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Helical spin liquid in a triangular XXZ magnet from Chern-Simons theory
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We propose a finite-temperature phase diagram for the two-dimensional spin-1/2 J1 − J2 XXZ antiferromag-
net on a triangular lattice. Our analysis, based on a composite fermion representation, yields several phases. This
includes a zero-temperature helical spin liquid with N = 6 anisotropic Dirac cones, and with nonzero vector
chirality implying a broken Z2 symmetry. It is terminated at T = 0 by a continuous quantum phase transition
to a 120◦ ordered state around J2/J1 ≈ 0.089 in the XX limit; these phases share a double degeneracy, which
persists to finite T above the helical spin liquid. By contrast, at J2/J1 � 0.116, the transition into a stripe phase
appears as first order. We further discuss experimental and numerical consequences of the helical order and the
anisotropic nature of the Dirac dispersion.
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I. INTRODUCTION

Two-dimensional (2D) s = 1/2 magnets with frustrated
interactions attract a great deal of interest because of their
potential to host unconventional states of quantum matter
such as spin liquids (SLs) [1–9]. Quantum SLs are long-range
entangled states that give rise to emergent gauge fields and
represent deconfined phases, where the quasiparticles exhibit
fractional quantum numbers. They do not break rotational
symmetry, thus excluding orientational long-range ordering.
Traditionally, the triangular lattice has been regarded as a
promising ground for realization of a SL [10–15]. In this set-
ting, the frustrated spin-1/2 J1 − J2 XXZ antiferromagnet on
a triangular lattice is one such candidate for a SL ground state
in a parameter window around J2/J1 ∼ 0.1. The Hamiltonian
of the model is given by

Ĥ = Ĥ1 + Ĥ2, (1)

where

Ĥl = Jl

2

∑
r,ν

[
Ŝ+

r Ŝ−
r+μl

ν

+ Ŝ−
r Ŝ+

r+μl
ν

+ 2gŜz
rŜz

r+μl
ν

]
,

where l = 1, 2 and a parameter g measures the anisotropy of
the interactions. Vectors μ1

ν = eν and μ2
ν = aν , ν = 1, 2, 3,

point to nearest-neighbor (NN) and next-nearest-neighbor
(NNN) sites on the triangular lattice, respectively. The spin-
orbit coupled version of the model is believed to be related to
the triangular lattice antiferromagnet YbMgGaO4 [16–21].
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The Heisenberg model, g = 1, has been studied numeri-
cally using variational Monte Carlo [22–25] and the density
matrix renormalization group (DMRG) [26–29]. The DMRG
study of Refs. [28,29] and the variational Monte Carlo study
of Ref. [24] explore the phase diagram of the model Eq. (1)
ranging from the XX limit, g = 0, all the way to the Heisen-
berg limit with g = 1. The nature of the SL in Ref. [24] was
identified with the U (1) Dirac gauge theory which emerges
in the Heisenberg limit in an approximate parameter interval
0.08 � t � 0.2, t = J2/J1 [23,25]. The interval where the
SL is realized appears to be narrower in the XXZ model
[24,28,29].

In this paper, we carry out an analysis based on a com-
posite fermion representation. An advantage of the fermion
representation is that it can be used to effectively describe
both the ordered phases as Chern-Simons (CS) supercon-
ductors [30], and spin liquids, where the fermions can be
“deconfined.” There are two main differences between our
work and previous approaches to establish spin liquids: In
our framework, we start by focusing on the ordered states of
the spin-1/2 XXZ magnet via treating it as superconducting
states of spinless Chern-Simons fermions. We then study
the stability region of the ordered state, assuming the spin
liquid emerges when the ordering breaks down. Apart from
developing the general approach based on breaking of the
Chern-Simons superconductivity for detecting instability of
the spin order, we apply the method to the specific model
under consideration. The purpose of this application is to
propose an alternative state—the helical spin liquid. In part,
our work is a study that suggests the existence of different
types of phases with peculiar properties, which also indicates
where they may be realized. Our approach proposes a scenario
of unconventional (deconfined) phase transitions and quantum
phases that can be realized in frustrated magnets.

The performed analysis leads us to propose that the rota-
tional O(2) symmetry is restored, and a kind of Dirac SL is
stabilized in the XXZ model in a narrow interval of parameter
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FIG. 1. A schematic finite-temperature phase diagram of the
J1 − J2 XXZ model on a triangular lattice from our composite
fermion analysis. Broken symmetries are indicated in bold font. The
thick (blue) line represents the first-order transition from helical into
stripe ordered phases. The thick horizontal (yellow) line represents
the T = 0 helical Dirac SL. Numerical values for J2/J1 correspond
to the XX case, g = 0.

t = J2/J1, e.g., 0.089 � t � 0.116 in the XX limit. The nature
of this SL appears to be different from the Heisenberg limit
in a crucial way: In the XXZ model it exhibits spontaneous
breaking of the Z2 symmetry, inherent to the 120◦ antiferro-
magnetic ordering of the XX model at J2 = 0. We thus predict
a SL with long-range Z2 order and the vector chirality playing
the role of the order parameter which distinguishes between
two degenerate SL ground states. The other central finding
is that such a SL is described in terms of N = 6 copies of
Dirac fermions. Each Dirac cone is predicted to exhibit a
uniaxial anisotropy, although the complete spectrum preserves
the C3 symmetry of the lattice. A finite vector chirality and the
anisotropy of individual Dirac cones are the main properties
of the proposed SL, dubbed here a helical SL, which may be
detected using DMRG, tensor network, or variational Monte
Carlo approaches. They may be also observed in spin-resolved
neutron scattering.

