materials science

and in quantum simulators.
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I. INTRODUCTION

Two-dimensional quantum magnets are quintessential
quantum many-body systems that come in two main realiza-
tions: antiferromagnets (AFs) and ferromagnets (FMs). AFs
are prototypical condensates (BCS superconductors, super-
fluids, crystals), in which classical order is dressed by its
associated quantum fluctuations [1]. Whereas the latter do
not destroy the order at 7 = 0—as would happen for AF
chains, in agreement with Coleman’s theorem—the quantum
reduction of the order parameter is of the order of 40%.
Such strong quantum effects are intrinsically related to the
onset of the low-lying excitations above the respective ground
state (Goldstone modes), which are coined magnons and have
linear-in-momentum (|k|) quasiparticle dispersion. By con-
trast, FMs can be regarded as more unique because their fully
polarized ground state does not contain any quantum fluctua-
tions, and the low-lying excitations disperse as k*. Hence, the
FM ground state can be viewed a natural realization of a true
vacuum, and the associated magnon excitations can be viewed
as particles.

In traditional condensed-matter physics the questions of
magnetic ground states and their associated low-lying exci-
tations on the atomic length scale are investigated experimen-
tally with scattering techniques (neutrons, x rays), which yield
information in reciprocal space (momentum k, frequency w).
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On the other hand, tremendous progress in controlling ultra-
cold gases in optical lattices has provided a complementary
real-space and real-time (r, t) perspective on archetypal spin
Hamiltonians [2,3]. Due to the tunability of these systems, it
is now possible to perform quantum simulations of systems
described by celebrated Hamiltonians previously considered
as minimal toy models, such as the fermionic [4,5] and
bosonic [6] Hubbard models, the Ising model [7], and the
Heisenberg model [8]. The spacetime-resolved microscopic
imaging of such quantum simulators is possible thanks to the
single-site fluorescence imaging technique invented almost
decade ago [9-11] and further developed recently [12-17].
In particular, this technique was successfully used for the
quantum simulation and the spacetime probing of AF order
in a two-dimensional lattice [18].

In this work, we take a fresh look at the old problem of
magnetic ground states and their low-lying excitations, focus-
ing on generic two-dimensional (2D) square-lattice quantum
magnets. We examine the spacetime dynamics of a single
initially localized excitation on top of the respective magnetic
ground state. We find simple, yet remarkable and robust,
distinguishing fingerprints between the FM and AF cases.
In the FM case the problem is readily mapped onto the
problem of a single quantum particle in the vacuum. Thus, it is
classified as the well-known quantum walk in continuous time
on a discrete spatial lattice, which recently has been under
extensive theoretical and experimental exploration [19-29].
As expected from intuition based on this analogy, a square
pattern emerges in the spatial density profile after excitation,
reflecting the underlying crystal symmetry [Fig. 1(a)]. By
striking contrast, the dynamics above the AF ground state is
instead reminiscent of a classical wave, with isotropic circular
patterns largely ignorant of the crystal symmetry [Fig. 1(b)].
We trace this quantum-walk versus classical-wave behavior
back to the fundamental difference in quantum ground states
and their associated low-energy excitations.
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FIG. 1. Single-magnon excitation properties in two-dimensional
quantum magnets. (a) Ferromagnet and (b) antiferromagnet. Top:
Cartoon of the ground state with a single spin flip (red). Middle:
Dispersion relation of single-magnon excitations (in energy units
where J = 1), with k* (FM) and |k| (AF) low-energy behavior around
I'. Bottom: Snapshot of the spatial density profile for ¢ ~ 200 fs
(307/J) after spin-flip excitation. To arrive at this timescale, spin
exchange is taken to be a representative value of J/ = 100 meV.

II. MODEL: GROUND AND EXCITED STATES

Consider the 2D spin § = % Heisenberg model

H=7)5, 8, (1)
(i)

for spins § = % on a 2D square lattice with nearest-neighbor
spin exchange coupling J >0 (J <0) in the case of an
antiferromagnet (ferromagnet).

