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Stratonovich-Ito integration scheme in ultrafast spin caloritronics
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The magnonic spin Seebeck effect is a key element of spin caloritronics, a field that exploits thermal
effects for spintronic applications. Early studies were focused on investigating the steady-state nonequilibrium
magnonic spin Seebeck current, and the underlying physics of the magnonic spin Seebeck effect is now relatively
well established. However, the initial steps of the formation of the spin Seebeck current are in the scope
of recent interest. To address this dynamical aspect theoretically, we propose here an alternative approach
to the time-resolved spin Seebeck effect. Our method exploits the supersymmetric theory of stochastics and
the Stratonovich-Ito integration scheme. We found that in the early step the spin Seebeck current has both
nonzero transversal and longitudinal components. As the magnetization dynamics approaches the steady state,
the transversal components decay through dephasing over the dipole-dipole reservoir. The timescale for this
process is typically in subnanoseconds, pointing thus to the potential of an ultrafast control of the dynamical
spin Seebeck during its buildup.
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I. INTRODUCTION

Irradiating magnetic samples with electromagnetic fields
may result in a variety of phenomena, including subpicosec-
ond magnetic order breakdown, electron-phonon spin-flip
scattering [1], electron-magnon scattering in nonequilibrium
[2], and superdiffusive spin transport [3]. These observations
are related to ultrafast spin dynamics [4,5] and depend on
the parameters of the driving fields such as their intensity,
duration, and frequencies, as well as on the inherent properties
of the magnetic sample. Our interest here is devoted to a par-
ticular aspect, namely to the nonequilibrium magnonic current
generated by a temperature gradient due to local heating of the
sample by a laser pulse [6]. This means that we concentrate on
the regime where the phonon temperature profile has already
been established and consider the nonequilibrium dynamics
of magnons. We note that magnon dynamics is of a particular
importance for applications, as magnons are low-energy exci-
tations that can carry information over long distances and can
be utilized for logic operations. To deal with nonequilibrium
processes under the influence of irregular forces and thermal
fluctuations the Fokker-Planck (FP) equation is the method of
choice [7–12].

In general, FP equation applies also to nonlinear (chaotic)
systems with positive Lyapunov exponents [13]. Treating the
thermally activated magnetization dynamics and the steady-
state magnonic spin current, the FP equation allows obtaining
results beyond the linear response theory [14,15]. However,
the corresponding nonstationary case has not yet been treated
with the FP equation. In fact, the FP equation is a nonlinear

partial differential equation which admits exact analytical
time-dependent solution only in few limited cases. Our aim
to describe the ultrafast spin dynamics entails access to the
time-dependent solution of the FP equation. The available
procedures and analytical tools for solving the time-dependent
FP equation are limited basically to 1D systems. As an alterna-
tive, one can consider a supersymmetric theory of stochastics
and the Stratonovich-Ito integration scheme. In this work, we
apply the Stratonovich-Ito integration scheme to the system
below the Curie temperature.

Here we present an analytical FP-based approach to study
thermally activated ultrafast magnonic spin current. Specifi-
cally, we focus on the behavior of the nonequilibrium spin
current, generated at the interface of a ferromagnetic insulator
and a normal metal, [16,17] and calculate how it approaches
the nonequilibrium (steady) state. To this end the evaluation of
the correlation functions in the nonequilibrium state is needed,
and as we show here, this can be achieved by using the FP
equation and the Stratonovich-Ito integration scheme for the
stochastic noise.

Our choice of the sample is motivated by the recent ex-
periments uncovering the early stage of the spin Seebeck
effect [18]. Using terahertz spectroscopy applied to bilayers of
ferrimagnetic yttrium iron garnet (YIG) and platinum, the spin
Seebeck current is shown to arise on the ∼100 fs timescale.

The work is organized as follows. In Sec. II, we define the
magnonic spin current. In Sec. III, we describe the theoretical
methods used afterward. In Sec. IV, we present results and
conclude the work.
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FIG. 1. The schematics of the system. The red arrows show the
direction of spin pumping Isp and fluctuating Ifl spin currents flowing
from the ferromagnetic insulator to the normal metal (Isp) and from
the normal metal to the ferromagnetic insulator (Ifl). Equilibrium
magnetization in the magnetic insulator is along the z axis. T m

F is
the magnon temperature in the magnetic insulator, and TN is the
temperature of the normal metal.