Furthermore, our theory predicts a rich finite-temperature
phase diagram (Fig. 1). As in the classical XX model
[31–33], a Berezinskii-Kosterlitz-Thouless (BKT) transition
takes place first into a helical phase with restored O(2), but
broken Z2 symmetries. At yet higher temperature, there is an
Ising-like transition to a disordered paramagnet. Finally, we
argue that the T = 0 transition from the 120◦ ordered state
to the helical SL is continuous, while the one into the stripe
phase is first order.

We treat these transitions by first developing a theory
of the 120◦ state via Chern-Simons (CS) superconductivity
[30], considering the stability of the superconducting solution
upon increasing t . The superconducting order breaks down at
t ∼ 0.089 for g = 0, signaling an emergence of the Dirac SL
state with broken Z2 symmetry. Next, we identify a CS super-
conductor describing the collinear stripe phase, energetically
favorable beyond t ∼ 0.116.

(a)

(d)

(b)

(e)

(g)

(c)

(f )

FIG. 2. (a), (d), (f) Single-particle dispersion relations on a tri-
angular lattice for different values of t = J2/J1. Schematic nature
of the phases condensed at the K (b), K ′ (c), and M (g) points of
the BZ (e).

The Hamiltonian (1) can be regarded as a model of hard-
core bosons hopping on a triangular lattice with NN amplitude
J1 and NNN amplitude J2. At small J2 (small t < 1/8),
the single-boson dispersion exhibits two degenerate minima
located at the K and K ′ points of the Brillouin zone (BZ)
[Fig. 2(a)]. This implies that noninteracting bosons can con-
dense to any superposition of these two states, however, the
hard-core interactions prevent forming a density modulation
and enforce condensation into one of these two points. This
leads to the doubly degenerate ground states, identified with
the planar 120◦ Néel configurations of spins with two he-
licities [Figs. 2(b) and 2(c)]. At t = 1/9 the single-particle
dispersion acquires an additional minimum at the M point,
midway between K and K ′, while at t = 1/8 the dispersion
is triply degenerate [Figs. 2(d) and 2(e)]. At t > 1/8 the
global minimum is at M, signaling semiclassically a first-
order transition [34,35] into a state with the collinear stripe
order shown in Fig. 2(g).

II. EMERGENCE OF ANISOTROPIC DIRAC FERMIONS

This picture is severely modified by quantum fluctua-
tions. We account for these by reformulating the model
(1) as a theory of spinless lattice fermions coupled to
a CS gauge field. The fermionization automatically takes
care of the hard-core condition. The spin operators may be
represented as S±

r = exp (ie
∑

r′ �=r arg[r − r′]nr′ ) f ±
r , where

e = 2l + 1 is an odd integer representing the CS charge,
f ±
r are creation/annihilation operators of canonical spinless

fermions, nr = f †
r fr = S+

r S−
r is the particle number operator,

and the summation runs over all lattice sites. The XX part of
the Hamiltonian (1) acquires the form

Hl = Jl

2

∑
r,ν

f †
r fr+μl

ν
ei�r,r+μl

ν + H.c., (2)

where �r1,r2 = ∑
r [arg(r1 − r) − arg(r2 − r)]nr is a gauge

field associated with the NN and NNN links on the triangular
lattice. It introduces CS magnetic flux threading the unit
cell of the triangular lattice, �r = �r,r+e1 + �r+e1,r+e1+e2 +
�r+e1+e2,r+e2 + �r+e2,r, which is the lattice analog of �r =
curl � (for details, see Appendix A). The Hamiltonian (1) thus
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FIG. 3. (a) and (b) Distinct π -flux configurations of CS fermion-
ization, corresponding to two helicities of the 120◦ order. (c) π -flux
configuration corresponding to the stripe order.

can be rewritten in terms of fermions [30,36–40] fr coupled
to the U (1) CS gauge field [37].

To illustrate how this U (1) field affects the fermion dy-
namics, we analyze the XX limit of the Hamiltonian (1).
In the absence of a net magnetization the CS fermion state
is half filled, 〈n〉 = 1/2. This implies that the CS phases
create 2iπ〈n〉 → iπ flux, threading the unit cell. The double
degeneracy (two helicities) of the 120◦ state is reflected in the
staggered π -flux patterns [Figs. 3(a) and 3(b)] for which there
are two inequivalent choices, distinguished by the sign of the
z component of the vector chirality, defined on a triangular
plaquette as [41,42]

κz = εi j
(〈

Ŝi
1Ŝ j

2

〉 + 〈
Si

2Ŝ j
3

〉 + 〈
Ŝi

3Ŝ j
1

〉)
, (3)

where 〈· · · 〉 stands for the quantum expectation value and
i, j = x, y. Importantly, this Z2 order parameter, reflecting the
two different π -flux patterns, persists in the SL phase, again
implying a double degeneracy.

Consider now the fermionized Hamiltonian for J2 > 0.
The NNN bonds form three disjoint large triangular lattices,
labeled as τ = 1, 2, 3. At half filling, fermions hopping along
these bonds still accumulate a π flux through a large rhom-
boidal cell composed of NNN links. The CS transformation
unambiguously identifies the π -flux configuration depicted in
Fig. 4(a) for one of the three sublattices, τ = 1. Flux patterns
of the two other NNN sublattices are obtained by rotation of
Fig. 4(a) by ±2π/3. Such an arrangement of π fluxes on three
NNN triangular lattices preserves C3 symmetry. However, it
further violates the translational invariance in three lattice
spacings and thus the unit cell becomes six times larger than

(a) (b)

FIG. 4. (a) π -flux configuration on the NNN large triangular
sublattice, τ = 1. Each shaded 120◦ triangle is threaded by π flux.
(b) Reduced BZ (red), 1/6th of the original BZ (black), with Dirac
points P and P̄. The ellipses indicate anisotropic dispersion relations
of Dirac fermions labeled by τ = 1, 2, 3.

the original one. Correspondingly, there is a six-component
Fermi field f τ

k,α , where α = 1, 2 and τ = 1, 2, 3, in a six-
times-reduced BZ, leading to a 6 × 6 Hamiltonian (for details,
see Appendix B).