In order to introduce magnons via the standard Holstein-
Primakoff transformation in the AF case we first rotate all
spins on sublattice B of the AF state: We assume that the
corresponding Néel state of the AF ground state in question
is such that all spins are up (down) on sublattice A (B). (In the
FM we keep the spins intact.) Next, we define the following
Holstein-Primakoff transformation, which already contains
the linear spin-wave theory (LSW) approximation [30,31]:

Sfi =1- ay &, (2a)
§¢~a, (2b)
S, ~af, (20)

followed by Fourier and Bogolyubov transformations, with
the latter defined as

ar = uy + vk&ik- 3)

We obtain a diagonal form in terms of the Bogolyubov
magnons,

- 1
H=3 obyon+5 ) (o —Ap). @)
k k

where

J\ Ve 2 o AprTtag
A =2711—(1—-=)=1, Vg =——, (6
¢ [ ( |J|>2] otk = "0 ©

with the energy of the Bogolyubov magnons given as

J
W = 21\/(1 - Vk)(l + m)/k) (6)

and y; = %(cos ky + cos k).

III. MAGNON DENSITY PROFILES: DEFINITION
AND EQUATIONS

The main goal of this paper is to investigate how a single
spin-flip excitation on a given site ry on top of the ground
state propagates in space and time. To this end, we calculate
here the space-time dependence of a density profile p(r, t) of
a single spin-flip excitation in a quantum magnet:

plr,1) = (@15, 85 (1S, 12), (7a)
85 () = 118z, (7b)

with r = r; — ry. This equation defines the following protocol
for the dynamics. Starting from the ground state |&) as the
initial state of the Hamiltonian #, we apply at time ¢ = 0
a single spin-flip operator locally on site at o = 0, which
is assumed to belong to the A sublattice (see above; note
that this choice does not restrict the validity of the results
below but simplifies the notation). Next, at an arbitrary later
time ¢ we measure the magnetization at site r; and obtain the
spatiotemporal profile of the single spin-flip excitation.

We now rewrite the above protocol in terms of the
Holstein-Primakoff magnons that are subject to the LSW
approximation (i.e., noninteracting). In this case, we start
from the ground state of the LSW-approximate Hamiltonian
(4), which is given by the magnon vacuum |&,). We note
that this is the exact ground state (fully polarized state) for
the FM case, while it is the approximate ground state for
the AF case as it neglects additional quantum fluctuations
caused by magnon-magnon interactions. Next, as in the LSW
approximation a single spin flip amounts to creating a single
magnon and the magnetization to the magnon density, we
obtain the following spatiotemporal excitation density profile
written in terms of the noninteracting bosons:

p(r. 1) = (Do lr, iy, ()2 | Do), (8a)
iy, (1) = €Ay e (8b)

where we skipped the constant terms. The above equation
can be understood as the time-dependent expectation value of
the magnon density operator of a state with a single magnon
created at a particular site at the initial time ¢t = 0.

We now perform a few manipulations in order to obtain an
explicit expression for p(r, t). First, we rewrite

pr 1) = (p(r, 1)|p(r, 1)), )
where

p(r, 1)) = e 110} |,). (10)
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ing the Fourier transtorm a, = —= et ar to
Applying the Fouri fi Oy = 7= e ™
|p(r, 1)), we have
1 —itkri—k'ro) s —ilt
pr0) = > e THF e g ley). (1)

kK
After Bogolyubov transform (3) the above appears in the form
1 ik R N
¢, 1) = 3 e M E O e + el )
kK
x e upd), + ved_)@a).  (12)

Working out (12), one obtains two kinds of terms, propor-
tional to the vacuum state and proportional to two-magnon
states,

1 Citrto 1
g 0) = ij e DG, + gj e v

« o~ itkri—k'rotwut/h) /1 4 8k’,—k|°‘k’»0‘—k>- (13)

