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Generalized Aubry-André self-duality and mobility edges in non-Hermitian quasiperiodic lattices
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We demonstrate the existence of generalized Aubry-André self-duality in a class of non-Hermitian quasiperi-
odic lattices with complex potentials. From the self-duality relations, the analytical expression of mobility edges
is derived. Compared to Hermitian systems, mobility edges in non-Hermitian ones not only separate localized
from extended states but also indicate the coexistence of complex and real eigenenergies, making possible a
topological characterization of mobility edges. An experimental scheme, based on optical pulse propagation in
synthetic photonic mesh lattices, is suggested to implement a non-Hermitian quasicrystal displaying mobility

edges.

DOLI: 10.1103/PhysRevB.102.024205

I. INTRODUCTION

Anderson localization [1], i.e., the absence of diffusion
of quantum or classical waves in disordered systems, is a
milestone in condensed-matter physics and beyond [2-4].
According to the scaling theory [5], in one-dimensional
(1D) and two-dimensional systems with random disorder, all
eigenstates are exponentially localized, no matter how small
the strength of disorder is, while mobility edges, separating
localized and extended states in an energy spectrum, are
observed in three-dimensional (3D) systems [6]. However,
it is well known that lattices with correlated disorder can
undergo a metal-insulator transition even in one dimension
(see, e.g., Refs. [7-25] and references therein). A paradig-
matic example is provided by the famous Aubry-André model
[7], where the localization-delocalization transition can be
derived from a symmetry (self-duality) argument [9]. A hall-
mark of this model is the sharp nature of the localization
transition and the absence of mobility edges, i.e., all single-
particle eigenstates in the spectrum suddenly become expo-
nentially localized above a threshold level of disorder. Recent
works reported on mobility edges in certain quasiperiodic
1D lattices displaying a generalized Aubry-André self-duality
[26,27], making possible the observation of mobility edges
in 1D systems [28-30] without resorting to 3D models. The
role of particle interaction and many-body localization in
such systems have been investigated as well [31-35]. How-
ever, such previous studies have been limited to consider
Hermitian models.

Non-Hermitian lattices show exotic physical phenomena
without any Hermitian counterparts, such as exceptional
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points, breakdown of bulk-boundary correspondence based on
Bloch band invariants, and non-Hermitian skin effect [36-59].
Remarkably, disorder can behave differently in Hermitian ver-
sus non-Hermitian systems (see, e.g., Refs. [60—-64] and refer-
ences therein). A seminal work dealing with disorder in non-
Hermitian lattices is the Hatano-Nelson model [62,65,66],
in which an asymmetric hopping caused by an imaginary
gauge field results in a localization-delocalization transition
and the existence of mobility edges [67]. Since this pioneering
study, several non-Hermitian models with either random or
incommensurate disorder have been investigated, in which
non-Hermiticity is introduced by either asymmetric hopping
amplitudes or complex on-site potentials [68—79]. In certain
models, the topological nature of the localization transition
and self-duality have been discussed [36,77,79]. However,
we emphasize that the self-dual symmetry falls into two
categories. The first category is the generalized Aubry-André
self-dual symmetry. Models possessing such a generalized
symmetry show mobility edges and their analytical form can
be obtained from the self-dual relations. Such models are
rare and there are only few know examples for Hermitian
systems [26,27]. The second category is the “simple” self-dual
symmetry. This is a much more common kind of symmetry
which is found in many models [79-82], including some non-
Hermitian systems. However, this type of symmetry cannot
be used to derive analytical form of mobility edges, and
so far available non-Hermitian models displaying mobility
edges [36,62,67,79] resort to numerical results. Here a major
question arises: Can a generalized Aubry-André self-dual
symmetry and exact form of mobility edges be found beyond
Hermitian quasicrystals?

