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Scaling behavior of the momentum distribution of a quantum
Coulomb system in a confining potential
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We calculate the single-particle momentum distribution of a quantum many-particle system in the presence of
the Coulomb interaction and a confining potential. The region of intermediate momenta, where the confining
potential dominates, marks a crossover from a Gaussian distribution valid at low momenta to a power-law
behavior valid at high momenta. We show that for all momenta the momentum distribution can be parametrized
by a q-Gaussian distribution whose parameters are specified by the confining potential. The real-space pair-
correlation function calculated in this way can, in principle, be used to construct improved exchange-correlation
functionals to solve electronic structure problems. Furthermore, we find that the functional form of the
probability of transitions between the confined ground state and the nth excited state is invariant under scaling
of the ratio Q2/νn, where Q is the transferred momentum and νn is the corresponding excitation energy.
Using the scaling variable Q2/νn the maxima of the transition probabilities can also be expressed in terms of
a q-Gaussian.
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I. INTRODUCTION

The single-particle momentum distribution plays an im-
portant role in our understanding of the ground-state prop-
erties of quantum many-particle systems [1,2]. It is defined
as the average number of particles with momentum k in
an N-particle system, n(k) = 〈�|∑σ a†

kσ akσ |�〉. Here the
normalized N-particle state of the system is represented by
|�〉 and a†

kσ (akσ ) are the creation (annihilation) operators for
particles with momentum k and spin projection σ . In real
space the one-particle density matrix

ρ(x1, x′
1) =

∫ N∏
i=2

dxiψ
†(x1, x2, . . . , xN )ψ (x′

1, x2, . . . , xN )

(1)
measures the change of the N-particle wave function when
a particle is moved from x′

1 to x1 while all other particles
are fixed. In homogeneous systems this two-point function
depends only upon the separation ρ(x1, x′

1) = ρ(|x1 − x′
1|).

Accordingly, the momentum distribution and the one-particle
density matrix are related by Fourier transformation

n(k) =
∫

dx1

∫
dx′

1eik·(x1−x′
1 )ρ(x1 − x′

1). (2)

The momentum distribution, Eq. (2), is determined by a
product of two field operators whose short-distance behav-
ior can be calculated exactly using renormalization group
methods [3–6]. The later techniques, when applied in nu-
clear physics, decouple the low- from the high-momentum
degrees of freedom and leave the scattering cross sec-
tion invariant [2,7–11]. Furthermore, the nuclear momen-

tum distributions calculated within the impulse approxima-
tion [12,13] provide universal scaling laws for the high-
momentum tails [2] of one- and two-particle momentum
distributions [4,14]. These tails are the consequence of short-
range correlations in the nuclear wave functions [15]. Renor-
malization group arguments [16,17] have also shown that
high-momentum tails of momentum distributions factorize
into a product between a universal function of momentum,
which is determined by two-particle physics and a factor
depending on the low-momentum structure of the many-body
state [6]. This observation goes back to Kimball [18,19] who
pointed out that when two particles are sufficiently close their
interaction dominates, and the two-particle Schrödinger equa-
tion provides a reasonable starting point to compute quantum
mechanical observables from the knowledge of the pair wave
function.

Experimental measurements of n(k) involve inelastic scat-
tering processes with energy and momentum transfers larger
than the characteristic lengthscale of the scatterer. They
determine the double differential scattering cross section
d2σ/d�dω for a given infinitesimal solid angle d� and
energy dω of the scattered particle, respectively. The inci-
dent energy and the scattering angle are fixed during the
experiment, and the scattering cross section is measured as a
function of the transferred momentum and energy. The data
analysis of the measured scattering cross section generally
employs the impulse approximation [12,13], which assumes
that a single particle is struck by the scattering probe, and
that the particle recoils freely from the collision. Within the
impulse approximation the scattering cross section is propor-
tional to the Compton profile d2σ/d�dω ∝ J (kz ). The latter
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quantity can be calculated directly by integrating the momen-
tum distribution n(k) in a plane perpendicular to the scat-
tering vector kz: J (kz ) = ∫∫

n(k)dkx dky. The proportionality
implies that, whenever the measured scattering cross section
is modelled within the impulse approximation [1,2] and is
found to be invariant under some scaling transformation, the
Compton profile will show the same scaling behavior.

