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We show that the magnetic response of atomically thin materials with a Dirac spectrum and spin-orbit
interactions can exhibit strong dependence on electron-electron interactions. While graphene itself has a very
small spin-orbit coupling, various two-dimensional (2D) compounds “beyond graphene” are good candidates
to exhibit the strong interplay between spin-orbit and Coulomb interactions. Materials in this class include
dichalcogenides (such as MoS2 and WSe2), silicene, germanene, and 2D topological insulators described by the
Kane-Mele model. We present a unified theory for their in-plane magnetic field response leading to “anomalous,”
i.e., electron interaction dependent, transition moments. Our predictions can be potentially used to construct
unique magnetic probes with high sensitivity to electron correlations.
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I. INTRODUCTION

Two-dimensional quantum materials are characterized by
low-energy quasiparticle excitations that can be fully de-
scribed by an effective (2 + 1)-dimensional Dirac equation.
Naturally, various quantum electrodynamics (QED) phenom-
ena associated with Dirac physics manifest themselves in
these quantum condensed-matter systems [1–4] even though
the Dirac quasiparticles have a nonrelativistic nature and arise
purely from band structure considerations.

One such astonishing feature associated with this class
of materials is their magnetic response. In the presence of
a magnetic field, the Dirac fermions exhibit a plethora of
quantum phases which can range from anomalous quantum
Hall states [5,6] to quantum holography in graphene flakes
[7]. While most studies related to anomalous quantum Hall
physics have been conducted within the context of mass-
less two-dimensional (2D) Dirac fermions [5,6,8,9], recent
research has elucidated similar magnetic phenomena arising
in the regime of massive 2D Dirac fermions [10,11].

In this paper we explore the magnetic response of the
massive 2D Dirac fermions, with a special focus on the
effect of electron-electron interactions. The candidate ma-
terials for this study include (i) quantum Spin Hall (QSH)
insulator states described by the Kane-Mele model [12],
(ii) the atomically thin semiconductor family of transition-
metal dichalcogenides (TMDCs) [13,14], and (iii) the topo-
logical insulator family of the silicene-germanene class of
materials [15,16].
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Our chosen materials are characterized by a gapped Dirac
spectrum. In the case of QSH states described by the Kane-
Mele model, it was shown that the symmetry-allowed spin-
orbit coupling (SOC) leads to an opening of the energy gap
in the linear, gapless electronic dispersion of graphene [12].
This SOC thus converts the 2D semimetallic graphene into a
2D topological insulator with gapless edge modes while being
insulating in the bulk. These QSH states thus allow for the
generation of dissipationless spin currents and are a topic of
immense interest [12,17,18]. However, it was also pointed out
that while the SOC in graphene is of the order of 4 meV, the
gap generated by it is rather small, of the order of ∼10−3 meV
[19,20]. One of the goals of the present work is to study in
detail the in-plane magnetic response of the Kane-Mele model
where we show that Coulomb interactions can have quite a
significant effect and lead to an enhanced spin-flip (transition)
magnetic moment.

Our theoretical approach is conceptually similar to cal-
culations performed in relativistic QED [21,22] where
Schwinger’s celebrated vertex correction to the Dirac elec-
tron magnetic form factor translates into an anomalous (fine-
structure constant dependent) g factor. Of course all materials
considered in this work are nonrelativistic systems with effec-
tive Dirac quasiparticles; thus, any “anomalous” corrections to
the spin response will originate from the Coulomb interaction
between quasiparticles. Naturally, the results for the Kane-
Mele model and the other 2D systems with SOC will be
anisotropic since it is well known that all of them exhibit
strong intrinsic spin anisotropy, with the spin z component
(perpendicular to the planes) conserved. This means that
only in-plane magnetic fields, leading to off-diagonal (spin-
flip) transitions, can give rise to anomalous, i.e., Coulomb
interaction dependent, transition magnetic moments. We also
point out that interaction-dependent magnetic moments were
recently studied for three-dimensional Dirac and Weyl insu-
lators [23]. Compared to those systems, the spin response of
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2D materials with SOC is also, naturally, quite different, and
we describe it in detail in this work.