In this paper, we address this open question and introduce
exactly solvable non-Hermitian models in quasiperiodic lat-
tices with complex potentials displaying mobility edges and a
generalized Aubry-André self-duality. A photonic implemen-
tation of the proposed models, based on pulse propagation in
synthetic fiber mesh lattices, is also presented.
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II. EXACTLY-SOLVABLE NON-HERMITIAN MODELS
DISPLAYING GENERALIZED AUBRY-ANDRE
SELF-DUALITY

A. Model I

As a first example of generalized Aubry-André self-duality,
let us consider a non-Hermitian 1D model with exponentially
decaying hopping amplitude and quasiperiodic complex on-
site potential, defined by the eigenvalue equation

E 40, =t) ey, + Ve y,, (1)

where s > 0 is the decay rate of the non-nearest-neighbor
hopping, V is the complex potential strength, « is irrational,
and v, is the amplitude of wave function at the nth lattice. We
choose the parameters o = (\/5 — 1)/2 and t = ¢°. When the
on-site potential is replaced by V cos(2wan), this model be-
comes the Hermitian quasiperiodic lattice studied in Ref. [26],
which displays mobility edges given by E,, = cosh(s)V — ¢°.
To determine the expression of mobility edges in the non-
Hermitian case, we first introduce a function W,(sy) defined
as

E +1t—Ve?™ = (E +1)W,,

E +¢ e — ei2nan
= W=, @
\% e%

%

so Eq. (1) takes the form
(E + DW=t ey, 3)

After multiplying both sides of Eq. (3) by Wi (s)ek2mon
summing over n and setting ¢ = >, Xk (50)r,, one
obtains

(E +0)Wels)pe =1y e gy, @
-

The detailed derivation of Eq. (4) is given in Appendix A.
Remarkably, when s = sy9, Eq. (1) has the same form as
Eq. (4), i.e., a generalized Aubry-André self-duality is found.
Following the Aubry-André work [7], we conjecture that the
localization-delocalization transition is located at the self-dual
point £ = ¢5. Thus the non-Hermitian quasiperiodic lattice
defined by Eq. (1) displays a mobility edge at the energy:

E,=t(V —1). 5)

To verify our conjecture, we calculated analytically the Lya-
punov exponent w(E) for the eigenstates of Eq. (1) and found
that the mobility edge obtained from Lyapunov exponent
analysis is precisely given by Eq. (5); technical details are
given in Appendix B. Remarkably, the self-duality argument
enables us to analytically compute mobility edges without
solving the spectral problem. The following bounds E;, <
E < Ex for the energy spectrum E of the delocalized phase
can be derived (Appendix B), where

2t 2t
Emn=—"—"—, Enx=—7, (6)
t+1 r—1
indicating that the delocalized modes correspond to real ener-
gies. Conversely, for the localized modes, the energy spectrum
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FIG. 1. The real part of eigenvalues of Eq. (1) and IPR as a
function of V with the parameter s = 1. The total number of sites is
set to be L = 500. Different colors of the eigenvalue curves indicate
different magnitudes of the IPR of the corresponding wave functions.
The black eigenvalue curves denote the delocalized states and the
bright yellow eigenvalue curves denote the localized states. The
blue solid lines represent the boundary between spatially localized
and delocalized states, i.e., the mobility edge E,, = t(V — 1). In the
delocalized phase, the upper (Ey.x) and lower (E,;,) boundaries of
the energy spectrum are independent of V.

is complex. In other words, the mobility edge E, not only
discriminates between localized and delocalized states, but
also between real and complex energies. A major implication
of this result is that a fopological number can be introduced to
predict the existence of a mobility edge. This entails comput-
ing winding numbers w(Eg) that count the number of times
the complex spectral trajectory encircles a base energy Ep as
an external phase in the Hamiltonian is varied [36,77,79]. As
shown in Appendix C, the knowledge of the winding numbers
at the two base energies Ep = Eni, and Ep = Epn,x 18 sufficient
to topologically predict the existence of the mobility edge.