In this paper we investigate whether the momentum dis-
tribution of a Coulomb system, which yields the Comp-
ton profile by integration, also shows scaling behavior. In
high-energy physics it is well known that the scaling of
the scattering cross section is a consequence of confinement
(“Bjorken scaling”). Indeed, by assuming the existence of
a simple confining potential for two point particles, Elitzur
and Susskind [20] derived the scaling behavior of the res-
onance excitations found experimentally in deep inelastic
reactions [8,21]. Making use of Kimball’s observation [18,19]
we will therefore compute the momentum distribution of two
interacting electrons by numerically solving the two-particle
Schrödinger equation for a repulsive Coulomb interaction
in the presence of a confining potential. In the following
we work in atomic units, where the unit length is a0 =
1 Bohr(0.529167 × 10−10 m), the unit of mass is the elec-
tron mass m, and the unit of energy is 1 Hartree (1 Ha =
27.2113 eV). To keep the investigation general we consider
an algebraic confining potential of the model form V (x) =
α|x/a0|η. The condition η > 0 ensures that the potential pro-
duces bound states, and we chose α = 1 Ha. We will show
that the momentum distribution of a quantum many-particle
system interacting via the Coulomb interaction in the presence
of a confining potential can be parametrized by a q-Gaussian
distribution whose parameters are determined by the confining
potential.

In Sec. II we compute the high-momentum tails of the
momentum distribution, Eq. (2), in the ground state and
show that they obey scaling relations. A crossover in the
momentum density from an ordinary Gaussian distribution at
small momenta to a power-law behavior at larger momenta
occurs when the Coulomb potential dominates the confine-
ment. In the cross-over region of size ≈5 /a0 we find that
the shape of the momentum distribution is described by a q-
Gaussian with k-dependent parameters. At large momenta we
recover the exact results obtained by renormalization group
methods [4–6,16,17]. Using the solutions of the two-particle
Schrödinger equation of Sec. II we show in Sec. III that
when the confinement dominates the Coulomb interaction,
the transition matrix elements into excited states (nth-bound
level) due to momentum absorption also obey q-Gaussian
distributions, and we connect the q-parameter to the shape of
the confining potential. The q-Gaussian used to parametrize
the momentum distribution is characterized by parameters
which are different from those used to fit the transition proba-
bilities between the bound states. Finally, in Sec. IV we relate
these results to the recent observation [22] that the Compton
profiles of all alkali elements can be collapsed onto a single
curve which is described by a q-Gaussian. Furthermore, we
point out that the pair-correlation function calculated in our
approach in real space can be used to construct improved
exchange-correlation functionals to solve electronic structure
problems.

FIG. 1. Probability density |ψn(x)|2 of the pair wave functions
for n = 0, 1, 2 obtained from the solutions of Eq. (4). Red solid line:
Confining potential V (x), with η = 2, together with the repulsive
Coulomb term 1/x, which is singular at x = 0. The corresponding
energies En of the ground state and the first excited states are shown
on the right. For a better visibility the probability densities are
separated along the vertical axis.

II. GROUND STATE: KIMBALL’S APPROACH
TO THE MOMENTUM DISTRIBUTION

We consider nonrelativistic electrons with Coulomb inter-
action whose Hamiltonian reads [18,19]

H = − h̄2

2m

N∑
i=1

∇2
i −

N∑
i=1

NI∑
I=1

e2ZI

|xi − RI | +
∑
i< j

e2

|xi − x j | .

(3)
Here xi and RI are the electronic and nuclear coordinates,
respectively, eZI is the charge of the Ith nucleus, and m
is the mass of an electron. The first term is the kinetic
energy of the electrons, and the remaining two terms represent
the Coulomb repulsion between the electrons and nuclei,
and between the electrons themselves. The eigenstates of
the Hamiltonian (3) are time-independent wave functions
ψ (x1, x2, . . . , xN ) which are normalized to the volume of
the system. Here periodic boundary conditions are assumed
and spin indices are suppressed. Following the idea of Kim-
ball [18,19], the behavior of the wave function at large mo-
menta is determined by the dependence at small distances
between two particles. As the distance approaches zero, the
dynamics of adjacent particles is dominated by the Coulomb
force.