As mentioned before, we will also extend and apply our
formalism and calculations of anomalous transition magnetic
moments to two other systems, which include the atomically
thin TMDCs and silicene-germanene class of materials. Be-
sides being gapped, these materials also display strong intrin-
sic spin-orbit coupling effects [14,24–31]. Thus, the interplay
of electron-electron interactions and SOC in these systems is
a topic of great interest.

The general structure of the paper is as follows: we will
begin with the Kane-Mele model in Sec. II, providing the
general methodology and results for the one-loop correction
to the transition magnetic moment. We will then adapt and
extend this formalism to TMDCs and the silicene-germanene
class of materials in Secs. III and IV. Finally, we will
conclude in Sec. V with an outlook that summarizes our
results. We also discuss possible experimental probes for
detection of the interaction effects calculated in this work.

II. EFFECT OF COULOMB INTERACTIONS ON THE
TRANSITION (SPIN-FLIP) MAGNETIC MOMENT WITHIN

THE KANE-MELE MODEL

The Kane-Mele model describes the general 2D Dirac
Hamiltonian with a mass term that originates from the spin-
orbit coupling. This SOC renders the system gapped, and
much of this section will be devoted to understanding the
interplay of Coulomb interactions and the SOC in rela-
tion to the transverse magnetic response. Let us begin with
the general procedure to calculate the one-loop correction
to the transition moment for this model. The Hamiltonian of
the Kane-Mele model [12] is

H = vσ · k + λσzsz, (1)

where v is the Fermi velocity in the material. It is convenient,
and customary in the literature, to label the spin z compo-
nent of the fermion as lowercase sz = ±1 for spins up and
down. The Pauli matrices σ̂i act in pseudospin (sublattice)
space, and the spin-orbit coupling is given by λ. In our
derivations we choose the convenient natural units h̄ = v = 1,
unless otherwise mentioned. From the Hamiltonian we can
see that the spin in the z channel is always conserved. This
means that interaction corrections to the diagonal (same spin)
transitions are forbidden, while spin-flip transitions [caused
by magnetic field in the Sx (or Sy) direction] can acquire
Coulomb interaction dependent components. We refer to
such interaction contributions as “anomalous” spin response
components.

Without loss of generality, in this and the next sections, we
work in a given valley (already assumed in the above Hamil-
tonian). It is easy to see that the results for the spin response
are valley independent (which also applies to the interaction
corrections since the long-range Coulomb interaction does not
mix valleys). We will also be assuming, in this and all other
sections, that the system always remains an insulator (i.e., the
chemical potential is in the gap).

Within the Hamiltonian of the Kane-Mele model, the dis-
persion relation εk and eigenfunctions at momentum k are
given as

εk = ±
√

k2 + λ2, (2)

�(k)+ = k
√

2
√

ε2
k − λ|εk|

(
1

|εk |−λ

(kx−iky )

)
, (3)

�(k)− = k
√

2
√

ε2
k + λ|εk|

(
1

|εk |+λ

(kx−iky )

)
. (4)

The wave functions �(k)s are labeled by the spin index sz =
s = ±1.

Next, we consider coupling to a uniform in-plane magnetic
field of the form BxSx, with the coupling constant given
by the g factor times the effective Bohr magneton set to 1
for convenience, gμB = 1. We define a quantity we call the
bare transition magnetic moment as μ = 2〈↓|Sx|↑〉. Here, the
(normalized) spin-up state is a product of the pseudospin

and spin wave functions: |↑〉 = �(k)+χ+, where χ+ =
(1

0

)
is

the spin-up spinor in spin space. Similarly, |↓〉 = �(k)−χ−,

χ− =
(0

1

)
. From the usual spin-1/2 algebra we have

2Sxχ+ = χ−.
Using the above wave functions, we calculate the bare

transition moment for this model:

μ = 2〈↓|Sx|↑〉 = [χ†
−(2Sx )χ+][�(k)†

−�(k)+]

= �(k)†
−�(k)+ = k√

k2 + λ2
. (5)

From now on we will use the shorthand notation |↑〉, |↓〉
in all calculations in this section as well as for the models
considered in subsequent sections.