Our theoretical predictions have been verified by a numer-
ical analysis of Eq. (1) on a finite lattice containing L sites
under periodic boundary conditions. The localization proper-
ties of eigenstates are measured by the inverse participation
ratio (IPR) [83]. For a normalized wave function, it is defined
as

4
b

L
IPR, =) [y}
j=1

where n is the index of energy level. It is well known that the
IPR of a delocalized state scales like L~!, thus vanishing in
the thermodynamic limit, while it is finite for a localized state.
In Fig. 1, we show the numerically computed IPR diagram in
the (Re(E), V) plane on a pseudocolor map, clearly demon-
strating a mobility edge along the line defined by Eq. (5). The
mobility edge also separates real and complex energies.

B. Model IT

As a second example, let us consider a nearest-neighbor
hopping model with tunable complex on-site potential defined
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by the eigenvalue equation

Ewn = Wn-&-l + Wn—l + ]leﬂn, @)
—ae

where 0 < a < 1 is a potential tuning parameter; other pa-
rameters are the same as in Eq. (1). This model provides
a non-Hermitian extension of the quasiperiodic lattice pre-
viously introduced in Ref. [27] and displaying generalized
self-duality. As compared to model I, model II is more feasible
for an experimental implementation since it does not require
hopping control, but it is not amenable for a full analytical
treatment (Lypaunov exponent calculation). As we are going
to show, model II displays generalized self-duality, which is
enough to analytically predict mobility edges. To this aim, let
us multiply both sides of Eq. (7) by ¢/>"*"" and sum over .
After setting ¢, = Y, €2"*"s,,, from Eq. (7) one obtains

. \%4
_ 2w anm
[E — 2cosQmam)]pm = Z T i U (®)
We introduce some functions defined as follows:
1 e — eiZﬂan
e =—, W) =——,
a eso
h(s) — 2
E = 2cosh(s), Q,.(s)= cosh(s) - cos( nam)’ )
sinh(s)
so Eq. (8) can be written as
25inh($)Q()pm =V Y e "I, (10)

Multiplying both sides of Eq. (10) by €2« (so Yel27emk  summing
over m and after setting ¢x = Y, €27 Q,,(s)¢,,, Eq. (10)
takes the form

2sinh($)Q (so)gu =V Y _ e K lgy. a1
k/

Finally, let us multiply both sides of Eq. (11) by e??7%k4,
summing over k and setting j1, = >, €>"¢;, Eq. (11) can
be transformed as

) sinh(s) e

cosh(so)ug = mg—1 + tg+1 + Vm

Hq-
(12)

Note that when s = s, Eq. (7) has the same form as Eq. (12).

From the self-dual relations ¢* = 1/a and E = 2 cosh(s), we

obtain the mobility edge energy:
E,=a+1/a. (13)

sinh(sg)

Interestingly, for a fixed value of the tuning parameter a, E,,
is independent of the potential strength V. The property of
“being constant” of the mobility edge is a remarkable result,
which is peculiar to this model. We checked the predictions
of the theoretical analysis by direct numerical simulations
of Eq. (7). The numerical results, shown in Fig. 2, confirm
our theoretical predictions with excellent accuracy. From the
analysis of the energy spectrum, we find the same scenario as
model I, i.e., extended (localized) eigenstates correspond to
real (complex) energies (see the inset of Fig. 2). A winding
number, revealing the topological signature of the mobility
edge, can beintroduced for this model as well, as shown in
Appendix C.
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FIG. 2. The real part of eigenvalues of Eq. (7) and IPR as a
function of V with the tuning parameter @ = 0.5. The total number
of sites is set to be L = 500. Different colors of the eigenvalue curves
indicate different magnitudes of the IPR of the corresponding wave
functions. The black eigenvalue curves denote the delocalized states
and the bright yellow eigenvalue curves denote the localized states.
The blue solid lines represent the boundary between spatially local-
ized and delocalized states, i.e., the mobility edge E,, = a+ 1/a.
In the inset, it is clearly shown that the mobility edge E, = 2.5
separates the real and complex energy spectrum.

