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Thermal fluctuations in the Landau-Lifshitz-Bloch model
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A formulation for thermal noise in the stochastic form of the Landau-Lifshitz-Bloch equation used for
modeling the magnetization dynamics at elevated temperatures is presented. The diffusion coefficients for
thermal fluctuations are obtained via the Fokker-Plank equation using the mean-field approximation of the
field in defining the free energy. The presented model leads to a mean magnetization consistent with the
equilibrium magnetization for small and large particles. The distribution of the magnetization magnitude is
of the Maxwell-Boltzmann type. The presented model was tested by studying the equilibrium magnetization in
macrospin particles at high temperatures. The model is appealing for multiscale modeling, such as modeling heat
assisted magnetic recording systems and all-optical magnetization reversal.
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I. INTRODUCTION

Understanding the magnetization dynamics at high tem-
perature is important for our fundamental understanding of
nanomagnetism and for a set of applications, such as heat
assisted magnetic recording technologies (HAMR) [1–3] and
ultrafast optical processes [4–7]. Numerically modeling such
systems is complicated because the material properties change
significantly at elevated temperatures, especially at tempera-
tures near or above the Curie temperature.

Atomistic spin models have been used to provide param-
eterization of thermal properties, such as the equilibrium
magnetization me(T ), anisotropy, and susceptibility [8]. The
atomistic models, however, are not fit to simulate large-scale
systems, such as those of common interest in magnetic record-
ing and optomagnetic simulations [8]. To solve this problem,
several micromagnetic models have been proposed that use
a macrospin to represent the behavior of an ensemble of
atoms. The main idea behind the macrospin model is to use
a single vector to represent the assembly of a large number
of atoms in a finite volume. The field acting on this mag-
netization vector is obtained from the atomistic Hamiltonian
via the mean-field approximation [9,10]. In micromagnetic
models, the average magnetization of the system at a certain
temperature is described by the equilibrium magnetization
obtained from the atomistic model. Additionally, elevated
temperatures result in thermal noise. The introduction of
stochastic fluctuations that correctly model the behavior of
this noise is of practical importance to study the magnetization
behavior, such as reversal time, signal to noise ratio, and jitter
in HAMR [10].

Several stochastic formulations of the Landau-Lifshitz-
Bloch (LLB) equation have been proposed to introduce the
thermal fluctuations in the model [11–13]. However, these
models have limitations, e.g., they may ignore the fluctuations

*menarini.marco@gmail.com

on the longitudinal component of the magnetization [13],
underestimating the longitudinal fluctuations contribution, or
lead to a mean magnetization higher than the expected equi-
librium magnetization [11,12]. These limitations may make
such models hard to use for multiscale modelling.

In this paper, we introduce an alternative form of the ther-
mal noise in the stochastic LLB equation, which is consistent
with the solution of the Fokker-Planck (FP) equation. This
form preserves the magnitude of the equilibrium magneti-
zation without ignoring the stochastic contribution on the
longitudinal component. The model is based on the formalism
introduced by Garcia-Palacios [14] and Garanin [11] but it
uses a different free energy definition for introducing the ther-
mal fluctuations. The model is validated against other existing
formulation of the stochastic LLB model by considering the
distribution of the magnetization at equilibrium for macrospin
particles.

II. THE STOCHASTIC LANDAU-LIFSHITZ-BLOCH
EQUATION

Our aim is to construct a mathematical consistent model
for thermal fluctuations in the LLB equation applicable for
numerical simulations. We start by introducing the LLB for-
mulation and by defining the free energy of the system. We
then introduce the Langevin equation to augment the deter-
ministic LLB equation with stochastic components. Finally,
we obtain the strength of diffusion coefficients of the thermal
noise by solving the Fokker-Plank equation for the Langevin
form of the LLB.