The corresponding band structure exhibits two Dirac
points, P and P̄, in the reduced BZ [Fig. 4(b)]. The momentum
space Hamiltonian expanded near the Dirac points is HL =
H (P)

0 + H (P̄)
0 + Hint, where

H (P)
0 (k) = v

∑
k,ν,τ

f̂ τ†
k,α

[
(pν + tqν )σ ν

αβ − 2tqτ σ
τ
αβ

]
f̂ τ
k,β , (4)

and its time-reversed partners H (P̄τ )
0 (k) = [H (Pτ )

0 (−k)]
∗

with

f̂ τ
k,α → ˆ̄f τ

k,α , and v = J1a, a being the lattice constant. We
use pν = k · eν and qν = k · aν , ν = 1, 2, 3. Hereafter we
work with dimensionless quantities measuring energy in units
of J1 and momentum in units of 1/a. The low-energy fermion
operators f̂ τ

k,α and ˆ̄f τ
k,α have momenta measured from P

and P̄ points, respectively. The C3 invariance is ensured by
2π/3 rotations of the lattice accompanied with cyclic trans-
formation, τ → τ + 1, of the fermion copy. The Hamiltonian
(4) leads to the anisotropic spectrum

E τ
0,k = ±

[
(1 + 3t2)

3∑
ν=1

p2
ν − 4t pτ qτ

]1/2

. (5)

The 120◦ state with the other helicity corresponds to HR =
H (P′ )

0 + H (P̄′ )
0 + Hint. Note that the ground state spontaneously

chooses one of the two.
Upon a gauge transformation, the CS phases in Eq. (2)

may be rewritten as covariant derivatives, leading to the
substitution k → k − eAr in Eq. (4). Here, Ar in the kinetic
term reflects fluctuations of the CS phases from 0 or π per
plaquette and is bilinear in fermion operators. It thus generates
a two-particle interaction vertex [30,36]

Hint = −
∑

k,k′,q,τ

V αα′,ββ ′
q f̂ τ†

k,α
ˆ̄f τ†
k′+q,α′

ˆ̄f τ
k′,β f̂ τ

k+q,β ′ , (6)

where V αα′,ββ ′
q = 2π ie(σ ν

αβδα′β ′ + δαβ [σ ν]T
α′β ′ )Bν

k, where ν =
1, 2, 3 and Bν

k = εi jA
j
k(ei

ν + tai
ν ) is determined by the Fourier

image Ak = k/|k|2 of the vector potential of the vortex gauge
field Ar defined above.

III. CHERN-SIMONS SUPERCONDUCTIVITY:
DESCRIPTION OF PHASES AND DECONFINED

PHASE TRANSITION

In this section, we will discuss the Chern-Simons super-
conductor description of ordered phases, the emergence of the
helical spin liquid, and the deconfined phase transition from
120◦ state to the helical spin liquid.

A. Chern-Simons superconductor description of the 120◦ state

The CS interaction (6) leads to the Cooper pairing of
fermions residing near the P and P̄ points and may result
in a broken U (1) superconducting phase. In terms of the
original spins the latter corresponds to a broken O(2) 120◦
antiferromagnet. Upon increasing t , the fermion dispersion
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becomes more anisotropic, weakening the Cooper pairing
[which operates only within time-reversal pairs with the same
NNN sublattice index τ , Eq. (6), which has a noncollinear
anisotropy orientation in P and P̄ points, Fig. 4(b)]. This
leads to an eventual breakdown of the CS superconductivity
at t ≈ 0.089.

To describe this physics we employ the standard BCS
treatment with the superconducting order parameter αα′

k =
−2π ie

∑
ββ ′k′ V

αα′,ββ ′
k−k′ 〈 ˆ̄f−k′,β f̂k′,β ′ 〉, where the index τ is

dropped hereafter. The order parameter is quadratically cou-
pled to the fermions as

∑
αα′k αα′

k f̂ †
k,α

ˆ̄f †
−k,α′ + H.c., leading

to self-consistency conditions. Following Ref. [30], one ex-
pects p ± ip symmetry of αα′

k and thus looks for the solution
in the form

αα′
k = 3kδαα′ + i

0,k√
3

∑
μ,ν=1,2,3

ημν (qμ − 3t pμ)σ ν
αα′ , (7)

where ημν is defined as η33 = 1, ηi j = εi j , η3i = 0, i, j = 1, 2.
The corresponding self-consistency equations in terms of the
scalar order parameters 0,k and 3,k are given in Appendix
C. At t = 0 they exhibit a nontrivial solution [30] for CS
charge e = 3. For t > 0 the anisotropy of the Dirac spectrum
(5) [Fig. 4(b)] suppresses the order parameter. Figure 5(a)
shows the corresponding gap in the fermionic spectrum,
120◦ , obtained through a numerical solution of the self-
consistency equations. The gap and the U (1) broken state col-
lapse at t = 0.089, indicating the absence of the planar long-
range order at larger t . Notice that the Z2 symmetry breaking,
associated with the choice of CS flux pattern [Figs. 3(a) and
3(b)], remains intact across this transition.