III. PROPOSAL OF EXPERIMENTAL IMPLEMENTATION

Photonic systems have been recently shown to provide
an experimentally accessible platform to implement non-
Hermitian lattices and to observe a wide variety of non-
Hermitian phenomena, such as parity-time symmetry break-
ing, exceptional points, non-Hermitian skin effect, etc. To
observe mobility edges in non-Hermitian quasiperiodic po-
tentials, we focus our attention on model II, discussed in a
previous section, which is more amenable for an experimen-
tal realization. We consider discrete-time quantum walk of
optical pulses in synthetic photonic mesh lattices [84-91],
realized in coupled fiber rings with unbalanced path-lengths.
Such synthetic lattices have been experimentally used to
demonstrated a wealth of phenomena, such as Bloch oscil-
lations [86], parity-time symmetric phase transitions [87,88],
Anderson localization [85,89,90], and the non-Hermitian skin
effect [91]. By proper combination of amplitude and phase
modulators in the fiber loops [87,90,91], they can engineer
rather arbitrary non-Hermitian potentials. A schematic of the
synthetic photonic lattice is shown in Fig 3. A short pulse
is launched, via a 2 x 2 optical coupler, into a single mode
fiber loop of length Ly, which is coupled to a three-arm fiber
interferometer of mismatched lengths L (central arm) and
L+ AL (upper and lower arms) by 3 x 3 symmetric fiber
couplers, with L < L. The central arm of the interferometer
includes a semiconductor optical amplifier (SOA), an electro-
optic phase modulator (EOM) and an acousto-optic amplitude
modulator (AOM). A second SOA is also placed in the main
loop of length Ly. At each transit in the main loop, a pulse
entering into the interferometer is split, at the output port,
into three pulses with time delays —Af, O and Af, where
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2x2
coupler

input pulse

detection

FIG. 3. Schematic of a synthetic mesh photonic lattice with com-
plex potential, based on pulse propagation in fiber loops. An optical
pulse propagating in the main fiber loop of length L, is split into
three pulses, after each transit, via a three-arm fiber interferometer
with unbalanced arms of length L and L + AL, with L < L,. Time
pulse separation At = AL/c, introduced by arm length unbalance,
provides the time slot of the lattice mesh. The interferometer is cou-
pled to the main fiber loop via two 3 x 3 symmetric fiber couplers. A
nondispersive optical pulse of duration 7, < At/2 is initially injected
into the loop via a 2 x 2 fiber coupler. The dynamical evolution
of the pulse amplitudes a™ at successive transits m in the loop
can be monitored by the output port of the coupler. The synthetic
complex potential is obtained by placing amplitude (AOM) and
phase (EOM) modulators in the central arm of the interferometer and
driven by independent step-wise waveforms hA%M and AEOM . Two
semiconductor optical amplifiers (SOA), with gain parameters g and
G, are also included in the central arm of the interferometer and in
the main loop.

At = AL/c is the time delay introduced by the unbalanced
arms in the interferometer. The successive pulse splitting
emulates a discrete-time quantum walk, where the complex
amplitude a™ of pulse occupying the nth time slot (discrete
space distance) at the mth round trip evolves according a linear
map [84-90]. In particular, by tailoring the EOM and AOM
signals, one can implement a non-Hermitian Hamiltonian
with nearest-neighbor hopping and a rather arbitrary complex
on-site potential V,, such as the quasiperiodic potential in
Eq. (7). Details are given in Appendix D. Pulse evolution mea-
surements at successive transits in the loop, detected by the
output port of the 2 x 2 optical coupler (Fig. 3), can provide
a clear signature of the presence (or absence) of the mobility
edge. If all eigenstates of the system are delocalized and the
corresponding energy spectrum entirely real, an initial pulse
will spread across the synthetic lattice at successive transits.
This scenario is illustrated in Fig. 4(a). The figure depicts
on a pseudocolor map the numerically computed evolution
at successive discrete time steps m, of the normalized pulse
amplitudes [a™|/\/P,, with P, =Y [a"™|?, as obtained
from the map, defined by Eq. (D3) of Appendix D, for the
initial condition a® = 8, (a single pulse is injected into
the main fiber loop) and for V = 0.4, a = 0.5. According to
Fig. 2, for such parameter values all eigenmodes are delo-
calized and the energy spectrum entirely real. On the other
hand, in the presence of a mobility edge some eigenstates