A. The LLB equation for ferromagnets

The starting point of our derivation is the original LLB
equation for ferromagnets by Garanin under the assump-
tion of small deviation from the equilibrium (see Eq. (2.17)
in Ref. [9]). This LLB formulation is based on the clas-
sical Hamiltonian assuming biaxial anisotropic exchange
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interactions and an applied field

H = −μ0

∑
i

Hisi − 1

2

∑
i j

Ji j (ηxsxisx j + ηysyisy j + szisz j ),

(1)
where μ0 is the magnetic moment of the atom, Hi is the ex-
ternal magnetic field acting on the spin si, Ji j is the exchange
integral between atom i and j, and ηx � ηy � 1 are the x and
y anisotropy coefficients. Under the assumption of a small-
anisotropy field compared to the exchange integral, which is
valid for most ferromagnets, i.e., η′

x,y = 1 − ηx,y � 1, it is
possible to express the magnetic field acting on a macrospin
using the mean-field approximation in the form:

HMFA = H + J0

μ0
[α�m − η′

xmx − η′
ymy] + J0

μ0
m

= H′
eff + HE ,

H′
eff = H + Aexc�m − J0

μ0
(η′

xmx + η′
ymy),

HE = J0

μ0
m, (2)

where J0 is the zero-order Fourier component of the exchange
interaction and Aexc = αJo/μ0 is the micromagnetic exchange
coefficient with α = a2/z, where a is a lattice dependent
constant, e.g., with a = 3.8 Å for FePt, and z is the average
number of nearest neighbor in the lattice.

Let us define an instantaneous equilibrium magnetization,
as the thermal equilibrium value for a given reduced magnetic
field ξ0 [9]:

m0 = BS (ξ0)ξ0/ξ0, (3)

where ξ0 = μ0HMFA/T is the reduced magnetization and BS

is the Brillouin function. Assuming small deviations of the
magnetization from this equilibrium state, one can write the
LLB equation for ferromagnets in the following form:

dm
dt

= γ [m × H′
eff ] − �1

(
1 − m · m0

m2

)
m

−�2
[m × [m × m0]]

m2
, (4)

where γ is the gyromagnetic ratio, B′
S is the derivative of

the Brillouin function with respect to its argument, �1 =
�N BS (ξ0)/(ξ0B′

S (ξ0)) and �2 = �N (ξ0/BS (ξ0) − 1)/2 are the
longitudinal and transverse relaxation rates, respectively,
�N = 2γ λT/μ0 is the Neel attempt frequency with λ � 1,
the atomistic damping coefficient. Assuming that H′

eff is in
the direction of m0, we can rewrite Eq. (4) as

dm
dt

= γ [m × H′
eff ] − γ α̃‖

(
1 − BS (μ0βHMFA)/m

μ0βB′
S (μ0βHMFA)

)
m

− γ α̃⊥
[m × [m × H′

eff ]]

m2
, (5)

where β = 1/T and α̃‖ = 2λT/J̃0 and α̃⊥ = λ(1 − T /J̃0)
are the unitless longitudinal and transverse damping pa-
rameters, respectively, with a modified coefficient J̃0 = J0 +
μ0m · H′

eff/m2.

Assuming that |HE | � |H ′
eff |, which is typically realized

as long at the temperature is not very close to TC , and Taylor
expanding the instantaneous equilibrium magnetization m0 up
to the first order around H ′

eff the LLB equation assumes the
simplified form:

dm
dt

= γ [m × H′
eff ] − γα‖

(
1 − BS (mβJ0)/m

μ0βB′
S (mβJ0)

− m · H′
eff

m2

)

× m − γα⊥
[m × [m × H′

eff ]]

m2
, (6)

and α‖ = 2λT/J0 and α⊥ = λ(1 − T /J0). The LLB equation
(6) is the form that is typically used form micromagnetic mod-
eling [9,11,12,15]. In the following derivations, we, however,
use the form of Eq. (5) since it is more convenient and general.

For the following derivations, we need to define the free
energy of the system. To this end, we note that in Eqs. (4)–(6),
the field used in the precessional term is H′

eff instead of
HMFA because, by construction, m×HE = 0. The magnetic
field HMFA does not appear explicitly in the numerator of
the longitudinal relaxation term, but, instead, it is used as an
input to the Brillouin function. Furthermore, the first element
between parenthesis in the direction of the magnetization in
Eq. (6) is not a part of HMFA. As a result, the free energy of
the system is defined as

F (m) = V M0
S HMFA · m, (7)

where V is the macrospin volume and M0
S is the saturation

magnetization at zero temperature. This definition of the free
energy is consistent with the original definition by Brown
considering HMFA as the molecular field. It is also consistent
with the definition of the free energy used by Xu and Zhang
[13] and by Tzoufras and Grobis [16] in their model for the
magnetization dynamics at elevated temperatures.