B. Helical spin-liquid phase

For t > 0.089, in the CS superconductivity associated with
one of the two 120◦ states, one is left thus with a gapless state
with an unbroken U (1) symmetry and excitations described in
terms of N = 6 copies of Dirac fermions with the anisotropic
dispersion. This is the SL ground state, doubly degenerate due
to the presence of the long-range Z2 order. The latter may
be detected by a finite value of the vector chirality [Eq. (3)].
To derive an effective low-energy field theory in this regime
one should integrate out fermionic degrees of freedom with
momenta away from the two Dirac points. This way one ob-
tains a stable [43] 2+1-dimensional Maxwell electrodynamics
coupled to N = 6 copies of the anisotropic Dirac fermions
(see Appendix D).

An external magnetic field in the z direction, Hh =
h

∑
r Sz

r, leads to a deviation from half filling and thus to
a nonzero chemical potential of the Dirac fermions. Each
additional fermion comes with an extra flux quantum of the
gauge field. It results in Landau quantization of the fermionic
energies with the fully filled levels. Thus the excitation spec-
trum of the SL in a magnetic field is gapped with the gap
proportional to |h|.

C. Chern-Simons superconductor description
of the stripe phase

Consider an alternative choice of CS flux pattern, depicted
in Fig. 3(c). This choice breaks the C3 symmetry and selects

(b)

(a)

FIG. 5. (a) Excitation gap of the fermion spectrum plotted vs
t = J2/J1 in the CS superconductor mean-field description of the
120◦ state, Dirac SL, and the CS superconductor mean-field de-
scription of the striped phase. The superconducting order parameters
are zero at 0.089 � t � 0.113. Note that the order parameter 120◦

vanishes continuously near t ∼ 0.089, signaling a continuous phase
transition to the SL phase. (b) Ground-state energy of gapless Dirac
fermions on a triangular lattice at half filling with π -flux distribution
corresponding to Figs. 2(a) and/or 2(b) as a function of t compared
with the energy of the CS superconductor of the striped phase. Note
a first-order transition at the level crossing near t ∼ 0.116.

a preferred direction along the lattice. The reduced BZ can
be chosen to be the same as in Fig. 4(b), but the Dirac points
are Q± = [± arccos(t ), 0]. The superconducting solution (see
Appendix C) exists for t � 0.113. However, its energy is
smaller than that of SL only at t � 0.116 [Fig. 5(b)], suggest-
ing a first-order transition. The corresponding U (1) broken
state is the stripe phase [Fig. 2(g)], which also breaks C3 lattice
symmetry. As a result, the helical SL state appears stabilized
in the narrow interval 0.089 � t � 0.116.

IV. DISCUSSION AND ESTIMATES

There are two main differences between our work and pre-
vious approaches to establish spin-liquids: In our framework,
we start by focusing on the ordered states of the spin-1/2 XXZ
magnet via treating it as superconducting states of spinless
CS fermions. This approach is as good as other methods

024430-4



HELICAL SPIN LIQUID IN A TRIANGULAR XXZ … PHYSICAL REVIEW B 102, 024430 (2020)

(e.g., using Schwinger or Holstein-Primakoff representations
of spins) to describe the symmetry broken state. We then
study the stability region of the ordered state, taking into
account that in the spin-liquid phase the ordering breaks down.
Thus, the SL emerges in the parameter window where such
superconducting states cannot be established. It would be de-
sirable to test these predictions with, say, DMRG simuations,
although the large number of Dirac points involved may make
this technically challenging.

We have mostly focused on the XX case, g = 0, while a
finite g leads to an additional fermionic interaction vertex,
which modifies the self-consistency equations. This leads in
turn to a weak g dependence of the critical values of t . Since
the model does not have SU(2) symmetry, the low-energy
fermion excitations may be considered spinless, and as such,
the SL is outside the projective symmetry group classification
of SL’s based on Schwinger boson and Abrikosov fermion
representations of spins [14,44,45]. We encourage neutron
scattering experiments for observation of the proposed spin-
liquid state. Here, the spin magnetization distribution and
spin-spin correlators are expected not to exhibit Bragg peaks.
Moreover, the anisotropy of the dynamical structure factor
near Dirac points may serve as a signal of the anisotropic
Dirac dispersion. The information about the vector chiral
order of the spin liquid may be revealed in nuclear-magnetic
interferences in the chiral magnetic scattering [46–48] of an
initially unpolarized neutron beam.
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APPENDIX A: FLUX CONFIGURATION FOR
CHERN-SIMONS FERMIONS ON THE

TRIANGULAR LATTICE

The Chern-Simons (CS) transformation

S±
r = exp

⎛
⎝ie

∑
r′ �=r

arg[r − r′]nr′

⎞
⎠ f ±

r , (A1)

where the summation is performed over all lattice sites except
r, defines the distribution of position-dependent phases on
links of the lattice [see Eq. 2) of the main text for definitions].
The phase corresponding to the link between sites positioned
at r1 and r2 can be divided into two parts:

�r1,r2 =
∑
r′ �=r1

arg[r1 − r′]nr′ −
∑
r′ �=r2

arg[r2 − r′]nr′

= ��
r1,r2

+ �L
r1,r2

. (A2)

The first term, ��
r1,r2

, is the “global” phase formed from all
points r away from the link (r1, r2),

��
r1,r2

=
∑

r′ �=r1,r2

[arg[r1 − r′] − arg[r2 − r′]]nr′ , (A3)

accounting for the scanning angles on the lattice outside of
the link r1, r2. The second term, �L

r1,r2
, is the “local” phase

formed from the end points of links

�L
r1,r2

= arg(r2 − r1)nr1 − arg(r1 − r2)nr2 . (A4)

Now we consider the unit cell rectangle presented in Fig. 6
(left panel) and calculate the phase acquired by a fermion
upon clockwise rotation around it (this is a convention we
use). First, we calculate the net phase accumulated from local
phases �L

ri,r j
, coming from the endpoints of the links. Accord-

ing to this expression, one can find the following phases on
links depicted in Fig. 6 (left panel),