II. MODELING NONEQUILIBRIUM MAGNONIC
SPIN CURRENT

The total spin current Itot = Isp + Ifl crossing the normal
metal/ferromagnet interface has two contributions: the spin
pumping current Isp flowing from the ferromagnetic insu-
lator to the normal metal and the fluctuating spin current
Ifl flowing in the reverse direction (Fig. 1). Equilibration of
electronic and phononic degrees of freedom proceeds much
faster (subpicoseconds) than magnons (up to nanoseconds).
As we are interested in the dynamics of the latter we assume
that the temperature TF in the ferromagnetic layer is set by
the equilibrium electrons and the phonon temperature. The
same applies to the temperature TN in the normal metal. The
heating is assumed to be induced by a laser pulse. The relation
of the pulse parameters and the value of the temperature
has been discussed in detail in Ref. [6]. The thermal bias
through the mismatch between the magnon temperature T m

F
and the sample temperature TN drives the magnonic spin
current of interest here. We note that magnons are low-energy
elementary excitations of the ordered phase. Thus, spin (or
electron/lattice) dynamics at (femtosecond) times where the
magnetic state is broken down or not yet established is not
discussed here.

The spin pumping current flowing from the ferromagnetic
insulator into the normal metal reads [19–21]

Isp(t ) = h̄

4π
[grm(t ) × ṁ(t ) + giṁ(t )], (1)

where gr and gi are the real and imaginary parts of the dimen-
sionless spin mixing conductance of the ferromagnet/normal
metal (F |N ) interface, while m(t ) = M(t )/Ms is the dimen-
sionless unit vector along the magnetization orientation (here
Ms is the saturation magnetization) and ṁ ≡ dm/dt . The spin
current is a tensor object characterized by the direction of the
current flow and the orientation of the flowing spin (magnetic
moment). Due to the geometry of the system (see Ref. [16]),
the pumping spin current flows along the x axis while the
fluctuating spin current flows in the opposite (−x) direction:

Ifl(t ) = −MsV

γ
m(t ) × ζ′(t ). (2)

Here, V is the total volume of the ferromagnet, γ is the
gyromagnetic factor, and ζ′(t ) = γ h′(t ), with h′(t ) denoting
the random magnetic field. In the classical limit, kBT � h̄ω0,
the correlation function 〈ζ ′

i (t )ζ ′
j (t

′)〉 of ζ′(t ) reads

〈ζ ′
i (t )ζ ′

j (0)〉 = 2α′γ kBTN

MsV
δi jδ(t ) ≡ σ ′2δi jδ(t ) (3)

for i, j = x, y, z, where 〈· · · 〉 denotes the ensemble average,
ω0 is the ferromagnetic resonance frequency, and α′ is the
contribution to the damping constant due to spin pumping,
α′ = γ h̄gr/4πMsV . We note that the correlator [Eq. (3)] is
proportional to the temperature of the normal metal TN . The
total spin current thus reads

〈Itot〉 = MsV

γ
[α′〈m × ṁ〉 − 〈m × ζ′〉]. (4)

The temperature-dependent magnetization dynamics is
governed by the stochastic Landau-Lifshitz-Gilbert (LLG)
equation:

dm
dt

= −γ m × (Heff + h) + αm × ṁ, (5)

where α is the Gilbert damping constant, Heff is the effective
field, and the time-dependent random magnetic field in the
ferromagnet is described by h. This effective field Heff con-
tains the anisotropy field HA and the external magnetic field
H0z oriented along the z axis. The total random magnetic field
h(t ) has two contributions from independent noise sources:
the thermal random field h0(t ) and the random field h′(t ). The
former is related to the finite temperature in the ferromagnetic
insulator and the second to the fluctuations in the normal
metal. The correlators of the statistically independent noise
sources are additive, leading to the effective (enhanced) mag-
netic damping constant α = α0 + α′ [16] (α0 is the damping
parameter of the ferromagnetic material, meaning without the
contributions from the pumping currents),

〈ζi(t )ζ j (0)〉 = 2αγ kBT m
F

MsV
δi jδ(t ) = σ 2δi jδ(t ), (6)

where ζ(t ) = γ h(t ) and αT m
F = α0TF + α′TN .