With respect to the instantaneous equilibrium magnetiza-
tion m0, we note that it is a function of the temperature and
field. We also can define the equilibrium magnetization me,
which is obtained via the equation [9]

me(T ) = BS (βJ0me). (8)

This equilibrium magnetization is different from the in-
stantaneous equilibrium magnetization defined in Eq. (3) in
that it is not a function of the field and it depends only on
the temperature via the molecular field approximation HE .
For an isotropic particle in the absence of an effective field,
the equilibrium magnetization me is identical to m0 but it may
be different when an effective field is present. The definition
of me is important when defining the material parameters as
it is closely related to the temperature dependent saturation
magnetization, e.g., as defined in conventional approached in
the LLG equation.

B. The stochastic differential equations

Starting from Eq. (5), we construct the Langevin form
by introducing the stochastic fluctuations in the three per-
pendicular components of Eq. (5) as an additive term to
the field, including precession, longitudinal relaxation, and
transverse relaxation components. This leads to three different
multiplicative components in the equation due to the cross
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and dot products components [14]. We can, then, write the
Langevin form of the magnetization dynamics equation as

dmi

dt
= Ai(m, t ) +

∑
k

B(0)
ik (m, t )L(0)

k (t )

+
∑

k

B(1)
ik (m, t )L(1)

k (t ) +
∑

k

B(2)
ik (m, t )L(2)

k (t ), (9)

Ai = γ [m × H′
eff ]i − γ α̃‖

(
1 − BS (mβ J̃0)/m

μ0βB′
S (mβ J̃0)

)
mi

− γ α̃⊥
[m × [m × H′

eff ]]i

m2
, (10)

B(0)
ik (m, t ) = γ

∑
j

εi jkm j, B(1)
ik (m, t ) = γ α̃‖

m2
mimk,

B(2)
ik (m, t ) = γ α̃⊥

m2
(m2δik − mimk ), (11)

where m = (mx, my, mz ) with i = x, y, z, εi jk is the Levi-
Civita symbol defining the totally antisymmetric unit tensor,
and δi j is the delta function. The “Langevin” sources are
modelled as Wiener stochastic processes and are assumed
to be (i) Gaussian with zero mean, (ii) stationary, (iii) and
such that Li(t ) and Lj (t + τ ) are correlated only for a time
interval τ that is much shorter than the time required to
observe an appreciable change in the magnetization, i.e.,
we assume that the collision time between spins is much
shorter than the micromagnetic relaxation time [14,17,18].
Under these assumptions, the Langevin sources can be

written as〈
L(v)

k (t )
〉 = 0,

〈
L(v)

k (t ), L(v)
l (s)

〉 = 2Dvδklδ(t − s), (12)

where Dv with v = 0, 1, and2 are the diffusion coefficient to
be determined by solving the corresponding FP equation at
equilibrium.

C. Fokker-Planck equation

The time evolution of the transitional probability density
function f (m, t |m0, t0) governing the magnetization can be
obtained by solving the Fokker-Planck equation associated to
the Langevin equation (9). Since the noise enters in the system
in a multiplicative way, the correct Langevin equation can be
solved using the Stratonovich calculus to obtain the correct
thermal equilibrium properties [14]. Using the Stratonovich
calculus, it is possible to write the FP equation in the form of
a continuity equation for the probability density f :

∂ f

∂t
= −

∑
i

∂

∂mi

⎧⎨
⎩

⎡
⎣Ai −

2∑
v=0

Dv

⎛
⎝∑

k

B(v)
ik

⎛
⎝∑

j

∂B(v)
jk

∂mj

⎞
⎠

−
∑

k

B(v)
ik B(v)

jk

∂

∂mj

)]
f

}
. (13)

Using Eq. (9) in Eq. (13) and noticing that∑
k B(v)

ik

∑
j (∂B(v)

jk /∂mj ) = 0 for v = 0, 2 and
∑

k B(1)
ik∑

j (∂B(1)
jk /∂mj ) = 2D1α̃

2
‖γ

2mi f /m2, it is possible to rewrite
the Fokker-Planck equation in a more explicit form:

∂ f

∂t
= − ∂

∂m
·
{
γ [m × H′

eff ] f − γ α̃‖

(
1 − BS (mβ J̃0)/m

μ0βB′
S (mβ J̃0)

)
m f − γ α̃⊥

[m × [m × H′
eff ]]

m2
f

}

− ∂

∂m
·
{

γ 2

(
α̃2

⊥D2

m2
+ D0

)[
m ×

[
m × ∂ f

∂m

]]
− γ 2

α̃2
||D1

m2
m

(
m · ∂ f

∂m

)}
− ∂

∂m
·
{

2D1α̃
2
‖γ

2 m f

m2

}
. (14)

This form is similar to the one derived by Evans et al. [12]
with the main difference being the definition of the effective
field in the longitudinal component as discussed in Sec. II A.

Equation (14) has several important properties. Solving it
under the stationary condition, i.e., for ∂ f /∂t = 0, we can
obtain the diffusion coefficients. Due to the presence of the
drift (last) term in Eq. (14), one can conclude that the FP
should have a solution in the form of the Maxwell-Boltzmann
(MB) like distribution

f (m) = f0m2 exp

(
−F (m)

kBT

)

= f0m2 exp

(
−M0

SV (HMFA · m)

kBT

)
, (15)

where F (m) is the free energy defined in Eq. (7), kB is the
Boltzmann constant, and f0 is a scaling factor. The MB like
distribution is common to describe the distribution of a vector
length in the presence of an external fluctuation source, e.g.,
the wind speed in many wind power generation models [19].
It is also consistent with the distribution of the magnetization
observed in magnetic resonance imaging experiments [20,21].

To further understand this behavior, we can consider the
magnetization length as the sum of a discrete population of N
spins that assume the states S = ±1

m = 1

N

∣∣∣∣∣
N∑

i=1

Si

∣∣∣∣∣. (16)

When the temperature is low, such as T � TC , and due
to the strong exchange coefficient J0, most of the spins are
aligned in the same direction. The thermal fluctuations ran-
domly flip the spins and the resulting magnetization length
distribution appears as the Boltzmann distribution with a
narrow standard deviation. When the temperature is above
the Curie temperature (i.e., T > TC), the spin up and down
populations are almost the same, providing a value of the equi-
librium magnetization close to zero and a wider standard devi-
ation. Since the magnetization length is a positive number, the
spin flipping cannot produce a negative magnetization. More-
over, the probability of producing a magnetization magnitude
below the equilibrium value is lower than that of producing
a greater magnetization, which is consistent with Eq. (16).
The deviation from the Boltzmann distribution is stronger for
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smaller particles (practically particles of size smaller than 10
nm). For larger particles or at low temperatures, this deviation
would be much less significant, and the contributions of the
longitudinal fluctuations become negligible. It is important to
note, however, that in various applications, e.g., HAMR, the
dimension of the grains is of the order of 5−8 nm [3,22], and
a correct assessment of the noise in this range is important
for providing quantitative and qualitative information on the
contribution of the noise. Moreover, the intensity of the longi-
tudinal noise can influence the intensity of the optical source
necessary to describe the optical reversal in ferromagnetic and
ferrimagnetic media [7,23,24].

We, then, note that the contributions of the precessional
thermal fluctuation D0 and the transverse relaxation D2 act
on the same direction suggesting a correlation between the
two fluctuators. To avoid any correlation, we set D0 = 0. This
choice is arbitrary and a different choice for the diffusion coef-
ficient can lead to equivalent stochastic processes. This point
is shown in Ref. [14] for different implementations of the
thermal fluctuations in the Landau-Lifshitz (LL) model, i.e.,
thermal fluctuations only in the precessional term or in both
precessional and transverse terms. The diffusion coefficient in
such equivalent choices differs only by a scaling factor.