�L
r−e1,r−e1+e2

= πnr−e1+e2 ,

�L
r−e1+e2,r+e2

= −π

3
nr−e1+e2 + 4π

3
nr+e2 ,

�L
r+e2,r = −πnr+e2 ,

�L
r,r−e1

= π

3
nr−e1 − 4π

3
nr,

�L
r−e1+e2,r = −2π

3
nr−e1+e2 + 5π

3
nr. (A5)

Here, the convention for arg functions is adopted and they are
calculated with respect to the x axes in a counterclockwise
direction. The accumulated local fluxes over triangles in the
unit cell will be

�L
r−e1,r−e1+e2,r = �L

r−e1,r−e1+e2
+ �L

r−e1+e2,r + �L
r,r−e1

= π

3
(nr−e1 + nr−e1+e2 + nr ),

�L
r−e1+e2,r+e2,r = �L

r−e1+e2,r+e2
+ �L

r+e2,r + �L
r,r−e1+e2

= π

3
(nr−e1+e2 + nr+e2 + nr ) − 2πnr. (A6)

The local flux corresponding to the unit cell will thus be

�L
r,r+e1,r+e1+e2,r+e2

= π

3
(nr−e1 + nr+e2 + 2nr + 2nr−e1+e2 ) − 2πnr. (A7)

The calculation of global fluxes through triangles is much
simpler. The phase on a given link in a triangle is equal
to the opposite to the link angle times the density operator
corresponding to that site. It is straightforward to obtain

��
r−e1,r−e1+e2,r = ��

r−e1,r−e1+e2
+ ��

r−e1+e2,r + ��
r,r−e1

= π

3
(nr−e1 + nr−e1+e2 + nr ),

��
r−e1+e2,r+e2,r = ��

r−e1+e2,r+e2
+ ��

r+e2,r + ��
r,r−e1+e2

= π

3
(nr−e1+e2 + nr+e2 + nr ). (A8)

The global flux through the rectangular unit cell will be

��
r,r+e1,r+e1+e2,r+e2

= π

3
(nr−e1 + nr+e2 + 2nr + 2nr−e1+e2 ). (A9)
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FIG. 6. Left panel: A unit cell of the triangular lattice. Phases associated with the links are shown. Right panel: The unit cell is “remedied”
with an infinitesimal shift showing that the cell includes one site.

Finally, one can make use of the obtained expressions to
calculate the total flux threading each of the triangles of the
unite cell and the total flux through the rectangular unit cell
itself. Putting all together, we see that

�r−e1,r−e1+e2,r = ��
r−e1,r−e1+e2,r + �L

r−e1,r−e1+e2,r

= 2π

3
(nr−e1 + nr−e1+e2 + nr ), (A10)

�r−e1+e2,r+e2,r = ��
r−e1+e2,r+e2,r + �L

r−e1+e2,r+e2,r

= 2π

3
(nr−e1+e2 + nr+e2 + nr ) − 2πnr, (A11)

�r,r+e1,r+e1+e2,r+e2

= ��
r,r+e1,r+e1+e2,r+e2

+ �L
r,r+e1,r+e1+e2,r+e2

= 2π

3
(nr−e1 + nr+e2 + 2nr + 2nr−e1+e2 ) − 2πnr. (A12)

Here, we see that the uniform density smearing approxima-
tion, nr → n = const (n being the lattice filling fraction), still
implies that fluxes threading the triangles of the unit cell are
not uniform but are modulated: The flux through one of the
regular triangles in the unit cell is vanishing while the flux
threading the other regular triangle becomes � → 2πn. Such
a flux modulation can be qualitatively understood as follows.
Figure 6 (right panel) depicts the unit cell, which is shown
with an infinitesimally small shift of the sites. Depending on
the direction of the shift, the site corresponding to the unit cell
is located within one of the two regular triangles. Hence the
net flux 2πn is threading only one of the two regular triangles.
At half filling n = 1/2 and thus one obtains a π -flux lattice,
as shown in Fig. 3 of the main text.

APPENDIX B: HAMILTONIAN

The CS transformation [37] implies a staggered π flux
distribution within the NN and NNN triangular sublattices.
The flux distribution in the NNN triangular sublattices with
τ = 2, 3 is obtained from the lattice corresponding to τ = 1
upon rotation by ±2π/3, respectively. Such a phase distri-
bution breaks translational invariance on three lattice steps,
reducing the Brillouin zone of the NN triangular lattice six
times.

As a result of the staggered π -flux threading of every other
triangle in the unit cell (including both triangles composed
on NN and NNN bonds), the single-fermion dispersion on
a triangular lattice will acquire a Dirac form around the
following points of the first Brillouin zone: Pτ = (π/6 +
2πτ/3, π/2

√
3) and P̄τ = (−π/6 + 2πτ/3, π/2

√
3), τ =

1, 2, 3, giving rise to six components of the Fermi field. These
Dirac points form a triangular lattice in momentum space [see
Fig. 4(b) of the main text], while the reduced BZ is a rhombus
that includes only one pair of points (Pτ , P̄τ ).

The double degeneracy of the planar 120◦ state is linked to
the interchange of fluxes π ↔ 0 threading each triangular face
of the unit cell. We note that the chiralities of the Hamiltonian
expanded around Pτ and P̄τ are opposite. Similarly, if one
identifies the reflection of Pτ and P̄τ with respect to the kx

axis with P′
τ and P̄′

τ , then the chiralities of the corresponding
Hamiltonians (expanded around P′

τ and P̄′
τ ) will also be oppo-

site to each other. This implies that the single-particle states at
t → 0, in close vicinities of these Dirac points, are given by
ū′

τ (k) = uτ (k) = 1√
2
(e−i arg k

1 ), and u′
τ (k) = ūτ (k) = [uτ (k)]∗.