Instead of the explicit electron-nucleon attraction we con-
sider an effective confining potential V (r) whose nature or
origin we do not further specify since we merely wish to
understand the consequences of the confining potentials, e.g.,
possible scaling properties. Introducing relative coordinates
x = x1 − x2 and center-of-mass coordinates X = (x1 + x2)/2
for the two particles as well as the reduced mass μ = 1/2, the
Schrödinger equation becomes(

− ∂2

∂x2
+ V (x) + 1

x

)
ψn(x) = Enψn(x). (4)

The solutions to Eq. (4) are denoted by ψn(x) with the
corresponding eigenenergy En, are shown in Fig. 1. The ansatz
for the total wave function introduced by Kimball [18,19]
separates the dependence on the relative coordinates from that
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of the center-of-mass motion

�n ≡ �n(x1, x2, x3, . . . , xN )

= �n(x, X, x3, . . . , xN )

	 �(X, x3, . . . , xN ) ψn(x). (5)

The one-particle density matrix for the relative coordinates
is then given by

ρ(x, x′) 	
∫

dX
N∏

i=3

dxi �†(X, x3, . . . , xN )ψ†
n (x)

�(X, x3, . . . , xN )ψn(x′)

= ρ ψ†
n (x)ψn(x′), (6)

where ρ represents the integral of the N-particle wave func-
tion over all coordinates xi and X.

From ρ(x, x′) we obtain the two-particle (“pair”) corre-
lation function g(x), which is defined as g(x) = ρ(x, x) =
ρ |ψn(x)|2 and is proportional to the probability of two
particles being at a distance x (see Fig. 1). The momentum
distribution is computed according to Eq. (2).

Figure 2(a) shows the momentum dependence of n(k) for
the confining potential V (x) = α|x/a0|η with η = 2, where k
is the magnitude of k. One clearly sees a Gaussian regime at
small k, which is followed by a crossover into the asymptotic
region at large k. To specify the momentum dependence by
a unique functional form we fit the momentum distribution
with a q-Gaussian [23]. To determine the (q, β ) parameters
we collect k values into “bins” that are characterized by
an average value k̄. The later quantity is computed from
the interval in which the fitting to the q-Gaussian form is
performed and which contains at least five points in the low
momentum and an order of magnitude more (50) points in
the asymptotic region. The initial fitting parameters of the ith
bin are the final parameters of the (i − 1)th k̄-bin. For a given
bin the same values q(k̄), β(k̄) parametrize the momentum
dependence as [24]

nq(k̄),β(k̄)(k) = 1√
2β(k̄)Cq(k̄)

expq(k̄)[−β(k̄)k2]. (7)

For arbitrary values of q, the q-exponential is defined as
expq(x) = [1 + (1 − q)x]1/(1−q). In Eq. (7) Cq(k̄) is a normal-
ization constant and β(k̄) controls the width of the distribution

In Fig. 2(b) we plot the momentum dependence of the
(q, β)-parameters. We see that for low momenta q(k̄) = 1
while β(k̄) = 0.49. In fact, the expq-function becomes the
exponential function in the limit of q → 1, whereby the
Gaussian distribution is recovered. The low momentum region
corresponds to large distances. In this case the Coulomb
interaction is negligible and the solutions become plane
waves [18,19], which form Gaussian wave packages leading
to a Gaussian momentum dependence. In the crossover region,
i.e., in the range k̄min ≈ 1.0 /a0 to k̄max ≈ 5.0 /a0, a smooth
transition between Gaussian and power-law behavior is ob-
served in the momentum dependence of the (q, β) parameters.

For large values of k > kmax the q-Gaussian distribution
has a power-law dependence fq,β (x)|x→∞ ∝ x2/(1−q), which in
our case amounts to constant values of the parameters q(k̄) =
1.50 and β(k̄) = 0.06. Thus, at large momenta the power-law

FIG. 2. (a) Computed momentum distribution n(k) of electrons
in the presence of a confining potential (α = 1Ha, η = 2). The mo-
mentum distribution is fitted by a q-Gaussian in the entire momentum
region. (b) Dependence of the q, β-parameters on the average mo-
mentum k̄. The low momentum region shows an ordinary Gaussian
behavior (q = 1). In the intermediate region (kmin ≈ 1.0 /a0 < k <

kmax ≈ 5.0 /a0) q-Gaussian type of fits are possible with momentum-
dependent parameters. At large momenta the power-law dependence
is recovered.

behavior is recovered [18,19], and the asymptotic behavior
of the momentum density agrees with the result obtained by
the renormalization group approach [16,17]. We note that the
q-Gaussian fits and the corresponding q(k̄), β(k̄)-parameters
differ for different values of the confining potentials (values of
the parameter η). Nonetheless, constant values of q(k̄), β(k̄)
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are obtained for the low momentum region as well as the
asymptotic region.