Since the Langevin noise acting on the longitudinal compo-
nent of the magnetization D1 and on the transverse component
of the magnetization D2 are perpendicular to each other by
construction of the FP equation, the condition of uncorrelated
fluctuations for (m · L(1) )m and m × (m × L(2) ) is automati-
cally satisfied. The diffusion coefficient can, then, be obtained
by solving the uncoupled system of equation

γ 2
α̃2

‖D1

m2
m

(
M0

SV
m · HMFA

kBT
− 2

m · m
m2

)

f = γ α̃‖ f

(
1 − BS (mβ J̃0)/m

μ0βB′
S (mβ J̃0)

)
m − 2D1α̃

2
‖γ

2 m
m2

f , (17)

γ 2 α̃2
⊥D2

m2
m ×

[
m ×

(
M0

SV
H′

eff + HE

kBT
− 2

m
m2

)]

f = γ α̃⊥
[m × [m × H′

eff ]]

m2
f . (18)

With the MB distribution, the last term in the left- and
right-hand sides of Eq. (17) are canceled out and the longi-
tudinal component diffusion coefficient becomes

D1 = kBT

γ α̃‖M0
SV

μ0

J̃0

(
1 − BS (m0β J̃0)/m0

μ0βB′
S (m0β J̃0)

)
. (19)

Defining a scaling coefficient as

η = μ0

J̃0

(
1 − BS (m0β J̃0)/m0

μ0βB′
S (m0β J̃0)

)
, (20)

we can write the diffusion coefficient for the longitudinal
component as:

D1 = kBT

γ α̃‖M0
SV

η, (21)

Using the definition of m0 in Eq. (3), we can show that for
T < TC the effect of the thermal fluctuation due to D1 is negli-
gible, i.e., η can be set to zero. For T > TC , the contribution of

the thermal fluctuation due to D1 is not negligible. To obtain
this contribution, we keep the dominant terms in the Taylor
expansion of BS and B′

S around 0 in Eq. (20), leading to

η = 1 − β J̃0C(S)

β J̃0C(S)
≈ T

TC
− 1, (22)

where C(S) = (S + 1)/(3S) and the latter approximation is
obtained by assuming that J̃0 ≈ J0 = 3kbTC/(S(S + 1)), β =
S2/(kbT ). Using Eq. (22) and (19) and assuming that α̃‖ ≈ α‖
for |HE | � |H ′

eff |, we can rewrite the diffusion coefficient for
the longitudinal component as:

D1 ≈
{

0 for T < TC
kBT

γα‖M0
SV

(
T
TC

− 1
)

for T � TC
. (23)

We note that the result given in Eq. (23) satisfies
the Fluctuation-Dissipation theorem at low temperatures
(see Appendix).

In Eq. (18), we note that the field HE is parallel to the
direction of the magnetization m by construction and its
contribution to the cross-product vanishes. Thus, the diffusion
coefficient for the transverse fluctuations can be written as

D2 = kBT

γ α̃⊥M0
SV

, (24)

where α̃‖ can also be approximated as α̃‖ ≈ α‖ for |HE | �
|H ′

eff |. The diffusion coefficient D2 is the same as obtained
in previous works [11], and it is equivalent to the diffusion
coefficient obtained for the Landau-Lifshitz-Gilbert equation
[14].

The formulation for the fluctuations in Eqs. (23) and (24)
has similarities and differences as compared to the other for-
mulations [11,12]. Compared to the original LLB formulation
[11], the formulations differ in the value of η = 1, which is
greater in the original LLB formulation for the longitudinal
fluctuations. The greater longitudinal fluctuations may lead
to underestimation of the mean value of the magnetization as
compared to the equilibrium magnetization me. The stochastic
LLB formulation by Evans [12] introduces not only a multi-
plicative but also additive noise [12]. Due to the additive noise
acting in all direction this formulation requires introducing
an additional condition on the correlation of the Langevin
sources L(1)

k,LLB−II and L(2)
k,LLB−II: 〈L(1)

k (0), L(2)
l (t )〉 = 0. This

condition is not necessary in the model here since all cor-
relation between the Langevin sources disappear in Eq. (9)
due to the orthogonality of the longitudinal and damping
components. The use of an additive multiplicative stochastic
fields leads to an overestimation of the mean magnetization
magnitude as compared to the equilibrium magnetization me.
Moreover, for T > Tc, this model may show relatively large
mean magnetization magnitudes. This overestimation can be
understood by considering that a strong additive noise in
multidimensional systems with nonlinearities can generate a
random shift far from the deterministic attractor, referred to
as a “phantom attractor” [25]. Increasing the volume of the
single domain particle reduces the intensity of this additive
noise thus removing the effect of the phantom attractor.
However, for various applications the particles can be small,
and one needs to be able to model their behavior. The pro-
posed formulation has a vanishing longitudinal fluctuations
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for T < Tc, which is similar to the self-consistent Bloch
(SCB) formulation in Refs. [10,16]. As compared to SCB
formulation, however, the proposed formulation does have
longitudinal fluctuations.