Combining the above result with its Hermitian conjugate as
in the right-hand side of (9) and using the parity of dispersion
relation, we arrive at the desired density profile,

Z ’41% pitkr—awxt /1)
k

2

1
p(rvt) Zm

+

Z g v K= xt /)
k

2
+Y wup | a9
k.q

The last term, ), . ug v,?, is just a constant number describing
the level of quantum fluctuations present in the system. Since
we are interested in the dynamics, in the figures we show only
those parts of the density profile that are time dependent,

Z uiei(kr—wkt/h)

k

2 2
p(r, 1) ~ + - (15

Z g v e Tt /M)
k

Thus, we observe that the obtained density profile corresponds
to that of a superposition of the plane waves (i.e., it is a wave
packet), whose respective weight depends on the dispersion
relation wy.

Having obtained the magnon density profile, it is interest-
ing to compare it against the spin-spin correlation function
or spin dynamical structure factor, which is typically used
and measured in the condensed-matter community. A standard
definition of the spin dynamical structure in the time domain
and real space is

S (r, 1) = (2183 (1)S) |2), (16a)
8(t) = &T'8e T, (16b)

where r = r; — ry (see, e.g., Ref. [30]). Performing an analyt-
ical transformation similar to, though even simpler than, the
one above, we find that in the bosonic language and in the
LSW approximation, the transversal components [32] of the

time-domain and real-space spin dynamical structure factor
read

: 1 .

S = oy §k (g + vy (1)
1 .

S0 = - §k (g — vy ) e/, (18)

where we recognize the typical form of the Bogolyubov
factors [33]. Thus, we observe that the magnon density profile
discussed in this paper is closely related to the usual form
of the spin dynamical structure: The absolute values of the
transversal components of S%#(r, t) provide information qual-
itatively similar to the magnon density profiles. In particular,
the two contrasting patterns between the FM and AF cases
discussed in this paper are also obviously encoded in the spin
dynamical structure factor. However, as the density profiles
are readily measured in atomic systems [12,19,34], we de-
cided to show these in this paper. This justifies the choice of
the correlation function made by Eq. (7a).

IV. RESULTS

The main result, presented in Fig. 1, is the distinct density
profile of spin excitations created in the FM and AF back-
grounds. While the FM case resembles a quantum walker with
a square pattern that reflects the underlying lattice structure,
the AF case resembles a classical wave with a circular pattern
that is quasi-ignorant of the underlying microscopic lattice.
In the momentum space picture, this can be understood by
considering the respective magnon dispersion relations. For
the FM [Fig. 1(a)] the dispersion is quadratic (o<k2) near
I', and its largest slope, and therefore the highest magnon
velocity, stems from other parts of the Brillouin zone. Since
the local spin flip is composed of all momenta in the Bril-
louin zone, its spread velocity is dominated by those fast
components, which reflect the lattice structure. By striking
contrast, for the AF case the dispersion is linear (o< |k|) near
I', where it also has its largest slope. Therefore, the spread of
the spin-flip excitation is dominated by the momentum-space
region near I', with its emergent isotropic symmetry at long
wavelengths, ignorant of the underlying square lattice. On top
of that, the quantum fluctuations encoded in the Bogolyubov
transformation additionally put a stronger focus on the I" point
region for the AF case since the coherence factors modulate
the contributions from different momentum-space regions to
the wave packet dynamics (for details see Appendix A). As
an important consequence of these arguments, the observed
striking differences in the spacetime dynamics between FM
and AF are expected to be largely insensitive to the details of
the prepared initial state, as long as it is sufficiently localized,
and also insensitive to the details of the Hamiltonian realiza-
tions.