We proceed to calculate the effect of electron-electron
(Coulomb) interactions on the transition magnetic moment.
Basic Feynman diagrams for the bare and one-loop (vertex)
corrections are given in Fig. 1. Invoking Feynman rules, we
will write an analytic expression corresponding to the vertex
function given in the right panel of Fig. 1.

Therefore, the one-loop Coulomb interaction correction to
the magnetic moment (for q → 0) is given as

δμ = 2
∑

p

i
∫

dω

2π
〈↓|Gs=−1(p, ω)SxGs=+1(p + q, ω)|↑〉

×V (|p − k|), (6)

where V (p) = (2πe2/p) is the Coulomb interaction and the
corresponding Green’s function for this model is

G(k, ω) = ω + (σ · k + λσzsz )

ω2 − ε2
k + iη

. (7)

Using the above equations along with the corresponding wave
functions [Eqs. (3) and (4)], we derive an expression for the
one-loop interaction correction,

δμ = k√
k2 + λ2

αW (k/λ), (8)
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FIG. 1. Left: Feynman diagram for the bare transition moment
with uniform (zero momentum, q → 0) in-plane magnetic field Bx ,
corresponding to field coupling of the form Bx (q → 0)Sx . We set the
field coupling prefactor gμB = 1 in this field direction for simplicity
(it is known that the g factor can be strongly material dependent
and should be restored when comparison with experiment is made).
Right: Vertex diagram associated with the one-loop Coulomb inter-
action correction shown by the wiggly line V(p) = 2πe2/p.

where we have defined

αW (k/λ) = λ2

2

∫
d2 p

(2π )2

V (|p − k|)
|εp|3

(
1 − p · k

k2

)
, (9)

with α = e2/ε h̄v being the effective fine-structure constant
representing the strength of Coulomb interactions and ε being
the dielectric constant.

The variation of the correction function W (k/λ) with the
dimensionless band momenta (k/λ) is shown in the top panel
of Fig. 2. The Coulomb interaction correction peaks at k = 0
and thereafter decays with the increase in band momenta.

Using Eqs. (5), (8), and (9), we write the total transition
moment as

μ + δμ = k√
k2 + λ2

[
1 + λ2

2

∫
d2 p

(2π )2

V (|p − k|)
|εp|3

×
(

1 − p · k
k2

)]
. (10)

To display the effects of the Coulomb interaction correction,
we show the dependence of the total transition moment μ +
δμ with the dimensionless band momenta for various values
of the coupling α in the bottom panel of Fig. 2.

The maximum value of α = 2.2 can, in principle, be
achieved in suspended samples, while additional effects lead-
ing to coupling constant renormalization due to self-consistent
screening and/or substrate effects should also be taken into
account. All of these lead to a decrease in the effective
coupling. First, the presence of a substrate with dielectric
constant κ will reduce the Coulomb coupling α via α →
α/ε, where ε = (1 + κ )/2, assuming the 2D material is on a
substrate with air on the other side. For example, the dielectric
constant of the commonly used SiO2 is κ ≈ 4, leading to a
decrease of α by a factor of 2.5. Second, due to the electron
polarization in the 2D material, the Coulomb interaction is
screened, which can be taken into account self-consistently
within the usual random-phase approximation (RPA) scheme.
The effective Coulomb interaction is obtained by the simple
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FIG. 2. Top: Variation of the correction function W (k/λ) with
rescaled momentum k/λ. The magnitude of the correction is large
and maximum at k = 0. Inset: Low-energy band structure for the
Kane-Mele model. Bands are spin degenerate with a gap that is
generated by the spin-orbit interaction λ = 1μeV. Bottom: Varia-
tion of the total spin-flip transition moment, μ + δμ = k√

k2+λ2
[1 +

αW (k/λ)], with rescaled momentum (k/λ). With the increase in
α we see an enhancement in the total transition moment. We re-
late this increase to the enlarged correction effects from Coulomb
interactions.