These states define Berry connections [49], as �Aτ = �̄A′
τ =

−i[uτ (k)]+�∂kuτ (k), �A′
τ = �̄Aτ = −i[ūτ (k)]+�∂kūτ (k), and the

Berry phases defined by contours Cτ , τ = 1, 2, 3 encircling
both Pτ and P′

τ points as γτ = ∫
Cτ

dk �Aτ , and γ ′
τ = ∫

Cτ
dk �A′

τ .
The result of integration around each of these Dirac points
yields γτ = γ̄ ′

τ = −γ̄τ = −γ ′
τ = π .

The corresponding Hamiltonian has the form

H = 1

2

⎛
⎜⎜⎜⎝

2t cos q1 2t (cos q2 + i sin q3) eip1 eip2 − eip3 e−ip1 e−ip2 + e−ip3

2t (cos q2 − i sin q3) −2t cos q1 eip2 + eip3 −eip1 e−ip2 − e−ip3 −e−ip1

e−ip1 e−ip2 + e−ip3 −2t cos q1 2t (− cos q2 + i sin q3) eip1 eip2 − eip3

e−ip2 − e−ip3 −e−ip1 −2t (cos q2 + i sin q3) 2J2 cos q1 eip2 + eip3 −eip1

eip1 eip2 − eip3 e−ip1 e−ip2 + e−ip3 −2t cos q1 2t (cos q2 − i sin q3)
eip2 + eip3 −eip1 e−ip2 − e−ip3 −e−ip1 2t (cos q2 + i sin q3) 2t cos q1

⎞
⎟⎟⎟⎠. (B1)
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At t = J2/J1 = 0, when we only have a small NN triangular
lattice, the spectrum has a simple form. It becomes a spectrum
of three Dirac pairs, having zeros at different points.

Eτ,k = ±
[

3 + cos

[
2p1 + 2π

3
(τ − 2)

]

+ cos

[
2p2 + 2π

3
(τ − 2)

]

− cos

[
2p3 + 2π

3
(τ − 2)

]]
, τ = 1, 2, 3.

The terms 2π (τ − 2)/3 in the arguments of the cosine func-
tions appear due to the relative 2π/3 rotations of three NNN
sublattices. The ∝J2 terms in the Hamiltonian (B1) also have
zeros at the same points, therefore common Dirac points
are Pτ and P̄τ , τ = 1, 2, 3. The chirality of point P̄τ , τ =
1, 2, 3, is opposite to that of Pτ . The linear expansion of
the spectrum around Dirac points gives anisotropic dispersion
E0

τ,k = [
∑

μ(1 + 3t2)p2
μ − 4t pτ qτ ]1/2.

APPENDIX C: SELF-CONSISTENCY EQUATIONS

1. Chern-Simons superconductor description of the 120◦ phase

Following the steps outlined in Ref. [30], we obtain the
Bogoliubov–de Gennes (BdG) Hamiltonian of the mean-field
CS superconductor. In terms of the scalar order parameters
0,k and 3,k, the self-consistency conditions take the closed
form,

0k = 2πe

3

∑
a=±,k′

3∑
μ=1

3k′

k2E (a)
k′

Aμ

k−k′kμ,

3k = πe
∑

a=±,k′

3∑
μ=1

1

E (a)
k′

[
uAμ

k−k′k′
μ+2wAk−k′ (e3q′

3+a3 p′
3)

]
,

(C1)

where u = [av0 − (1 + t2)0k′] and w =
t ( 2a(1+t2 )

v0
− 4t0k′

3 )/
√

3, with v0 =
√

(1 + 3t2)2 − 16
3 t2. The

order parameters Eq. (C1) define the four-band Bogoliubov
spectra, ±E (a)

τ,k, a = ±, of gapped fermions as

E (a)
τ,k =

⎡
⎣ 3∑

μ=1

p2
μ

[(
1 + 2

0k

)
(1 + 3t2) − 2av00k

]

− 4t
(
1 − 2

0k

)
pτ qτ + 2

3k

]1/2
. (C2)

At t = 0, the self-consistency equations are independent of
any continuous parameters (momentum cutoff is defined by
the size of the Brillouin zone and is not a model parameter).
The existence of the solution within the superconducting
mean-field approach depends on the interaction strength, and
thus on the CS charge, e = 1, 3, 5 . . .. Here, we have one
continuous parameter t and the anisotropy parameter g is set
to zero. At t = 0, the only solution that corresponds to e = 1
is the trivial one, where there is no superconducting order.
However, if the CS fermionization is realized with e = 3,
a nontrivial solution of gap equations emerges for 0 � t �
0.089.

One can see that Eqs. (C1) coincide with the analogous
self-consistency relations of the CS superconductor on the
honeycomb lattice at t = 0, first derived in Ref. [30]. This
indicates the lattice-independent “universal” character of CS
superconductivity.