We now elucidate the emergence in real time of the patterns
discussed here. In Fig. 2 we show snapshots of the time
evolution of the density profile for the FM (top row) and AF
(bottom row) cases. Interestingly, in both cases the charac-
teristic density profiles emerge quickly between the earliest
times (2.07/J) and the next snapshots shown here at 22.57/J.
At increasingly longer times, we find the development of
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FIG. 2. Snapshots of spatiotemporal evolution of the density profiles. Panels show the respective real-space density profiles after spin flip
at position (x = 0,y = 0) and time ¢ = 0 for the ferromagnet (top row) and antiferromagnet (bottom row). Columns correspond to different

waiting times after excitation, as indicated.

self-similar patterns for both the FM and AF cases, with a
speed of expansion that remains constant over time. This

y y
X X
g
2 =2
€E o
-
(]
w 0
-40 -20 0 20 40
sitex =y
© 30 : :
S _ R/
E = 20
O o
E £10 10
:,‘l_’ =
c 0 0 ;
< -40 0 40 -40 -20 0 20 40
site x sitex =y
[ . - .
105 10* 1032 102 10 1

FIG. 3. Light-cone-like structures along selected real-space cuts.
Spatial cuts of density profiles along x (left) and along the x-y
diagonal (right) for the FM (top) and AF (bottom) cases.

observation is in line with the above momentum-space in-
terpretation: the wave fronts of the density profiles evolve
according to the fastest available velocities in the respective
wave packets.

In order to highlight this constant-velocity spreading and to
also investigate some subtler differences between the FM and
AF, we present in Fig. 3 the density profiles along selected
real-space cuts in the 2D lattice as functions of time. In the
FM case, for the spreading along the x direction and by
symmetry also along the y direction (not shown), one observes
a well-known light-cone-like structure [35]. In the diagonal
direction, one also observes a similar light cone but with a
velocity that is larger by a factor of +/2, again highlighting the
momentum-space picture discussed above and leading to the
characteristic square-shaped density profile of the quantum
walker. On top of these overall features, we also note that the
highest density is found at the edge of the light cone for the
FM case. This latter more detailed feature is in stark contrast
to the AF case. In the AF, the highest density remains at the
center of the excitation. Moreover, as already discussed, the
classical-wave-like circular-shaped picture emerges because
the light cone spreads isotropically, i.e., equally fast both
along the crystal axes and along the diagonal.

V. DISCUSSION

Let us first comment on why the spatial magnon density
profiles resemble the observed light-cone-like structures. A
priori, this may seem unexpected since the magnon prop-
agation via the evolution operator e~"' should cause the
magnon wave function to be nonzero on all lattice sites for
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FIG. 4. Magnon density profile p(r,t) at time t = 45.6[1/J].
The top (bottom) panel shows cuts along the OX (diagonal) direc-
tions for the FM (blue) and AF (yellow) ground states.

all times ¢t > 0. This apparent paradox is resolved by the fact
that the light cones are not sharply defined—a magnification
of the magnon density profile shows that the probabilities of
detecting a magnon excitation outside the cone is, indeed,
nonzero, even though it quickly decays (Fig. 4). This is true
not only in the AF case but also in the FM case, where it is
caused by the fact that at a particular time ¢ the higher-order
terms in the expansion of the magnon evolution operator
e~ | 4 (—ift) + %(—ilflt)2 + - - - are never completely
suppressed.

Next, let us provide a comprehensive real-space under-
standing of the observed conelike spreading and real-space
structures. To this end we will split the problem into three
steps.

(i) The first step is the explanation of a finite density of
magnons along the abscissa axis already at time + =0 in
the AF case (bottom panel in Figs. 3 and 6). This can be
clarified by investigating the consequences of a single spin flip
(a magnon before Bogolyubov transformation) at the initial
time. It is clear that the single Bogolyubov magnon at site
ro, which is a Fourier-transformed eigenstate of the system,
is a superposition of spin flips whose real-space distribu-
tion decays with distance from site ry (for more details see
Appendix A). This originates in the fact that the Hamiltonian
makes it energetically favorable to cluster the magnons, which
are always present even in the ground state of the AF, near the
additionally created spin flip at time ¢ = 0.