III. THEORETICAL METHOD

To find the total spin current [Eq. (4)], we use the FP
equation for the distribution function of the magnetization
P(mz, t ), which is related to the stochastic equation of the
magnetic dynamics [Eq. (5)]

∂P(mz, t )

∂t
= ∂

∂mz

[
∂

∂mz
+ βU ′(mz )

]
P(mz, t ), (7)

where U (mz ) = 2α(ω0mz − ωpm2
z

2 ) is the potential, β = 1/σ 2

is the effective inverse temperature, ωp = γ HA, and HA is
the anisotropy field. As detailed above, in our case U (mz ) is
time independent. The stationary solution of Eq. (7) is given
by [14]

P0(mz ) = Z−1 exp[−βU (mz )],

Z =
∫

exp[−βU (mz )]d3m. (8)
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For the time-dependent distribution one makes the ansatz

P(mz, t ) = ψ (mz, t ) exp

[
−β

2
U (mz )

]
. (9)

Using Eqs. (9) and (7) we find that ψ (mz, t ) is a solution of
the Schrödinger equation for imaginary time,

∂ψ (mz, t )

∂t
= −Ĥ ψ (mz, t ), (10)

with the Hamiltonian

Ĥ = − d2

dm2
z

+
(

U ′(mz )

2σ 2

)2

− U ′′(mz )

2σ 2
. (11)

As U is time independent, the general solution of Eq. (11)
is ψ (mz, t ) = ∑

n Cn exp (−λnt )ψn(mz ), where ψn(mz ) and λn

are the eigenfunctions and eigenvalues of the stationary equa-
tion, Ĥψn(mz ) = λnψn(mz ). Hence, the problem of solution of
the time-dependent FP equation reduces to the determination
of λn and the corresponding eigenfunctions of the Hamilto-
nian Ĥ . The calculations can be substantially simplified due
to the hidden supersymmetry of this problem [22]. Indeed,
one can introduce the supersymmetric Hamiltonian (for the
supersymmetry, see Refs. [23–28]) Ĥsusy = Q†Q + QQ† =
diag (Ĥ+, Ĥ−), where

Q =
[

0 0
A 0

]
, Q† =

[
0 A†

0 0

]
, (12)

and A = 1
2βU ′(mz ) − ∂/∂mz. Note that Q and Q† are nilpotent

operators, Q2 = (Q†)2 = 0, and the commutator [Q, Ĥsusy] =
0. As a result, Ĥ+ and Ĥ− have common eigenfunctions: if

n is an eigenfunction of Ĥ+, then Q
n is the eigenfunction
of Ĥ− (except for the ground state corresponding to λ0 = 0).
The operator Ĥsusy acts in the space of Bose and Fermi fields.
Namely, Ĥ+ = d2/dm2

z + V+(mz ) is the operator for bosons
and Ĥ− = d2/dm2

z + V−(mz ) is the operator for fermions,
where V±(mz ) = (U ′/2σ 2)2 ± U ′′/2σ 2 are the corresponding
potentials. The operator Q transforms bosons to fermions and
vice versa.

Ĥ+ coincides with Hamiltonian (11). It is, however,
more convenient to solve the Schrödinger equation with the
fermionic Hamiltonian Ĥ− because the corresponding po-
tential V−(mz ) is close to the parabolic form. Owing to the
supersymmetry, the eigenfunctions and eigenvalues are the
same. Using this approach we find λ1 = σ 2

2π
exp (−αωp/σ

2),
and in the limit of strong anisotropy, we find

λn ≈ 4αωp(n − 1)/σ 2. (13)

The first nonvanishing 1/λ2 defines the characteristic relax-
ation timescale. For more details on the supersymmetry theory
of stochastics, we refer the reader to Refs. [29–35].

To explore the time dependence of the nonequilibrium
spin current 〈I(t )tot〉, we utilize the Stratonovich-Ito integra-
tion scheme [36–38] and construct a reductive perturbation
theory valid in the low-temperature limit (specified below).
We briefly recall the main concepts of the stochastic Ito-
Stratonovich integration. The time integral from the stochastic
noise is equal to the function W (t ), which has no time
derivative [W (t ) is not a smooth function]

∫ t
0 ξ (τ )dτ = W (t ).

Therefore, the stochastic integration is performed using the

mean-square (ms) convergence of the sequence of the random
variable Xn(ω), meaning that

ms{ lim
n→∞ Xn} = X (14)

is equivalent to

lim
n→∞

∫ ∞

−∞
p(ω)[Xn(ω) − X (ω)]2

= ms{ lim
n→∞〈(Xn − X )2〉} = 0. (15)

Here p(ω) is the probability distribution function. The
stochastic integral is defined as follows:∫ t

t0

G(τ ) dW (τ )

= ms

{
lim

n→∞

n∑
i=1

G(ti−1)[W (ti ) − W (ti−1)]