2. Chern-Simons superconductor description
of the stripe phase

Here, we proceed with the fermionic description of the
collinear stripe phase. The corresponding π -flux configuration
is shown in Fig. 2(d) of the main text. The BZ is still the same,
but Dirac points now are located at Q = [arccos(t ), 0] and
Q′ = [− arccos(t ), 0]. We see that the parity transformations
Px/y transform one Dirac point to the other, indicating that
the ground state does not support the degeneracy of the
120◦ ordered state. In the vicinity of these Dirac points the
Hamiltonian acquires an especially simple form,

H (Q)
str,0(k) = J1ε

∑
k

f̂ +
k,α

[
vykyσ

1
αβ − vxkxσ

3
αβ

]
f̂k,β , (C3)

with vx = √
1 − t2, vy =

√
3(1−t )

8 (1 − 2t )(1 + t ), and

H (Q′ )
str,0 (k) = −H (Q)

str,0(k). The generated interaction vertex

V αα′,ββ ′
q in this case is similar to the one of the 120◦ phase

given below Eq. (6) of the main text, but with B1
q = −vyAx

q,
B2

q = 0, B3
q = −vxAy

q. As in the case of the 120◦ ordered state,

here we also expect that αα′
k has a p ± ip-wave symmetry,

and the self-consistency relations are given by Eq. (C1). The
Bogoliubov mean-field treatment of the full Hamiltonian,
Hstr = H (Q)

str,0 + H (Q′ )
str,0 + Hint, gives rise to a quasiparticle

spectrum of the form

E (s,a)
k = [

(avx − vy0k )2k2
x + (avy − vx0k )2k2

y + 2
3k

]1/2
.

(C4)

APPENDIX D: EMERGENCE OF THE DIRAC SPIN LIQUID

As we see in Fig. 5 of the main text, massless Dirac
fermions emerge in the parameter interval 0.089 � t � 0.116.
Since the double degeneracy of the 120◦ configuration of
the the XX magnet implies a double degeneracy of the π -
flux state of fermions on the triangular lattice, our approach
indicates that the emergent Dirac spin-liquid state will also be
doubly degenerate.

The low-energy field theory in this regime appears to
be quite interesting. To understand its nature, one should
integrate out fermionic degrees of freedom. In the interaction
Hamiltonian [Eq. (6) of the main text], only small values of
momentum q contribute to the formation of the order param-
eter 120◦ . Momenta larger than a certain momentum cutoff,
q � Q̄, are irrelevant for the low-energy description of this
ordered phase. When we approach criticality near t ∼ 0.089,
the fermion gap 120◦ vanishes, and critical fermions with
large momenta yield the Maxwell term. Indeed, the fermions
do not fill any topological bands (e.g., we do not have a Chern
insulator coupled to the gauge field) and integration over them
will not result in generation of a Chern-Simons term [50]. We
rather have topologically trivial Dirac fermions coupled to the
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U (1) “probe” field. Quantum fluctuations of fermions define
an effective dynamics of the gauge field, which in the leading,
one-loop approximation yields a 2+1-dimensional Maxwell

theory. Thus at 0.116 � t � 0.089, one self-consistently ob-
tains N = 6 copies of Dirac fermions interacting with the
induced U (1) gauge field.

[1] P. Fazekas and P. W. Anderson, Philos. Mag. 30, 423 (1974).
[2] L. Balents, Nature (London) 464, 199 (2010).
[3] A. Y. Kitaev, Ann. Phys. 303, 2 (2003).
[4] L. Savary and L. Balents, Rep. Prog. Phys. 80, 016502 (2016).
[5] M. R. Norman, Rev. Mod. Phys. 88, 041002 (2016).
[6] X. G. Wen, Rev. Mod. Phys. 89, 041004 (2017).
[7] Y. Zhou, K. Kanoda, and T.-K. Ng, Rev. Mod. Phys. 89, 025003

(2017).
[8] J. Knolle and R. Moessner, Annu. Rev. Condens. Matter Phys.

10, 451 (2019).
[9] C. Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R.

Norman, and T. Senthil, Science 367, eaay0668 (2020).
[10] P. W. Anderson, Mater. Res. Bull. 8, 153 (1973).
[11] S. Sachdev, Phys. Rev. B 45, 12377 (1992).
[12] R. Moessner and S. L. Sondhi, Phys. Rev. Lett. 86, 1881 (2001).
[13] R. Moessner and S. L. Sondhi, Prog. Theor. Phys. Suppl. 145,

37 (2002).
[14] F. Wang and A. Vishwanath, Phys. Rev. B 74, 174423 (2006).
[15] A. Wietek and A. M. Läuchli, Phys. Rev. B 95, 035141 (2017).
[16] Y.-D. Li, Y.-M. Lu, and G. Chen, Phys. Rev. B 96, 054445

(2017).
[17] Y.-D. Li, Y. Shen, Y. Li, J. Zhao, and G. Chen, Phys. Rev. B 97,

125105 (2018).
[18] Z.-X. Luo, E. Lake, J.-W. Mei, and O. A. Starykh, Phys. Rev.

Lett. 120, 037204 (2018).
[19] Y. Shen, Y.-D. Li, H. Wo, Y. Li, S. Shen, B. Pan, Q. Wang, H. C.

Walker, P. Steffens, M. Boehm, Y. Hao, D. L. Quintero-Castro,
L. W. Harriger, M. D. Frontzek, L. Hao, S. Meng, Q. Zhang, G.
Chen, and J. Zhao, Nature (London) 540, 559 (2016).

[20] Y. Li, D. Adroja, P. K. Biswas, P. J. Baker, Q. Zhang, J. Liu,
A. A. Tsirlin, P. Gegenwart, and Q. Zhang, Phys. Rev. Lett. 117,
097201 (2016).

[21] J. A. M. Paddison, M. Daum, Z. L. Dun, G. Ehlers, Y. Liu, M. B.
Stone, H. D. Zhou, and M. Mourigal, Nat. Phys. 13, 117 (2017).

[22] R. Kaneko, S. Morita, and M. Imada, J. Phys. Soc. Jpn. 83,
093707 (2014).

[23] Y. Iqbal, W.-J. Hu, R. Thomale, D. Poilblanc, and F. Becca,
Phys. Rev. B 93, 144411 (2016).

[24] J. Iaconis, C. Liu, G. B. Halasz, and L. Balents, SciPost Phys.
4, 003 (2018).