(i) In the next step, we unravel why the spatiotemporal
propagation of a magnon in the FM (AF) resembles the
quantum-walk (classical-wave) case. This is achieved by in-
vestigating the hopping amplitudes of a single magnon in
real space. In the FM case, the situation is clear since the
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FIG. 5. Real-space effective hopping interpretation of quantum
walk versus classical wave. The tunneling amplitudes |7;;/2J]| are
shown on a square lattice for FM (left) and AF (right) ground states.

Hamiltonian can be easily written in terms of bosons hop-
ping on a lattice, H = > ;T j&j'& j» with hopping amplitudes
Tij = 2J (6, —r, + %S,i,,jﬂ + %(Sri,,jiy) being nonzero only
for nearest-neighbor sites and within a given site (Fig. 5,
left panel). This effective hopping matrix structure exactly
defines a quantum-walk problem. On the other hand, the AF
Hamiltonian needs to be rewritten more carefully since the
Bogolyubov transformation is required to eliminate magnon
pair creation or annihilation terms. Consequently, the real-
space representation is achieved by Fourier transforming the
AF Hamiltonian written in the Bogolyubov magnons. We
obtain H = Y, T;;&/&;, with T;; = ﬁ >, ke 7D From
this it is clear that for the AF case, the tunneling amplitudes
T;; are nonzero to all sites on the same sublattice, although
they decay with distance as |r; — r;| [Fig. 5(b)]. Thus, one
observes the emergence of an isotropic circular shape of the
spatiotemporal magnon density profile, just as in the case of a
classical wave.

Interestingly, the origin of such a particular long-range
hopping amplitude in the AF lies in the interplay between
the Bogolyubov transformation and the nearest-neighbor pair
creation and annihilation present in the Hamiltonian written in
the language of the original Holstein-Primakoff magnons, i.e.,
before Bogolyubov transformation. The crucial observation
here is that when a bosonic particle residing on site j is
Bogolyubov transformed to a bosonic hole, then the latter
can reside on any site of the other sublattice than the one
which site j belongs to, but with a decaying probability with
distance from site j. This is because we have the relation
&I/ — 3, G(x1)ér,, where G(ry;) = 3, expliq(r; — r)]v_g
and vq is the relevant Bogolyubov coefficient. Thus, when
the nearest-neighbor magnon pair creation is Bogolyubov
transformed to the creation of a hole and a particle, it yields
nonzero transition coefficients 7;; connecting all sites on the
same sublattice but with decaying values with increasing
distance |r; — r}|, as discussed above.

(iii) The last step is unfolding a relatively large, steady-
in-time probability for detecting the excitation at the initial
position in the AF case, which is clearly visible by comparing
the FM and the AF light-cone distributions in Fig. 3. This
specific dissimilarity is a direct consequence of the differences
between the creation of magnons at the initial time in the FM
and AF cases, already discussed above. In the FM state at time
t = 0 there is just one point in space where the magnon is
created, and thus, the magnon wave function spreads relatively
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fast from site ry. In the AF case, on the other hand, the magnon
is initially created at several sites, and hence, the probability
of finding the magnon at site ry decreases relatively slowly
with time.

Before concluding, a few words are in order to discuss
the validity of the LSW approximation in the context of a
single-spin flip excitation in the Heisenberg model. First of
all, for the FM case, the LSW is exact for the zero- and
one-magnon sectors that are relevant here [30]. For the AF
case, on the other hand, the crucial feature of the magnon
dispersion is its linearity at small wave vectors, leading to
the classical-wave pattern in the magnon density profile. This
linearity is preserved even under magnon-magnon interactions
[36]. Furthermore, the magnon excitation becomes long-lived
in this long-wavelength limit [36,37], which means that the
dominant wave-front features are correctly captured by LSW.
We also note that the single-magnon excitation sector probed
in our setup is profoundly different from the two-magnon
excitation sector with regard to the role of magnon-magnon
scattering. The two-magnon sector is probed, for instance, in
two-magnon Raman scattering [38] or directed spin transport
under external fields [39]. Finally, to further support the
validity of the LSW approximation, we have compared the
LSW results to the exact numerical dynamics of the Heisen-
berg Hamiltonian on a small lattice. The results show full
agreement for the FM case and corroborate our physical con-
clusions for the AF case. Thus, the results obtained here using
the LSW approach remain valid beyond that approximation.
For further details see Appendix B.

