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Disorder correction to the minimal conductance of a nodal-point semimetal
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We consider the disorder-induced correction to the minimal conductance of an anisotropic two-dimensional
Dirac node or a three-dimensional Weyl node. An analytical expression is derived for the correction δG to the
conductance of a finite-size sample by an arbitrary potential, without taking the disorder average, in second-
order perturbation theory. Considering a generic model of a short-range disorder potential, this result is used to
compute the probability distribution P(δG), which is compared to the numerically exact distribution obtained
using the scattering matrix approach. We show that P(δG) is Gaussian when the sample has a large width-to-
length ratio and study how the expectation value, the standard deviation, and the probability of finding δG < 0
depend on the anisotropy of the dispersion.
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I. INTRODUCTION

Dirac materials, such as the two-dimensional graphene [1]
and three-dimensional Weyl semimetals [2], have been a con-
tinued focus of research in contemporary condensed-matter
physics. In these materials conduction and valence bands
touch and disperse linearly at discrete “nodal” points in recip-
rocal space. In the absence of parallel conduction channels,
the conductivity of a Dirac semimetal has a characteristic
minimum if the Fermi energy is at the nodal point, which
reflects the vanishing density of states at this energy. In the
absence of disorder, the minimum conductivity of graphene
is theoretically predicted to take the universal value σmin =
e2/πh per valley and per spin direction [3,4] (the condition of
approaching universality is further explained below), whereas
σmin = 0 for a Weyl semimetal at zero temperature [5,6]. The
presence of disorder that is sufficiently smooth and does not
induce internode scattering increases σmin [6–10].

An experimental conductivity measurement, as well as a
theoretical calculation using the Landauer-Büttiker approach,
involves systems of finite size and addresses the conductance
G rather than the conductivity σ . An idealized geometry
consists of a graphene sheet of width W and length L with
the Fermi energy near the Dirac point (or a Weyl semimetal of
cross section W 2 and length L), coupled to source and drain
reservoirs (see Fig. 1 for a schematic picture). The reservoirs
consist of a highly doped and hence highly conductive ver-
sion of the same material [3]. Without disorder, neglecting
interactions, and with the Fermi energy precisely at the nodal
point, for a two-dimensional Dirac semimetal one then has the
minimal conductance [3,4]

Gmin, 2d = e2

h

W

πL
(1)

per node, which can be easily translated to conductivity using
the relation G = σW/L. In three dimensions one has [5,6]

Gmin, 3d = e2

h

W 2 ln 2

2πL2
, (2)

which corresponds to σmin = 0 in the thermodynamic limit
W , L → ∞. The derivation of Eqs. (1) and (2) requires that
W � L and assumes that the dispersion at the nodal points is
isotropic and has no tilt. In the opposite limit W � L the con-
ductance G depends on the transverse boundary conditions,
and no universal minimum conductance can be obtained [3].
If the Fermi energy is not at the nodal point, G is proportional
to (kFW )d−1 in the absence of disorder and interactions, with
kF �= 0 being the Fermi wave vector measured from the nodal
point and d being the system dimension, which is a hallmark
of ballistic transport with a formally infinite conductivity.

Numerical and analytical calculations for an isotropic
nodal point in two or three dimensions show that the average
value of the conductance at kF = 0 increases in the presence
of disorder [11], whereas the conductivity becomes finite for
kF �= 0. Here, the disorder is taken to be smooth enough that
it scatters carriers only within a node, whereas internode scat-
tering remains suppressed. In two dimensions, the disorder-
induced increase of the conductance at the nodal point leads to
an increase of the minimum conductivity, consistent with scal-
ing theory [7–9], whereas in three dimensions the conductivity
at the nodal point is believed to remain zero up to a critical
disorder strength [6,10,12–18]. (Rare disorder fluctuations
may, however, lead to a small residual conductivity even at
weak disorder strengths [19,20].)