In the following section we will show that the transition
matrix elements between the ground state and the nth-energy
level caused by absorption of a momentum, calculated from
the solutions of Eq. (4), also obey scaling. This result was
previously found by Elitzur and Susskind within a simpli-
fied parton model [20]. Here we compute the full transition
probability and demonstrate that the scaling functions for the
maxima of the transition probabilities can also be expressed
by q-Gaussians. Since transition probabilities are connected to
the scattering cross section from which the Compton profiles
follow, our calculation proves that the Compton profile also
scales, provided that the potential energy due to the confine-
ment dominates the Coulomb interaction.

III. EXCITED STATES: ELITZUR-SUSSKIND
BOUND-STATE RESONANCES

Elitzur and Susskind employed a simple confining poten-
tial [20] to explain the scaling of the resonance excitations in
deep inelastic reactions [8,21]. In their simplified model the
probability for transitions between the bound states in the con-
fining potential was computed using the dipole approximation
and was shown to be compatible with the scaling of resonant
excitations [20,25,26] in deep inelastic reactions. Contrary to
Ref. [20] in which the Wentzel—Kramers—Brillouin (WKB)
approximation was used, we solve Eq. (4) numerically for
a pair of point particles with masses m1, m2 in a potential
which is sufficiently deep to bind states. We assume that
the momentum Q is absorbed by one of the particles, and
the bound pair is lifted to the nth-level, at an energy νn =
En − E0. Using the solutions of Eq. (4) we evaluate the matrix
elements F (νn, Q2) for the transition into the nth bound level
due to the absorption of a momentum Q. We note that the
solutions of Eq. (4) produce bound states [27] irrespective of
the sign of the confining potential. The transition probability
is the square of the transition matrix element

T (νn, Q2) = |〈ψn|eiQ·x1 |ψ0〉|2 = |〈ψn|eiQ1x|ψ0〉|2. (8)

Here ψ0 and ψn describe the ground state and the nth
bound state of the confining potential, respectively, with Qi =
Q mi/(

∑
i mi ). For electrons m1 = m2 whereby Qi = Q/2 as

the scaled momentum. For finite Q2 the transition probabil-
ity T (νn, Q2) leads to n discrete resonances. The numerical
results are presented in Fig. 3.

In Ref. [20] it was noted that the matching between the
phase of ψn and the exponential factor eiQ1x implies a lin-
ear relation (“scaling direction”) between the square of the
transferred momentum Q2 and the excitation energy νn. The
scaling direction therefore represents a line in the (νn, Q2)-
plane which we illustrate in the upper part of Fig. 3. For any
other direction in the (νn, Q2)-plane the transition probability
decays exponentially (no phase matching). This result was
already derived in Ref. [20] within the WKB approximation,
where the line has slope 1. It is interesting to note that this
result is not exactly reproduced in the present calculations,
where the Coulomb interaction is taken into account.

From the fact that the scaling direction is essentially a line
in the (νn, Q2)-plane along which the transition probability is

FIG. 3. Transition probability T (νn, Q2) computed for the con-
fining potential with η = 2 in the presence of the Coulomb inter-
action. The scaling direction is seen by projection into the (νn, Q2)
plane.

maximal, we can identify the ratio Q2/νn ≡ γ as a scaling
variable. We fitted the maxima along the scaling direction
using a q-Gaussian form

T (νn, Q2) := Tq,β (Q2/νn) = 1√
2βCq

expq(−βQ2/νn). (9)