time step m

|-

200 400
time step m

50

time step m

200
time step m

-10 0 10 50
site number n

400

FIG. 4. Behavior of normalized pulse amplitudes |a'™|/\/P,
(with P, =" |a®]?) on a pseudocolor map for the complex po-
tential of model II with (a) V = 0.2, a = 0.5 (all eigenmodes are
delocalized), and (b) V = 1, @ = 0.5 (there is a mobility edge). The
insets show the behavior of total optical power P,, versus time steps
m for a gain parameter G = 0.656 in (a) and G = 0.31 in (b).

are localized with corresponding complex energies. In this
case, the localized modes with the highest growth rate (i.e.,
imaginary part of the eigenenergy) will dominate, resulting in
a frozen spreading of |a™| as the time step m increases. This
case is illustrated in Fig. 4(b), corresponding to V = 1 and
a=0.5.

IV. CONCLUSIONS

In this paper, we unveiled a class of non-Hermitian
quasiperiodic lattices displaying generalized Aubry-André
self-duality and provided an analytic form of mobility edges
in any non-Hermitian disordered system. An experimental
scheme to observe mobility edges, accessible with current
photonic technologies, has been proposed. The self-dual sym-
metry has a simple structure but a profound significance in
non-Hermitian models since it predicts both the boundary
of critical states and the transition from real to complex
energy spectrum, thus enabling introduction of a topological
signature of mobility edges. Our results push the concept
of generalized self-duality beyond known Hermitian models,
providing a major tool to explore the rich physics of non-
Hermitian systems with correlated disorder.
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APPENDIX A: DERIVATION OF EQ. (4)

In this Appendix, we provide some technical details lead-
ing to Eq. (4) given in the main text. Multiplying both sides of
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Eq. (3) by W, (s)ek2men and summing over n, one obtains
(E + £)Wi(s)pr = Srn, (A1)

where we have set

Sn = Wils) Yy "2y ey (A2)
n n
With the substitution » = n — n/, one obtains
Srh —t Z eikznan/wk(s) Z eik27rare—s\r\ Wn’- (AS)
Using the identity

Wk(s)—l Ze |r\s N’Z?Tak (A4)

e’ eermk

one has

Sy =t Z em 27rozk ) (AS)

Clearly, since W, (o)~ W, (so) = 1, we can also write

-1 in' 2w ak
S =1y Wi(s0)™ Wi (s0)e™ ™ hry
n’
=t Z Z e*|r\soeir2nan’wn,(So)ein’Znakwn/ (A6)
n r
—t Z Z eflr\soei(r+k)2nan Wiy (50) Y.
n r

Finally, after the substitution k' = r + k, one obtains

_ I L ’
Srh —t § e |k—k'|so E P 2nak Wn’ (SO)wn’
14 n
=) e Hlugy,
&

Substitution of Eq. (A7) into Eq. (A1) yields Eq. (4) given in
the main text.