}
, (16)

where G(t ) is an arbitrary function of time. We assume
that the magnon temperature in the system is low, which
means that the thermal energy is smaller than the anisotropy
barrier. Therefore, the appropriate ansatz for the solution of
the stochastic LLG equation is

m(t ) = m0(t ) + εm1(t ), (17)

where m0(t ) is the deterministic solution and m1(t ) is the
correction due to the stochastic field. The equation for the
stochastic part reads

dm1(t ) = −A[m0(t )] m1(t ) dt

+ B[m0(t )] dW(t ), (18)

where dW(t ) = ξ(t )dt , and for brevity we introduced the
notations

A[m0(t )] =
⎡
⎣ 0 ωeff (t ) 0

−ωeff (t ) 0 0
A 0 0

⎤
⎦,

B[m0(t )] =
⎡
⎣ 0 m0z(t ) −m0y(t )

−m0z(t ) 0 m0x(t )
m0y(t ) −m0x(t ) 0

⎤
⎦, (19)

with ωeff (ω0 + ωpmz ). Taking into account Eqs. (14)–(19),
after relatively involved analytical calculations for the correla-
tion functions and the nonequilibrium spin current, we deduce

〈Is(t )〉 = 2α′kBε2m0(t )
(
T m

F − TN
)
,

〈m1i(t )ξ j (t )〉 = σ 2εi jkm0k (t ),

〈m1i(t )ξ ′
j (t )〉 = σ ′2εi jkm0k (t ). (20)

In the case of a weak anisotropy, Eq. (20) simplifies, and
for the nonequilibrium magnonic spin current components we
obtain the following:

〈
Ix
s (t )

〉 = 2α′kBε2 cos(ϕ0 + ω0t )

cosh αω0t

(
T m

F − TN
)
,

〈
Iy
s (t )

〉 = 2α′kBε2 sin(ϕ0 + ω0t )

cosh αω0t

(
T m

F − TN
)
,

〈
Iz
s (t )

〉 = 2α′kBε2 tanh (αω0t )
(
T m

F − TN
)
. (21)
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From Eq. (21) it follows that in the asymptotic, long-time
limit the only component of the magnonic spin current that
survives is 〈Iz

s (t )〉, and we recover the classical result of Xiao
et al. [16]. For short times, however, the other components
are sizable and even dominant and thus can be exploited for
ultrafast picosecond magnonics.

We applied the Stratonovich-Ito integration scheme to
the system below the Curie temperature. Nevertheless, our
method can be extended to the Landau-Lifshitz-Bloch equa-
tion as well. Note that Eq. (18), in the coefficients A[m0(t )]
and B[m0(t )], contains the solution of the deterministic
Landau-Lifshitz-Gilbert equation. One can replace the solu-
tion of the deterministic LLG equation m0(t ) by the solution
of the deterministic Landau-Lifshitz-Bloch equation with ex-
tra longitudinal damping parameter [39]. After this replace-
ment, we can again perform the Stratonovich-Ito integration.

The result, Eq. (21), is obtained in the single macrospin
approximation but can be generalized to an extended system
using the ensemble averaging over the dipole-diploe reser-
voir. We note that the transversal spin current components in
Eq. (21) contain the rotating terms. In the case of extended
systems, each spin rotates with a slightly different frequency
due to the broadening of the resonance frequency ω0. Preces-
sion with different frequencies leads to the dephasing of the
signal in time. We assume that the dephasing of the transversal
magnetization and current components have the same nature.

Following Ref. [40], we write down the equation for the
transversal magnetization component,

−ih̄
dmx(t )

dt
= [Ĥd (t ), mx(t )], (22)

or in the matrix form

−ih̄
d[mx(t )]nn′

dt
= h̄�ω(t )nn′ [mx(t )]nn′ . (23)

The Hamiltonian Ĥd (t ) in Eqs. (22) and (23) describes
the dipole-dipole reservoir, and the time dependence of the
Heisenberg operators is governed through the Zeeman Hamil-
tonian ĤZ (see Ref. [40] for more details). Let us quantify the
fluctuations of the local field through the function

〈�ω(t )nn′�ω(t + τ )nn′ 〉 = M2
(τ ), (24)

where

M2 = −Tr{[Ĥd , mx]2}
h̄2Tr

{
m2

x

} − ω2
0 (25)

is the second moment of the transversal component. We
assume that the dephasing mechanism of the transversal
spin current components is the same. Taking into account
Eqs. (22)–(25) for the ensemble-averaged dephasing transver-
sal spin currents, we infer

〈〈
Ix
s (t )

〉〉 = 2α′kBε2 cos(ϕ0 + ω0t )

cosh αω0t
exp

[
−M2

∫ t

0
(t − τ )
(τ )dτ

](
T m

F − TN
)
,

〈〈
Iy
s (t )