replacement V (k) → V (k)/[1 − V (k)�(k)]. In this way the
results become reliable even in the regime of strong bare cou-
pling (e.g., α = 2.2). We present results for static screening,
which involves the static polarization function �(k, ω = 0) ≡
�(k) for a material with a gapped 2D Dirac spectrum [32,33],
appropriate for the Kane-Mele model:

�(k) = − 1

π

(
λ

v2

)
− k

2πv

[
1 − 4λ2

v2k2

]
tan−1

(
vk

2λ

)
. (11)

When we incorporate the effects of the gapped polarization,
the total transition magnetic moment transforms to

μ + δμ = k√
k2 + λ2

[
1 + λ2

2

∫
d2 p

(2π )2

V (|p − k|)
|εp|3

× 1

[1 − V (|p − k|)�(|p − k|)]
(

1 − p · k
k2

)]
,

(12)

where we have used again v = 1.
Within the RPA, assuming a suspended sample, the cor-

rection function and the total transition magnetic moment are
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FIG. 3. Top: A comparison of the correction function W (k/λ)
with rescaled momentum k/λ for the one-loop case and the RPA. The
magnitude of the correction is seen to decrease with the inclusion of
self-consistent screening. Bottom: Comparative plots of the variation
of the spin-flip transition moment, μ + δμ, with rescaled momentum
(k/λ) for the suspended case within the formalism of one-loop, RPA,
and no-Coulomb correction effects.

shown in Fig. 3. It is evident that self-consistent screening
further decreases the correction function, as expected. This
decrease is also manifested in the decrease of the total transi-
tion magnetic moment.

In the next section we extend this formalism to calculate
the one-loop Coulomb interaction correction for the transition
moment in atomically thin dichalcogenides.

III. ANOMALOUS TRANSITION MOMENT IN THE
ATOMICALLY THIN FAMILY OF DICHALCOGENIDES

In contrast to the Kane-Mele model, the atomically thin
TMDCs display a large spin-independent gap (approximately
of the order of a few eV) which originates from the broken
inversion symmetry of the sublattice of these systems [14,24].
Along with a large spin-independent gap which we refer
to as �, these materials also display strong intrinsic spin-
orbit coupling arising from the admixture of the d orbitals
of the transition metals [24]. In this section, we will probe
the Coulomb interaction effect on the SOC-induced magnetic
moment of these class of materials. Our procedure will be the
same as before.

The effective low-energy Hamiltonian associated with the
monolayer TMDCs [14]

H = σ · k + (�/2)σz − (λ/2)(σz − 1)sz. (13)

Here, � is the spin-independent gap, and λ is the spin-orbit
coupling. The model parameters for MoS2 are � ≈ 1.66 eV,
2λ ≈ 0.15 eV; for WS2 they are � ≈ 1.79 eV, 2λ ≈ 0.43 eV,
and for WSe2 they are � ≈ 1.6 eV, 2λ ≈ 0.46 eV [14,24],
which clearly indicate that the family of TMDCs can be
classified by a regime in which the spin-independent gap is
much larger than the spin-orbit coupling,

�/λ � 1. (14)

The exact wave functions at momentum k for this class of
materials are written as

�(k)s
n = k√

k2 + (Es
k,n)2

(
1

Es
k,n/(kx − iky)