(A7)

APPENDIX B: LYAPUNOV EXPONENT ANALYSIS
(MODEL I)

In this Appendix, we provide exact analytical computation
of the energy-dependent Lyapunov exponent for the solutions
to Eq. (1) with real eigenvalue E. To this aim, let us assume
periodic boundary conditions on a ring of size L with aL ~
integer, i.e., ¥,11 = V¥, and then take the L — oo limit. We
consider the discrete Fourier transform

L
1 .
Oy = — e—Zm(xlnwl’
vy
. (B1)
1 .
wn - e2mozln¢[’
vy

so in the dual space, Eq. (1) yields the following difference
equation for ¢,:

E¢n = Qn¢n + V¢n719 (BZ)

where we have set Q, =13, e ""e™27 " = 2rRe{ L),
B, = e~S7FF @ The explicit expression of €2, reads
tcosRman) — 1

Q, = .
1 — 2t cosQRman) + t2

(B3)

For an arbitrary integer ng, a formal solution with the eigen-
value E = ,, of Eq. (B2) is given by

0 n < no
ooy 1 n=no (B4)
E—LQ,I n > ngp.

Let us calculate the Lyapunov exponent u of the eigen-
function Eq. (B4) in dual space with the eigenvalue £ =

P
on |’
Ww(E) >0for )", |n]? < 00, ie., w(E) >0 corresponds to

the localization in dual space and the delocalization in real
space. From Egs. (B4) and (B5), one obtains

log

W(E)=— lim
n—>00 1 — N

(B5)

n Q _
w(E) = lim > log | (B6)
ree = o S0 4
After setting
tcos(g) — 1
F(g) = I (B7)

1 — 2t cos(q) + 12’

s0 = 2tF(q = 2mak), using the Weyl’s equidistribution
theorem of irrational rotations, one can write

F(q) — F(qo)

v . (BY)

1 b
w(E) = —/ dglog |2t
2

-7

with go = 2many, i.e.,

2t 1 ["
M(E)—log(v>+g/ dqlog|F(q) — F(qo)l. (B9)

Taking into account that

T

1
— dqlog|F(q)

— F(qo)l
2 J_,
(B10)
1 T tcos(g) — 1
= —Re dqlog( —0)y¢,
27 _ﬂ 1 — 2t cos(q) + 12
with o = Q,,/(2t) = E/(2t), the integral on the right side of

Eq. (B10) can be computed in a closed form to give

T

1 20 + 1
=— dqlog |F(q) — F(qo)| = log . (BID)
27 J_, 2t

SO

W(E) = log ( (B12)

E/t+1

v .
The real energy E belongs to the spectrum of the Hamilto-
nian, with a delocalized eigenstate in real space, provided
that w(E) > 0. Using Eq. (B12), this condition yields E >
E,,, where we have set E,, = 1(V — 1) = exp(s)(V — 1). Re-
markably, the energy boundary E = E,, corresponds to the
mobility edge given by Eq. (5), derived using the self-duality
argument. This means that the mobility edge E = E,,, besides
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separating localized and delocalized eigenstates, also provides
the boundary for the energy spectrum to remain real. The
Lyapunov exponent analysis also provides the upper and
lower boundaries of the energy spectrum in the delocalized
phases, Enin and Ep.x, shown in Fig. 1. In fact, since E =
2tQy, = 2tF(q = 2many), from Eq. (B7) one has

. 2t
Enin = min_z<g<n {ZfF(l])} = _H‘_l (B13)
and
t
Enax = max_z<g<n {ZIF(CI)} = : (B14)

APPENDIX C: TOPOLOGICAL SIGNATURE
OF MOBILITY EDGES

The appearance of mobility edges, separating extended
and localized states, can be characterized by a topological
invariant, given by a winding number that measures the times
the spectral trajectory of the system encircle a given base
energy Ep when an additional phase in the potential is varied
[36,75,77]. Here we discuss in detail how the winding num-
bers can be introduced for the two models discussed in main
text.