〉〉 = 2α′kBε2 sin(ϕ0 + ω0t )

cosh αω0t
exp

[
−M2

∫ t

0
(t − τ )
(τ )dτ

](
T m

F − TN
)
. (26)

In the limit of the white noise the dephasing exponent
takes the simpler form: 〈〈Ix,y

s (t )〉〉 ≈ 〈〈Ix,y
s (0)〉〉 exp [−t/T2],

where the transversal relaxation time is given by T2 =
−M2t

∫ ∞
0 
(τ )dτ . Thus, the decay of the transversal

magnonic spin current components in the ultrafast spin See-
beck effect is solely determined by the dipole-dipole interac-
tions.

IV. RESULTS AND DISCUSSIONS

In the numerical simulation, the motion of m is governed
by the LLG equation (5). The adopted numerical parameters
are Ms = 1.4 × 105 A/m, the damping constant α = 0.001,
the external magnetic field H0z = 2 × 105 A/m, and the spin-
mixing conductance gr = 3 × 1015 1/m2. In the equilibrium
state, the local magnetization points along the +z direction.
We set the temperature T m

F = 5K and TN = 0. The time-
dependent magnonic spin pumping currents Ix

s (t ), Iy
s (t ), and

Iz
s (t ) are plotted in Fig. 2. The spin current is calculated using

Eq. (1). For the transversal components Ix
s (t ) and Iy

s (t ) we
consider the averaging procedure through the exponential fac-
tors 〈〈Ix

s (t )〉〉 = e−t/T2〈Ix
s,0〉 and 〈〈Iy

s (t )〉〉 = e−t/T2〈Iy
s,0〉, with

the transversal relaxation time T = N/ω0, N = 50, and the
values of 〈Ix

s,0〉 and 〈Iy
s,0〉 are calculated from Eq. (1). The

numerical solution plotted in Fig. 2 is in good agreement

with the analytical results expressed by Eqs. (20) and (26).
Calculations done for the anisotropy field Hz = 2Kz

μ0Ms
(along

the z axis) with constant Kz = 1.8 × 104 J/m3 (not shown)
lead to similar conclusions. To explore the dephasing problem
for an extended sample, we performed micromagnetic simu-

FIG. 2. Time-dependent nonequilibrium transversal and longi-
tudinal magnonic spin current components Ix

s (t ), Iy
s (t ), and Iz

s (t ).
The magnon temperature is equal to T m

F = 5 K and temperature
of the normal metal TN = 0. The external magnetic field H0z =
2 × 105 A/m is applied in the +z direction.
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FIG. 3. Time-dependent, nonequilibrium transversal and longi-
tudinal magnonic spin current components Ix

s (t ), Iy
s (t ), and Iz

s (t )
for a finite ferromagnetic sample. The short timescale longitudinal
magnonic spin currents are important, whereas in the long-time limit
Iz
s (t ) is dominant.

lations. We performed numerical simulations for an extended
ferromagnetic sample. Our simulations include the effects
of the dipole-dipole and exchange interactions as well as
the magnetic anisotropy. The geometry of the ferromagnetic
sample is as follows: the length is 350 nm (along the z axis),
the width 50 nm (along the y axis), and the thickness is 5 nm
(along the x axis). In this case, the equilibrium magnetization
points to the in-plane along the +z direction. The magnon
temperature T m

F = 5 K and the temperature of the normal
metal is set to zero TN = 0. The time-dependent magnonic
spin pumping currents Ix

s (t ), Iy
s (t ), and Iz

s (t ) are plotted in
Fig. 3. For extended samples, the dephasing of the transversal

spin current components is faster and can hardly be captured
through the micromagnetic simulations. As is evident, the
transversal components of the current oscillate randomly close
to the zero value, leading to 〈Ix

s (t )〉 = 0 and 〈Iy
s (t )〉 = 0. The

longitudinal component Iz
s (t ) increases in time and saturates

in the stationary regime.
Summarizing, we proposed a theoretical approach to the

time evolution of the spin Seebeck current. The approach
is based on the time-dependent Fokker-Planck equation and
supersymmetry arguments. We managed to derive the an-
alytical formula for the initial step of the buildup of the
spin current in the spin Seebeck effect. The results are con-
firmed by full numerical calculations. The current experi-
mental interest shows that ultrafast spin dynamics will play
an increasingly significant role in spin caloritronics in the
foreseeable future. Analytical tools for the time-dependent FP
equation are quite limited. Therefore, the alternative method
proposed in our work should be useful for spin caloritronic
studies.
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