)
, n = 1, 2,

(15)
where s is the spin index and n = 1 and n = 2 label the
conduction band and valence band, respectively. Here, we
have defined Es

k,n as the quantities

Es
k,n = εs

k,n − �/2, s = sz = ±1. (16)

εs
k,n represent the eigenenergies:

εs
k,1 = λs/2 + εs

k > 0, n = 1, (17)

εs
k,2 = λs/2 − εs

k < 0, n = 2, (18)

with εs
k appropriately defined as

εs
k ≡ +

√
k2 + [(� − λs)2/4]. (19)

In the inset of the top panel of Fig. 4, we show the low-
energy band structure for this group of materials correspond-
ing to Eq. (19). These bands are nondegenerate, showing spin
inversion with a large spin-independent gap.

The bare transition moment is calculated using the wave
functions for the conduction band [given in Eq. (15)],
leading to

μ = 2〈↓|Sx|↑〉 = k2 + E+
k,1E−

k,1√
(k2 + [E+

k,1]2)(k2 + [E−
k,1]2)

. (20)

For the correction to the bare transition moment we will
use the vertex function and Eq. (6). The Green’s function for
this model is

Gs(p, ω) = 1

2εs
p

[
εs

p + σ · p + σz(� − λs)/2

ω − εs
p,1 + iη

− −εs
p + σ · p + σz(� − λs)/2

ω − εs
p,2 − iη

]
. (21)

Using the above Green’s function, we first perform the
frequency integral in Eq. (6) with the result

i
∫

dω

2π
[G−G+] ≈ 1

4ε+
p ε−

p

1

[λ2 − (ε−
p + ε+

p )2]

[
λ2 �

εp
(σ · p)

− 2λ2 p2

εp
(σz + 1) − 4λεp(σ · p)σz

]
. (22)
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FIG. 4. Top: Correction function H (2k/λ) for the dichalco-
genides. Here, we have used the rescaled momentum: 2k/�. As
can be seen, at 2k/� = 0, the value of the correction function
H (2k/�) is very small (∼0.08.) The inset in the top panel shows
the corresponding dispersion relation for the dichalcogenides. The
conduction bands are degenerate at k = 0 and are also seen to
undergo a band inversion. Bottom: Bare transition moment for the
dichalcogenides for various values of λ/�. For TMDCs with the
relevant value of λ/� � 0.15, we see that the value of μ is almost a
constant ≈ 1 and shows negligible variation with the momentum.

Here, we have expanded the numerator up to O[λ2]. The
prefactors of Eq. (22) given by the energy denominators
can be taken at λ = 0 because their expansion starts from
a constant and the next order is O[λ2]. Following Eq. (6),
the interaction correction to the transition moment is derived
by taking the expectation value of the above equation with
respect to the wave functions �(k)±1 [Eq. (15)],

δμ =
∑

p

V (k − p)
(−1)

16ε4
p

λ2 2

k2 + E2
k

�(p, k), (23)

where the function �(p, k) has been calculated as

�(p, k) = 1

εp
{�Ek (k · p) − 2p2k2}

+ 2εp(k · p)

(
1 − �

2εk

)
. (24)

In the above expression, we have used the following defini-
tions:

Ek = εk − �/2, εk ≡ +
√

k2 + [�2/4]. (25)

Finally, we derive the total transition moment as the sum
of the bare [Eq. (20)] and the Coulomb interaction dependent
spin-flip transition moments [Eq. (23)],

μ + δμ = 〈↓|2Sx|↑〉[1 + α(2λ/�)2H (2k/�)], (26)

where the correction term is conveniently written as

δμ = 〈↓|2Sx|↑〉α(2λ/�)2H (2k/�), (27)

with the function H (2k/�), which can be easily evaluated
using Eqs. (23) and (24).