Model I. As discussed in the main text, the existence of a
mobility edge in model I separates delocalized states with real
energies and localized states with complex energies. In par-
ticular, for a given value of + = exp(s), a mobility edge with
energy E,, =t(V — 1) inside the energy spectrum, En;, <
E,, < Enax, 1s found provided that the potential amplitude V
is bounded as V| < V < V,, with (Fig. 1)

Vi=1 2 =1+ 2 (&3]
DS TR
To provide a topological characterization of the existence
of the mobility edge, we consider Eq. (1) on a ring lattice
comprising L sites with periodic boundary conditions and add
an extra phase term 6 to the potential, i.e., we consider the
eigenvalue equation

Evy =13 ey £ VI, = H@)y,. (C2)
n'#n
with Hamiltonian H = H(0). For a given base energy Ep, we
can introduce a winding number w as follows [2,3]:

wiEp) = lim 77 |

2 P 0
df—logdetiH| - ) — E C3
 ceafn(2) 5]

which counts the number of times the complex spectral tra-
jectory encircles the base energy point Eg when the phase 6
varies from zero to 2w. Clearly, we expect w(Ep) to vanish
when the energy spectrum is entirely real, but also when the
energy spectrum can be partially complex but the base energy
Ep is smaller (larger) than the real part of any eigenvalue.
Therefore, an appropriate topological characterization of the
mobility edge requires us to introduce two winding numbers
wi = w(Ep = Enin) and wy = w(Ep = Enax), where Eyin,
Eqax are the lower and upper edges of the energy spectrum
in the delocalized phase (Fig. 1). The numerically com-
puted behavior of w; and w, versus V, shown in Fig. 5,
clearly indicates that the topological number W = w;(1 —

i T :
|
= 08F \ | 1
— I
8 w, !
£ 0.61 1 |
2 "2
2 0.4f 1
£
£
= 0.2r i
1
0 | | | | . | ]
0 0.5 1 15 2 25 3

potential amplitude V

FIG. 5. Numerically computed behavior of the winding numbers
w; and w, versus potential amplitude V for model I with s = 1. The
energy-dependent mobility edge is found between the two vertical
dashed lines at V = V; and V = V,, where the winding numbers w
and w, undergo an abrupt change from O to 1.

wy) is nonvanishing and equals one solely for V|, <V < V,,
i.e., when there is an energy-dependent mobility edge.

Model II. For model II, we consider the spectral problem
for the Hamiltonian H = H(6), which includes a phase shift
6 in the potential, given by

\%
EYr, = Y1 + Y1 + Ww”

=H@O)y,. (C4)

For a given base energy Ep, we can introduce a winding
number w(Ep) according to Eq. (C3). As noticed in the
main text, for a given tuning parameter a the mobility edge
E,, is independent of the potential strength V and given by
E, = a+ 1/a. Owing to such a peculiar property, a single
winding number can provide a topological signature of the
mobility edge, which is obtained by assuming a base energy
infinitesimally larger than E,,, i.e., Eg = E,}. As the potential
strength V is increased above zero, the winding number w(Ep)
is equal to one in the range V; <V < V,, where V| and V,
are intersections of the mobility edge energy E = E,, with
the boundaries of the real part of the energy spectrum. This
behavior is illustrated in Fig. 6, which shows the numerically
computed behavior of winding number w versus V. Note

T

o
©
T
5

winding number w
o o
S (o2}
:
Re(E)
o
==
=
==
E==—3
==
=
=
=
= ——

f
=
—
=

oV, 2, 4 6
o—. ‘ s s
0 4 1 2 3 4 ! 5 6

potential amplitude V

FIG. 6. Numerically computed behavior of the winding number
w versus potential amplitude V for model II with a = 0.5, corre-
sponding to a flat mobility edge E,, = 2.5. The base energy used to
compute the winding number is Eg = 2.51. The inset shows the be-
havior of the real part of the energy spectrum versus V. The crossing
point V =V, (V = V,) corresponds to the potential amplitude below
(above) which all eigenstates are extended (localized).
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that below V| (above V,), where all eigenstates are extended
(localized), the winding number vanishes.