[25] F. Ferrari and F. Becca, Phys. Rev. X 9, 031026 (2019).
[26] Z. Zhu and S. R. White, Phys. Rev. B 92, 041105(R) (2015).
[27] W.-J. Hu, S.-S. Gong, W. Zhu, and D. N. Sheng, Phys. Rev. B

92, 140403(R) (2015).
[28] Z. Zhu, P. A. Maksimov, S. R. White, and A. L. Chernyshev,

Phys. Rev. Lett. 119, 157201 (2017).
[29] Z. Zhu, P. A. Maksimov, S. R. White, and A. L. Chernyshev,

Phys. Rev. Lett. 120, 207203 (2018).
[30] T. A. Sedrakyan, V. M. Galitski, and A. Kamenev, Phys. Rev. B

95, 094511 (2017).
[31] D. H. Lee, J. D. Joannopoulos, J. W. Negele, and D. P. Landau,

Phys. Rev. Lett. 52, 433 (1984).
[32] S. Miyashita and H. Shiba, J. Phys. Soc. Jpn. 53, 1145 (1984).
[33] S. E. Korshunov, Phys. Usp. 49, 225 (2006).
[34] M. Ye and A. V. Chubukov, Phys. Rev. B 95, 014425

(2017).
[35] M. Ye and A. V. Chubukov, Phys. Rev. B 97, 245112 (2018).
[36] R. Wang, B. Wang, and T. A. Sedrakyan, Phys. Rev. B 98,

064402 (2018).
[37] T. A. Sedrakyan, L. I. Glazman, and A. Kamenev, Phys. Rev.

Lett. 114, 037203 (2015).
[38] T. A. Sedrakyan, A. Kamenev, and L. I. Glazman, Phys. Rev. A

86, 063639 (2012).
[39] T. A. Sedrakyan, L. I. Glazman, and A. Kamenev, Phys. Rev. B

89, 201112(R) (2014).
[40] S. Maiti and T. Sedrakyan, Phys. Rev. B 99, 174418 (2019).
[41] J. Villain, J. Phys. (France) 38, 385 (1977).
[42] H. Kawamura, Phys. Rev. B 38, 4916 (1988).
[43] M. Hermele, T. Senthil, M. P. A. Fisher, P. A. Lee, N. Nagaosa,

and X.-G. Wen, Phys. Rev. B 70, 214437 (2004).
[44] X.-G. Wen, Phys. Rev. B 65, 165113 (2002).
[45] S. Bieri, C. Lhuillier, and L. Messio, Phys. Rev. B 93, 094437

(2016).
[46] S. V. Maleyev, Physica B 345, 119 (2004).
[47] V. Simonet, M. Loire, and R. Ballou, Eur. Phys. J.: Spec. Top.

213, 5 (2012).
[48] E. Ressouche, Collection SFN 13, 02002 (2014).
[49] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. P. M.

den Nijs, Phys. Rev. Lett. 49, 405 (1982).
[50] G. W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).

024430-8

https://doi.org/10.1080/14786439808206568
https://doi.org/10.1038/nature08917
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1103/RevModPhys.88.041002
https://doi.org/10.1103/RevModPhys.89.041004
https://doi.org/10.1103/RevModPhys.89.025003
https://doi.org/10.1146/annurev-conmatphys-031218-013401
https://doi.org/10.1126/science.aay0668
https://doi.org/10.1016/0025-5408(73)90167-0
https://doi.org/10.1103/PhysRevB.45.12377
https://doi.org/10.1103/PhysRevLett.86.1881
https://doi.org/10.1143/PTPS.145.37
https://doi.org/10.1103/PhysRevB.74.174423
https://doi.org/10.1103/PhysRevB.95.035141
https://doi.org/10.1103/PhysRevB.96.054445
https://doi.org/10.1103/PhysRevB.97.125105
https://doi.org/10.1103/PhysRevLett.120.037204
https://doi.org/10.1038/nature20614
https://doi.org/10.1103/PhysRevLett.117.097201
https://doi.org/10.1038/nphys3971
https://doi.org/10.7566/JPSJ.83.093707
https://doi.org/10.1103/PhysRevB.93.144411
https://doi.org/10.21468/SciPostPhys.4.1.003
https://doi.org/10.1103/PhysRevX.9.031026
https://doi.org/10.1103/PhysRevB.92.041105
https://doi.org/10.1103/PhysRevB.92.140403
https://doi.org/10.1103/PhysRevLett.119.157201
https://doi.org/10.1103/PhysRevLett.120.207203
https://doi.org/10.1103/PhysRevB.95.094511
https://doi.org/10.1103/PhysRevLett.52.433
https://doi.org/10.1143/JPSJ.53.1145
https://doi.org/10.1070/PU2006v049n03ABEH005838
https://doi.org/10.1103/PhysRevB.95.014425
https://doi.org/10.1103/PhysRevB.97.245112
https://doi.org/10.1103/PhysRevB.98.064402
https://doi.org/10.1103/PhysRevLett.114.037203
https://doi.org/10.1103/PhysRevA.86.063639
https://doi.org/10.1103/PhysRevB.89.201112
https://doi.org/10.1103/PhysRevB.99.174418
https://doi.org/10.1051/jphys:01977003804038500
https://doi.org/10.1103/PhysRevB.38.4916
https://doi.org/10.1103/PhysRevB.70.214437
https://doi.org/10.1103/PhysRevB.65.165113
https://doi.org/10.1103/PhysRevB.93.094437
https://doi.org/10.1016/j.physb.2003.11.036
https://doi.org/10.1140/epjst/e2012-01661-8
https://doi.org/10.1051/sfn/20141302002
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.53.2449