In the top panel of Fig. 4 we show the variation of the
Coulomb interaction correction function H (2k/�) for α =
4.095 with respect to the dimensionless band momenta. We
observe that the magnitude of this correction is very small
for this class of materials with little to no variation. Thus,
the effect of the Coulomb interaction correction is the least
on the spin-flip transition moment in this class of materials.
This can be understood from the fact that the spin-independent
gap for these materials overwhelms the contribution from the
spin-orbit coupling term. Hence, this class of materials does
not offer the unique tunability of the Coulomb interaction
dependent effect of the spin-flip transition moment, in the
sense that the interaction corrections are negligibly small for
all reasonable values of α. Additionally, from Eq. (12), which
takes into account effects beyond one loop within the RPA
self-consistency for the Kane-Mele model, we concluded that
the Coulomb interaction correction effects decreased further.
Similar RPA calculations can be performed for this class
of materials; however, due to the intrinsic smallness of the
one-loop results in this case, the RPA formalism leads to only
a small additional decrease of the already small correction
effect.

In the next section, we will derive the anomalous transition
moment for the silicene-germanene class of materials.

IV. EFFECT OF COULOMB INTERACTIONS ON
TRANSITION MAGNETIC MOMENTS IN THE

SILICENE-GERMANENE CLASS OF MATERIALS

An application of transverse electric field along the stag-
gered sublattices of this class of materials causes the low-
energy band structure to evolve from a topological insulator
(TI) to a bulk insulator (BI) via a valley spin-polarized metal
(VSPM) state [25,26,34–36]. In this section, we will first
summarize the low-energy band structure of this class of
materials and show that the evolution of the low-energy band
structure from a TI to a BI via a VSPM state can also be
attained with proper tuning of the dimensionless parameter
which represents the ratio of the spin-independent gap to
the spin-orbit coupling (�/λ). This class of materials thus
open up the possibility to explore the Coulomb interaction
correction for a large parameter regime.

The Hamiltonian of this class of materials [25,26,35] is

H = vσ · k + (� − λsz )

2
σz. (28)
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FIG. 5. For the purposes of illustration we plot the evolution
of energy dispersion curves for silicene-germanene-type materials.
With the proper tuning of the ratio of the spin-independent gap to
spin-orbit coupling (�/λ), the band structure shows a transition from
a topological insulator (� � λ) to a band insulator (� � λ) via
the quantum critical VSPM state (� = λ). Subsequent removal of
the spin degeneracy is also observed for the bulk insulator regime
(� � λ).

The exact wave functions at momentum k for the Hamilto-
nian given by Eq. (28)

�(k)s
n = k√

k2 + (
Es

k,n

)2

(
1

Es
k,n/(kx − iky)

)
, n = 1, 2,

(29)
where n = 1 labels the conduction band and n = 2 labels the
valence band. We have defined Es

k,n as

Es
k,n = εs

k,n − (� − λs)

2
, s = sz = ±1, (30)

where the eigenenergies associated with the conduction and
valence bands are given by εs

k,n:

εs
k,1 = εs

k > 0, n = 1, (31)

εs
k,2 = −εs

k < 0, n = 2, (32)

and we use the definition

εs
k ≡ +

√
k2 + [(� − λs)2/4]. (33)

Figure 5 shows the low-energy band structure correspond-
ing to Eq. (33) plotted for the three different values (�/λ) �
1, (�/λ) = 1, and (�/λ) � 1. As can be seen, the three
different cases corresponding to different values of (�/λ) are
consistent with the TI, VSPM, and a BI state. General values
of the spin-orbit coupling for these class of materials are in
the range of λ ≈ 3–40 meV [37,38]. Next, we derive the ex-
pression for the bare transition moment using the conduction
band wave functions given by Eq. (29).