VI. CONCLUSION

In conclusion, we have presented an intriguingly simple
way of characterizing prototypical magnetic ground states in
quantum materials by their spacetime dynamics. We have
shown that the ferromagnetic quantum walker is intimately
tied to the quadratic magnon dispersion, whereas the antifer-
romagnetic walker has an emergent classical dynamics, tied to
its linear magnon dispersion like for classical acoustic sound
or water waves. These deep connections, while not being too
surprising after all, open important possibilities for studying
the important quantum-magnetic properties of materials, be-
sides the obvious potential realizations in quantum simulators.
In particular, the subtle magnetic ground states in recently
discovered two-dimensional van der Waals materials with
Crl; [40] as a truly atomically thin ferromagnet would make
for interesting test objects of our predictions, provided that
real-space and real-time imaging techniques can be pushed ac-
cordingly. Similarly, there are some well-known realizations
of quasi-two-dimensional Heisenberg antiferromagnets [41],
and light-cone spreading has only recently been simulated in
such systems [42]. A potential experimental probe is time-
resolved resonant inelastic x-ray scattering, as proposed, for
instance, in [43] and demonstrated in [44]. A further intriguing
avenue for spacetime imaging is the opportunity to monitor
Floquet-engineered magnetic exchange interactions [45,46],
which in turn would affect the light-cone-like dynamics [47].
We finally mention the intriguing possibility to investigate
anomalous spin diffusion, similar to the anomalous charge
diffusion reported in Ref. [48], through spacetime dynamics.
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APPENDIX A: MAGNON DENSITY PROFILES
AT INITIAL TIME

The magnon density profile p(r,?) at time r =0, i.e.,
at the time that a single spin flip is created, is shown in
Fig. 6. As discussed in the main text, we observe that in the
antiferromagnetic case the creation of a single spin flip at site
ro leads to a whole cloud of magnons being instantaneously
created around this site. By contrast, this is not the case for
a ferromagnet, for which the creation of a single spin flip at
site ry corresponds to just one single magnon instantaneously
created at the same site and no magnons on other sites. We
explain this phenomenon in two steps. (i) We express the
creation operator of a single magnon at site ry in terms of
Bogolyubov magnons &,. It then turns out that creating a
single magnon at site ry is equivalent to the creation of a
cloud of Bogolyubov magnons centered around ry and with
an exponentially decaying probability of finding them away
from ry. This is due to the combination of the Bogolyubov
transformation and the relation

jar) = 3 Y ugexplig(r — rllow), (Al
I q
t =0 [AJ]
1
y
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S 1072} AF X
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FIG. 6. Magnon density profile p(r,t) at time ¢t = 0. The top
(bottom) panel shows cuts along the OX (diagonal) directions for
the FM (blue) and AF (yellow) ground states.
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where uq is the coefficient of the Bogolyubov transformation
(5). (i) The density of magnons in a single Bogolyubov
particle |o;) also decays exponentially when going away from
site rp. Indeed, the magnon density profile ¢ (r) of a single
Bogolyubov boson at time ¢ = 0, defined as

C(r) = (Dol ] 0,6 D) — (Dol ar,| D)

Ti%ry
1 .
- Z ezkrvk
N

k

2
+

2
, (A2)

is displayed in Fig. 7.

Altogether, the relation between the single spin flip created
at site ro of the AF ground state and the resulting distribu-
tion of magnons in such an excited state is a function of
the product of the two equations above. This leads to the
calculated magnon density profile (15) at time ¢ = 0 and to
the observed magnon density profile presented in Fig. 6. The

(a) FM : [—-- ED] [-—- st] (b) AF :

1. - - -

gé
.

|
§
|
?