III. NUMERICAL RESULTS

We implemented the system of equations in a numerical
code using the Heun’s time integrator. The choice of the
scheme is dictated by the Stratonovich interpretation of our
model and by the simplicity of implementation [26]. The
numerical scheme is identical to the one used for the deter-
ministic equation, where the deterministic part of our equation
converges with order 2 and the stochastic part converge with
order 1. To study the behavior of our model, we compare the
proposed model, referred to as LLB-III, to the LLB model of
Garanin (LLB-I) [11] and Evans (LLB-II) [12]. We note that
Refs. [11] and [12] use an approximation to the deterministic
part of the LLB formulation in terms of the Brillouin function
expansion and susceptibilities. For the considered simula-
tions, this approximation leads to almost the same results as
those obtained based on the original deterministic part, as
defined in Eqs. (5) and (10). For proper comparison in the
following results, we used Ai in Eq. (10) in the deterministic
part of all the LLB formulations.

To exemplify the model outcomes, we study the magne-
tization distribution around an equilibrium state for isotropic
and anisotropic single-domain FePt particles. The considered
particles has a characteristic length L = 5 nm (V = L3 =
125 nm3), Curie temperature TC = 700 K (J0 = 3kbTC), satu-
ration magnetization M0

S = 500 emu/cm3, and magnetic mo-
ment of μ0 = 5μB. Since we are interested in the equilibrium,
we use the atomistic damping coefficient of its the critical
value λ = 1, as also chosen by Evans [12]. For the integration
scheme, we used a time step of �t = 1 fs. The magnetization
of the system is initially set equal to the equilibrium mag-
netization obtained from the atomistic model for an ideal SC
lattice material [27] and the system is equilibrated for 1ns. The
magnetization distribution is obtained from the equilibrated
system by sampling the distribution over 10 ns.

We first consider an isotropic case (i.e., η′
x,y = 0). Figure 1

shows a uniform distribution of the magnetization with respect
to the polar angle θ . This is expected since no energy barrier
is present in the direction perpendicular to the magnetization.
There is an agreement between the results from all the models.

Figure 2 shows the mean magnetization magnitude as a
function of the temperature for particles of different sizes for
the three LLB models. The LLB-I model underestimates the
mean magnetization magnitude at high temperatures, which is
explained by the longitudinal fluctuations. The LLB-II model
overestimates the mean magnetization magnitude, which is
explained by the effects of the additive noise as discussed
after Eq. (24). For T > Tc, this overestimation leads to large
mean magnetization magnitude values (around 10% of the
saturation value), which are significantly higher than the
values obtained via the LLB-I and LLB-II models. Increas-
ing the diameter of the particle, the displacement from the
equilibrium magnetization disappears and it is negligible for
particles of size of L = 20 nm. Since in the LLB-I and LLB-II
models the diffusion coefficient is proportional to the inverse

FIG. 1. Distribution of the magnetization polar angle θ for an
isotropic magnetic particle (L = 5 nm) for the LLB-i (red lines),
LLB-II (green lines), and LLB-III (blue lines) models. The results
are given for (a) T = 600, (b) 650, (c) 680, and (d) 695 K.

FIG. 2. (a) Magnetization length vs temperature for isotropic
particles of different sizes: L = 5 (circles), 10 (crosses), and 20 nm
(squares) for three models: LLB-I (red line), the LLB-II (blue line),
and the LLB-III (blue line). The black dashed line represents the
input equilibrium magnetization me. (b) Inset for a temperature range
near TC .
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FIG. 3. Distribution of the magnetization above TC = 700 K for
isotropic particles of three sizes: 5 nm in (a), 10 nm in (b), and 20 nm
in (c) using the LLB-I (red lines), the LLB-II (green lines), and the
LLB-III (blue lines) models. The results are provided for different
temperatures: T = 710 (solid lines), 720 (dashed lines), and 740 K
(dotted lines).

of the volume, it means that the equilibrium magnetization is
recovered when the diffusion coefficient is reduced. For the
LLB-II model, the phantom attractor also disappears if we
reduce the intensity of the fluctuations as expected from the
theory.