From Eq. (29), we can write the corresponding conduction
band (n = 1) wave functions |↑〉 and |↓〉 as

|↑〉 = �(k)+1 = k√
k2 + (E+

k,1)2

(
1

E+
k,1/(kx − iky)

)
, (34)

|↓〉 = �(k)−1 = k√
k2 + (E−

k,1)2

(
1

E−
k,1/(kx − iky)

)
. (35)
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FIG. 6. Top: Variation of the bare transition moment μ =
〈↑|2Sx|↓〉 with the rescaled momentum 2k/λ for several values of
�/λ. As the coupling parameter �/λ increases, the system makes
a transition from TI to BI via the VSPM state (�/λ = 1). Bottom:
Variation of the correction function F (2k/λ) with 2k/λ for various
values of coupling 0 < �/λ < 2. The correction term is seen to
be large for the topological insulators (�/λ � 1) compared to the
VSPM (�/λ = 1) or bulk insulator states (�/λ � 1).

Using Eqs. (34) and (35), we derive an expression for the band
momentum dependent bare transition moment,

μ = 2〈↓|Sx|↑〉 = k2 + E+
k,1E−

k,1√
(k2 + [E+

k,1]2)(k2 + [E−
k,1]2)

. (36)

In the top panel of Fig. 6, we show the variation of the
bare transition moment μ ≡ 〈↓|2Sx|↑〉 with a dimensionless
rescaled momentum (2k/λ) for various values of (�/λ). The
overall variation of the spin-flip transition with momentum
for different values of the spin-independent gap can be intu-
itively understood in the following way. At �/λ = 0, which
corresponds to the Kane-Mele model, the system is stiff in the
spin z direction as the term proportional to sz favors ordering,
and thus, a transverse field at zero momentum (uniform field)
cannot cause spin flip, while at finite band momentum this
becomes possible due to the presence of the kinetic energy
term. In the opposite extreme, �/λ � 1, a spin flip can be
achieved effortlessly as the sz term can be neglected.

Finally, we turn to the interaction corrections. The expres-
sion for the Green’s function G(k, ω) corresponding to the
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Hamiltonian of Eq. (28) reads

G(k, ω) = 1

2εs
k

[
εs

k + σ · k + (
�−λsz

2

)
σz

(ω − εs
k + iη)

+ εs
k − σ · k − (

�−λsz

2

)
σz(

ω + εs
k − iη

)
]
. (37)

We evaluate the frequency integral in Eq. (6) by using the
Green’s function expression from Eq. (37), resulting in

i
∫

dω

2π
[G−G+] = 1

2ε−
p ε+

p

{
1

(ε+
p + ε−

p )

}[
ε−

p ε+
p − (σ · p)2

+
(

λ2 − �2

4

)
+ λ(σ · p)σz

]
. (38)

We substitute the above equation along with the conduction
band wave functions given by Eqs. (34) and (35) in Eq. (6) to
derive the expression for the correction term:

δμ = 〈↓|2Sx|↑〉
∑

p

V (|p − k|)
2ε+

p ε−
p (ε+

p + ε−
p )

[
ε+

p ε−
p − p2

+
(

λ2 − �2

4

)
+ λ(p · k)

{
ε−

k − ε+
k − λ

k2 + E+
k,1E−

k,1

}]

= 〈↓|2Sx|↑〉αF (2k/λ,�/λ). (39)

The function F (2k/λ,�/λ) quantifies the Coulomb inter-
action correction effects, and we have defined it as

αF (2k/λ,�/λ) ≡
∑

p

V (|p − k|)
2ε+

p ε−
p (ε+

p + ε−
p )

[
ε+

p ε−
p − p2 +

(
λ2 − �2

4

)
+ λ(p · k)

{
ε−

k − ε+
k − λ

k2 + E+
k,1E−

k,1

}]
, (40)

with α = e2/ε h̄v being the effective fine-structure constant
that gives the strength of the interactions.