APPENDIX D: PHOTONIC IMPLEMENTATION
OF MODEL II

In this section, we present the main model that describes
the discrete-time quantum walk of optical pulses in the syn-
thetic photonic mesh lattice realized by the fiber optical setup
described in Fig. 3. The analysis is rather standard and is an
extension of derivations provided in previous works (see, for
instance, Ref. [90] which largely inspired our setup). At each
transit in the main loop, a pulse entering into the interfer-
ometer is split at the output port into three pulses with time
delays —At, 0, and At, where At = AL/c is the time delay
introduced by the unbalanced arms in the interferometer. The
successive pulse splitting emulates a discrete-time quantum
walk, where the complex amplitude a™ of pulse occupying
the nth time slot (discrete space distance) at the mth round
trip evolves according a linear map [84-91]. The symmetric
3 x 3 fiber couplers between the three-arm interferometer and
the main fiber loop is described by the scattering matrix [92]

1 exp(if) exp(if)
§® = — | exp(if) 1 exp(i) |, (D1)
exp(if) exp(if) 1

with & = —2m /3, while the 2 x 2 fiber coupler used to inject
the initial pulse is described by the scattering matrix

L (1 i
@ _
= ﬁ(i 1>.

From Fig. 3 and using Egs. (D1) and (D2), the following map
can be readily obtained:

(D2)

g+ — exp(G)

n 3\/§

where we have set

[exp(2i9)(a£:i)l +a™) + U,a™], (D3)

U, = exp (g — h{AO™ — jpEOM), (D4)

In the above equations, G and g are the gain coefficients
of the SOA in the main loop and in the central arm of the
interferometer, respectively, whereas hAA°™ and h(EOM) are
the amplitudes of AOM and EOM modulators, respectively,
at the nth time slot. To create a time-domain analog of a
complex optical U,, the EOM and AOM modulators are inde-
pendently driven with a wave-form generator. The wave form
is a specially designed stepwise pulse pattern that enables
us to generate arbitrary phase and amplitude distributions
along the fast coordinate (the time slot n) but constant along
the slow coordinate [90], i.e., periodic at time intervals T =
(L + Lp)/c. The spectrum and localization properties of the
eigenstates of the map Eq. (D3) are obtained by taking the

w (a)
e . . ) °
E Y o ° L] oy o o e L] ° o Ps
E— . e ° ° i .
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FIG. 7. Patterns of (a) AOM and (b) EOM signals (2*°™ and
hEOM)y that realize the complex potential V,, of model II for param-
eter values V = 1 and a = 0.5 [Fig. 4(b) of the main text]. The gain
g is set to g = 1. In (b), the constant bias —26 to hEO™ has been
omitted for the sake of simplicity.

Ansatz
al" = u"y, (DS)
which yields the matrix spectral problem
Evy = Va1 + Va1 + Vata, (D6)

where we have set

V, = U, exp(—2i0) = exp [-2i6 + g — h{*O™ — inFOM]
(D7)
and £ = Sﬁu exp(—G — 2i0), i.e.,

E

7 373 exp(G + 2i6).

Note that the gain G supplied by the SOA in the main

loop controls the growth/decay rate || of the pulse train at

successive transits, however, it does not affect the shape of

the complex potential V,,. The gain G should be tuned to keep

the system below the instability (lasing) threshold yet close

to the threshold point to have enough signal at the detection

output to monitor the pulse spreading dynamics in the lattice
for several transits [90].

To reproduce model 11, i.e., to realize the complex potential

V, =V/[1 —aexp2rian)] with 0 < a < 1, the amplitudes

hAOM) and AEOM) of the modulators should be set as follows:

(D8)

asin(2ran)

hFOW = —20 + atan——————, D9
" +atan 1 —acosQran) (D9)
HAOM _ ¢ 4 1og V1+a*—2a cos(2nom). (D10)

Vv

As an example, Fig. 7 shows the patterns of the EOM and
AOM amplitudes corresponding to parameter values V = 1,
a=0.5 and g=0.7, i.e., to parameter values used in the
simulations of Fig. 4(a).
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