In the limit of large momenta we find

lim
Q2→∞

Tq,β (Q2/νn)|νn=Q2/γ ∝ γ 2/(1−q) , (10)

i.e., the q-Gaussian takes the form of a power law, which is
characterized by scale invariance. In Fig. 4(a) we show the
q-Gaussian fits to the maxima of the transition probability for
different confining potentials, i.e., different values of η. In the
limit of large momentum transfer Q2 → ∞ we obtain, for
all η values, power laws along the “scaling direction” with
a particular scaling exponent. Due to the scaling property
they are all equivalent up to constant factors. This behav-
ior is presented in Fig. 4(b) where the q-logarithm of the
transition probability is plotted against the scaling variable
Q2/νn. Here lnq is the q-analog of the logarithm defined
by lnq x := (x1−q − 1)/(1 − q). This plot is seen to produce
an essentially linear relation between the scaled transition
probabilities, which collapse onto a single curve. Deviations
are due to finite-size effects and numerical precision in the
high Q-regime.

The q and β values for the fits in Fig. 4 are shown in
Figs. 5(a) and 5(b). We see that q and β increase linearly for
growing η values. With increasing η the confining potential
becomes steeper as the interparticle distance increases. There-
fore one expects that the wave function (eigenfunction of H) is
more localized, which leads to a slower decay of the transition
probabilities at high momenta.
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FIG. 4. (a) The maxima of the transition probabilities corre-
sponding to each transferred momentum Q are plotted for different
confining potential strengths η. Dots are numerical data, while the
red lines show the fit with a q-Gaussian distribution. (b) By scal-
ing all maxima the transition probabilities collapse onto a single
curve.

IV. DISCUSSION

The results presented in this paper were initiated by the
question whether, and under what conditions, the momen-
tum distribution of a Coulomb systems shows scaling be-
havior. Following Kimball’s approach [18,19], we computed
the momentum distribution of two interacting electrons by
numerically solving the two-particle Schrödinger equation
for a repulsive Coulomb interaction in the presence of a
confining potential. We found that n(k) can be parametrized
by a q-Gaussian in the entire momentum range. This crossover
region connects the low-momenta region, described by an
ordinary Gaussian momentum dependence, with a power-law
behavior at large momenta. In the confinement dominated
(intermediate) momentum region we used the method of
Elitzur and Susskind [20] and demonstrated that bound-state

FIG. 5. (a), (b) The dependence of q/β for different η values.
The red line is a guide to the eye.

resonances also show scaling behavior. In particular, we
demonstrated that q-Gaussians are suitable scaling functions
for the maxima of the transition probability. Indeed, the q-
Gaussian behavior is expected to enter in this investigation
since it is the natural mathematical function that can describe
fat-tail distributions, whose asymptotic momentum depen-
dence is not exponential but is described, for example, by a
power law. Whenever the Coulomb interaction dominates the
confining potential (in the large-momenta region) our results
recover the exact analytic results obtained by renormalization
group techniques [6,16,17]. It would be desirable to gain
insight into the numerically derived scaling properties also
within an analytic approach.

Using density functional theory (DFT) [28–31] in combi-
nation with the impulse approximation we recently showed
that Compton profiles of the first column elements of the
periodic table can be collapsed onto a single curve [22] which
can be fitted by a q-Gaussian with element specific (q, β )-
parameters. In that study we did not address the questions
of why there should be scaling behavior at all, and why the
q-Gaussian was found to be a suitable scaling function. In
view of the fact that in the electronic band theory of solids the
periodic ionic potential provides a natural confining potential,
the results of the present paper may provide an explanation
of the unexpected scaling behavior of the Compton profiles of
the alkali elements [22].

For the application of the DFT [28–31] in the framework
of the Kohn-Sham ansatz the knowledge of the exchange-
correlation functional is crucial. A central quantity is the so-
called coupling constant integrated pair-correlation function.
It accounts for the electronic correlations contribution into
the kinetic energy [30] and is the input to the derivation of
the gradient corrected functionals [32,33]. The contribution of
electronic correlations to the kinetic energy has been analyzed
also in momentum space [34], and the limits of large and
small momenta were discussed and found to be in agreement
with results of Kimball [18,19]. In fact, according to our
investigation which extends the work of Kimball by includ-
ing confining potentials, a q-Gaussian fit for the momentum
density is possible for every value of the momentum, and the
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somewhat arbitrary separation between short- and long-range
decomposition can be avoided. We expect that the concept of
scaling of the momentum distribution in terms of a q-Gaussian
can be further developed such that it actually provides new
exchange-correlation functionals.
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