Using Eqs. (36) and (39), we write the expression for the
total spin-flip transition moment as

μ + δμ = 〈↓|2Sx|↑〉{1 + αF (2k/λ,�/λ)}. (41)

To assess quantitatively the effect of the Coulomb interaction
as a function of the band momentum, we plot the variation
of the function F (2k/λ) with the rescaled momentum (2k/λ)
for several values of (�/λ) in the bottom panel of Fig. 6.
The correction function is seen to be maximum at k = 0
for all the different values of (�/λ) and is seen to decrease
with increasing values of the band momenta. Although for
(�/λ) � 1 the bare transition moment μ was found to be
zero at k = 0, the Coulomb interaction correction effects turn
out to be the largest for this regime. However, increasing the
value of (�/λ) leads to a decrease in the Coulomb interaction
correction. Of course, the correction function F (2k/λ) has
to be multiplied by the dimensionless Coulomb interaction
strength α ∼ 1, which is strongly material and environment
dependent. It is clear from Fig. 6 that the overall interaction
effect is strongest in the parameter regime �/λ ≈ 0, i.e.,
in the Kane-Mele universality class, while for �/λ > 1 and
beyond the correction becomes gradually smaller and less
pronounced even for substantial values of α as the system
becomes dominated by the spin-independent gap.

V. DISCUSSION AND OUTLOOK

In summary we have analyzed the effect of Coulomb
interactions on the spin transition magnetic moment for the
case of atomically thin hexagonal lattices with spin-orbit
interactions, such as 2D topological insulators (described by
the Kane-Mele model), dielectric group-VI dichalcogenides,
and the silicene-germanene class of materials. Due to the
nonrelativistic nature of these systems and because of the
two-dimensional nature of all the studied materials (meaning
the spin-orbit interaction is a relatively small effect on top of
the band structure), the anomalous, i.e., Coulomb, interaction

effect manifests itself anisotropically and, indeed, only in the
spin-flip channel for magnetic fields in the material planes.
This is in contrast (although conceptually and technically very
similar in spirit) to the famous anomalous magnetic moment
of the electron in relativistic QED where the Schwinger result
renormalizes directly and isotropically the electron g factor.
We can view our results as yet another important mani-
festation of (moderately strong) electron-electron interaction
effects in graphenelike hexagonal monolayer systems which
exhibit Dirac quasiparticle spectra.

As discussed in the previous section, which contains
results across all parameter regimes (Fig. 6), it appears that
the Kane-Mele limit (i.e., no spin-independent gap but a
gap induced by the spin-orbit interaction) represents the
point in parameter space where the Coulomb corrections
are the strongest (Fig. 2). On the other hand, the monolayer
dichalcogenides which are characterized by α as large as
α ≈ 4 (much larger than suspended graphene with SOC)
have relatively large gaps but reside firmly in the parameter
regime �/λ > 1, making the anomalous effects much smaller
and therefore harder to detect (see Fig. 4). We also note that
our calculations were performed to first order in the bare
Coulomb interaction α when the interaction effects were
small, while we have used the RPA approximation, which
takes into account self-consistent screening, for large bare
α (relevant to suspended samples). The difference between
the two approaches is important in practice only for the
Kane-Mele model. Additionally, our work displays that the
control of interactions can be achieved, for example, by using
different substrates which can affect the Coulomb interaction
via different levels of dielectric screening.

The anomalous spin contributions investigated in this work
could lead to detectable signatures in experiments sensitive
to spin relaxation and decoherence phenomena. For the case
of sufficient spin-orbit coupling and band gaps in the range
of ∼1 eV, a very promising magneto-optical Kerr effect
technique previously employed to measure spin decoherence
times [39,40] may be sensitive enough to detect such anoma-
lous contributions. However, it is important to emphasize that
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the spin relaxation mechanism in 2D materials is very material
specific and depends strongly on various parameters such
as ripples, phonons, the nature of substrates, and magnetic
impurities [41–46]. It would be interesting to investigate the
effect of anomalous spin contributions on the spin relaxation
mechanism with the inclusion of various dissipative effects,
such as phonons, ripples, and impurities. A microscopic the-
ory that studies the effect of anomalous spin contributions on
spin-flip lifetimes is well beyond the scope of the present work
and is left for the future.
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