Figure 3 shows the magnetization magnitude probability
density for T > TC for different particle sizes and the three
LLB models. We can see that the distribution width obtained
using LLB-III is narrower as compared to the results obtained
using the LLB-I and LLB-II models. The distributions of the
LLB-I and LLB-III models are of MB type as in Eq. (15). The
mean values are in agreement with Fig. 2.

Next, we consider an anisotropic case with the anisotropy
field HK = J0η

′
x,y/μ0 = 1.0 T. The angular dependence re-

sults for the three models are shown in Fig. 4 The probability
distribution along θ shows two peaks around θ = 0 and θ = π

at low temperature [Fig. 4(a)] due to the presence of the
uniaxial anisotropy that gives the magnetization a preferential
direction along the anisotropy axis z. The two peaks decrease
with the temperature [Figs. 4(b) and 4(c)], and the distribution
becomes identical to the isotropic case for temperature close

FIG. 4. Distribution of the magnetization polar angle θ for a
magnetic particle (L = 5 nm) with an uniaxial anisotropy along z
(Hk = 1.0 T) for the LLB-i (red lines), LLB-II (green lines), and
LLB-III (blue lines) models. The results are given for (a) T = 600,
(b) 650, (c) 680, and (d) 695 K.

to TC [Fig. 4(d)]. For T > TC , the mean magnetization and
the probability density of the magnetization length are quali-
tatively the same as in Figs. 2 and 3, and therefore, they are
not shown.

IV. SUMMARY

We introduced a formulation for thermal noise in the
stochastic form of the LLB equation. The model was tested
by considering the equilibrium simulation for small magnetic
particles and the results were compared with existing formu-
lations.

The introduced noise formulation is similar to the one
proposed by Garanin [11]. The two approaches share common
assumptions and obtain the noise using the Fokker-Plank
equation. The formulations are different in using different
definitions of the free energy of the system. The free energy
used here is the same as was used recently in deriving the
diffusion coefficients for the SCB equation [10,16]. Using the
Fokker-Plank equation, the obtained noise diffusion coeffi-
cients lead to a vanishing noise component in the direction of
the magnetization for T < TC and a gradually increasing with
T diffusion coefficient for T > TC . An important property of
the presented model is that it recovers the expected mean
value of the magnetization at the equilibrium for small and
large magnetic particles. The distribution of the magnetiza-
tion length is a MB like distribution. Such a distribution is
consistent with the results in other related physics types [19].

The preservation of the equilibrium magnetization makes
the presented model appealing for HAMR [22] and multi-
scale atomistic-micromagnetic modeling [8]. The multiscale
modeling would use the density functional theory to provide
input parameters for atomistic modeling and the atomistic
modeling would provide parameters for the LLB model,
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which would be used at the mesoscopic scale. The formulation
can be used in existing micromagnetic models with a simple
update of the noise terms. Even if a direct measure of the
longitudinal noise generated is hard to obtain experimentally,
an indirect further validation of the proposed model can be
obtained by measurements and simulation of HAMR systems.
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APPENDIX: THE FLUCTUATION-DISSIPATION
THEOREM

In this work, we have obtained the diffusion coefficient
by solving the FP equation at equilibrium. This approach is
valid for the entire range of temperature both in the linear and
nonlinear regimes. The absence of fluctuations at low temper-
ature we obtained in Eq. (23) may seems counterintuitive. One
would expect that the result we obtained be equivalent to the
one obtained using the fluctuation dissipation theorem (FDT).