5 0 5 0 5
Time [A/J]

0 5 0

intuitive understanding of this result is as follows: the AF
Hamiltonian makes it energetically favorable to cluster the
magnons (which are already present in the AF ground state)
near the additionally created spin flip at time r = 0, as already
stated in the main text.

APPENDIX B: COMPARISON BETWEEN LINEAR
SPIN-WAVE THEORY AND EXACT DYNAMICS

We briefly comment on the accuracy of employing linear
spin-wave theory (LSW) for the dynamics after a single spin
flip. To this end, we perform benchmark calculations for
a small 4 x 4 lattice with periodic boundary conditions,
comparing LSW with exact diagonalization (ED). The ED
results were obtained by numerically solving the Schrédinger
equation for the full quantum state using QUTIP 4.5.0 [49]. We
have further used functionality from NETKET 2.1b1 [50] to set
up the system and initial states.

Figure 8 shows a comparison between LSW and ED. In
both cases, the initial state is prepared by applying a single-
site spin flip, i.e., the S'l_ operator for fixed site /, to the
respective ground state. For the FM case [Fig. 8(a)], the LSW
and ED results are exactly identical, proving that LSW is exact
both for the ground state and for a single spin-flip excited state
in the FM Heisenberg model. The underlying reasons are (i)
the absence of quantum fluctuations in the ground state (the
fully polarized classical ground state is the exact vacuum) and
(i) the fact that magnon-magnon scattering in the FM occurs
only for two magnons scattering into two other magnons.
Therefore, a single magnon does not find any scattering part-
ner, and single-magnon excitations can propagate ballistically

in the FM.
e ED] [— LSW]

1 L L L
pACACA e |PACACA
1 L L
~——— ~———— m
1 L L L L
pPACACA o |PACACA
e AN
— T
0 5 0 5 0 5 0 5
Time [A/J]

FIG. 8. Propagation of a single spin flip created in the ground state of the Heisenberg model (ED) compared with the magnon density profile
p(r, t) of a single Holstein-Primakoff boson in the vacuum state of Bogolyubov bosons (LSW). Both results are shown for a 4 x 4 lattice with
periodic boundary conditions. At the initial time ¢ = 0 the spin-flip excitation is created on the site in the second row and second column of
the grid (highlighted by the colored background). (a) Ferromagnetic case. (b) Antiferromagnetic case. Here, the panels corresponding to sites
on the other antiferromagnetic sublattice with respect to the initial excitation have a gray shaded background.
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For the AF case [Fig. 8(b)] we do find some deviations,
which is expected. First of all, we note that the effective
exchange coupling within LSW needs to be corrected here us-
ing the so-called Oguchi correction factor [51], Jegs = 1.158J,
which is a well-known quantum-fluctuation correction stem-
ming from normal ordering of quartic terms in the spin-wave
Hamiltonian. Once this is taken into account, the results on
the antiferromagnetic sublattice on which the excitation is
created do agree qualitatively between LSW and ED. The
results on the other sublattice are out of phase, which to our
understanding is due to the fact that in the ED calculations
the ground state does not have a broken symmetry and hence
the ED calculations do not differentiate between the two
antiferromagnetic sublattices. Since the ground state of the
2D Heisenberg model in the thermodynamic limit is widely

believed to have broken symmetry [52,53], we suggest that the
LSW may actually better reflect the exact case of an infinite
lattice than the ED performed on a small cluster.

We further note that the magnon occupation is larger than
unity initially on the site where the spin flip occurs. This is
due to the fact that the bosonic occupation on this site is not
restricted to unity within our calculations. Such a constraint
is fulfilled only for the number of magnons averaged over
the entire lattice in the LSW calculations. Thus, the creation
of a boson at + = 0 happens on top of a background that
already has a partial bosonic occupation locally, leading to the
magnon density becoming larger than unity. Importantly, how-
ever, this relatively small quantitative discrepancy between
ED and LSW does not invalidO5ate the key result of the main
text.
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