The FDT is a linear-response theory, valid for small de-
viation from the equilibrium. We base our derivation on the
methods described in Refs. [28,29]. At low temperatures
and for small fluctuations of the magnetization δm near the
equilibrium magnetization (i.e., δm � m0), we can linearize
Eq. (6), converting the multiplicative noise into an addi-
tive noise variable. The linearized system of equation can then
be written in the absence of thermal fluctuations as

dxi

dt
=

3N∑
j=1

Li jx j, (A1)

where i = 1, . . . , 3N are the degree of freedom of the N
particles in the system, xi = δmi is the deviation of the sub-
system i from the equilibrium, and Li j are the components
of the linearize matrix L. The general (linearized) Langevin
equation of motion is written in the form

dxi

dt
= −

3N∑
j=1

γi jXj + fi, (A2)

where γi j are the kinetic coefficients, fi represent random
forces responsible for the spontaneous fluctuation, and Xj are
thermodynamically conjugate variables related to the entropy
S of the magnetic system by

Xj = − ∂S

∂x j
. (A3)

For a closed system in an external medium, Eq. (A3) can
be written as

Xj = β
∂F

∂x j
, (A4)

where F is the free energy of the system, defined in Eq. (7)
that can be expressed in terms of the xi as

F = F0 + 1

2

∑
i j

Ai jxix j, (A5)

where Ai j are the components of the symmetric energy
matrix and F0 is a constant. Defining the field variations
due to the small fluctuation of the magnetization as hi =
hi(x1, x2, . . . , x3N ) = ∑

i j Bi jx j , we can rewrite Eq. (A4) as

Xj = −βMSV hj = −βMSV
3N∑
i j

Bi jx j . (A6)

The statistical properties of the random forces fi in
Eq. (A2) can be obtained using the Onsager principle:

〈 fi(t )〉 = 0 〈 fi(0) f j (t )〉 = (γi j + γ ji )δ(t ). (A7)

The kinetic coefficient can be obtained by solving

dxi

dt
=

3N∑
j=1

Li jx j = βMsV
3N∑
j=1

γi jh j . (A8)

Thus, the kinetic coefficient can be obtained as

γ
μν
i j = Lμν

i j

βMsV Bμν
i j

, (A9)

where i, j = 1, . . . , N represent the N macrospin in our sys-
tem, and μν = x, y, z are the cartesian coordinates.

We consider an initial magnetization mi = {0, 0, m0} with
i = 1, . . . , N , and we introduce small fluctuations of the mag-
netization (i.e., δmx

i , δmy
i , δmy

i � m0). The components of the
field matrix Bi j can be obtained from Eqs. (2) and (7) as

Bxx
i j =

[
Aex

h2
(δi j−1 − 2δi j + δi j ) − Hkδi j

]
, (A10)

Byy
i j =

[
Aex

h2
(δi j−1 − 2δi j + δi j ) − Hkδi j

]
. (A11)

Bzz
i j =

[
Aex

h2
(δi j−1 − 2δi j + δi j ) + J0

μ0
δi j

]
, (A12)

and Bμν
i j = 0 for μ 
= ν.

The linearized equation of the magnetization can be ex-
pressed in the form:

Lxx
i j = γ α̃⊥

m2
0

[
Aex

h2
(δi j−1 − 2δi j + δi j ) − Hkδi j

]
, (A13)

Lyy
i j = γ α̃⊥

m2
0

[
Aex

h2
(δi j−1 − 2δi j + δi j ) − Hkδi j

]
, (A14)

Lzz
i j = α̃‖

m2
0βμ0B′(ξ0)

[
BS (ξ0) + m0

δξ0

δm
B′(ξ0) − 2m0

]
,

(A15)

Lxy
i j = −Lyx

i j = −γ

[
Aex

h2
(δi j−1 − 2δi j + δi j ) − Hkδi j

]
,

(A16)

Lxz
i j = Lyz

i j = Lzx
i j = Lzy

i j = 0. (A17)
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In Eq. (A15), δξ0 = μ0βh is the fluctuation of the reduced
magnetization due to a small change in the magnetization
from the equilibrium value. Using the relationship given in
Eq. (3), it is easy to show that

δm

δξ0
= δBS (ξ0)

δξ0
= B′

S (ξ0). (A18)

Using Eqs. (A18) and (3) in Eq. (A15), we can
show that Lzz

i j = 0. Hence, we can see that the longi-
tudinal fluctuation does not exist in our system in the
linearized case. This result is consistent we the result
we obtained using the FP equation below the Curie
temperature.
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