In this paper we address the full probability distribution
of the nodal-point conductance in the geometry of Fig. 1,
focusing on the regime of weak disorder, in which G is
still numerically close to the quasiballistic limits (1) or (2),
without the assumption that the dispersion is isotropic. (We
do not consider tilted dispersions [21–25], however.) The
standard diagrammatic theory of conductance fluctuations,
which predicts a universal value for the second moment of
the distribution depending only on symmetry and dimen-
sions [26,27], is not applicable at the nodal point kF = 0 since
it requires the limit of large kF compared to the inverse mean
free path. Nevertheless, the same universal value has been
reported in numerical studies at the Dirac point in strongly
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FIG. 1. Schematic of the geometry considered in this work. The
graphene (or Weyl semimetal) sample of length L and width W
(or cross section W 2) is sandwiched between two highly conductive
leads. The Fermi energy is at the nodal point inside the sample.

disordered graphene [28,29] and also near the nodal point in
the diffusive phase of the Weyl semimetal [30] until impurity
scattering between the Weyl nodes causes them to annihilate.
In comparison, the quasiballistic regime of weak disorder,
which we consider here, has received less attention. Analytical
and numerical results exist for the average conductance in
the isotropic case [11], as well as for the disorder-averaged
full-counting statistics in two dimensions [31], but it is not
well understood how the nodal-point conductance fluctuates
across different disorder realizations.

What motivated this study in particular is the question
whether the presence of isotropic short-range disorder may
actually lead to a nodal-point conductance that is less than the
quasiballistic minimal conductance of Eqs. (1) and (2). Based
on numerical simulations for an isotropic three-dimensional
Weyl semimetal, two of us, together with Bergholtz, had
conjectured that this does not happen [10]. (The result of
numerical simulations similar to those of Ref. [10] is shown
in Fig. 2 for a two-dimensional Dirac node and for a three-
dimensional Weyl semimetal.) The perturbative analysis we
present here shows that this conjecture was not correct, al-
though, as we show below, for an isotropic dispersion the it
of such a rare disorder fluctuation is so small that it is not
expected to show up in numerical simulations in the parameter
regime W � L in which the conductance no longer depends
on the transverse boundary conditions. When the dispersion
itself becomes anisotropic, the probability of the nodal-point
conductance being less than the minimal conductance can
increase significantly.

The remainder of this paper is organized as follows: In
Sec. II we briefly review the derivation of Eqs. (1) and (2)
using the Landauer-Büttiker approach for the geometry of
Fig. 1 and their generalization to an anisotropic dispersion.

FIG. 2. Numerical calculation of the distribution of the con-
ductance G = (e2/h)g of (a) a two-dimensional Dirac node and
(b) a three-dimensional Weyl node with an isotropic dispersion and
isotropic short-range disorder. The dimensionless disorder strength K
and the number N of disorder realizations are K = 1, N = 9696 (red)
and K = 0.5, N = 14827 (gray) in (a) and K = 2, N = 3683 (red)
and K = 0.5, N = 3572 (gray) in (b). The aspect ratio and system
size ratio are W/L = 10, L/ξ = 20 in (a) and W/L = 5, L/ξ = 12
(b), where ξ is the correlation length of the random potential; see
Eq. (32) for the definitions of K and ξ . The conductances Gmin,2d and
Gmin,3d of quasiballistic systems are represented by dashed blue lines.
Numerical calculations are performed using the numerical scattering
approach of Refs. [6,7]. For the data shown here, there is not a single
disorder realization with G < Gmin.

Section III extends the calculation of the conductance at
the nodal point to the second-order perturbation theory in a
scattering potential. Using a generic model of short-range,
isotropic disorder, Sec. IV then uses the results of Sec. III
to obtain the conductance distribution in perturbation theory,
which we compare with the numerically exact results obtained
using the scattering matrix approach of Refs. [6,7]. In partic-
ular, we calculate the probability that the presence of disorder
leads to a decrease of the nodal-point conductance below
the quasiballistic values of Eqs. (1) and (2). We conclude in
Sec. V.
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II. CONDUCTANCE IN THE QUASIBALLISTIC LIMIT

Following Refs. [3,6], we consider a junction consisting of
a d-dimensional Dirac material, connected to ideal leads. The
junction has width W and length L (see Fig. 1). We neglect
internode scattering and allow for an anisotropic dispersion
at the nodal point, where we assume that the current flow is
along one of the principal axes. With these assumptions, the
junction is described at low energies by the Dirac Hamiltonian

H =
{
vx pxσx + vy pyσy, d = 2,

vx pxσx + vy pyσy + vz pzσz, d = 3,
(3)

for 0 < x < L, where vx,y,z are the Fermi velocities along the
three principal directions, σ is the vector of Pauli matrices,
and we take periodic boundary conditions in the transverse
directions. To calculate the minimal conductance of a quasi-
ballistic junction, the junction is connected to ideal leads for
x < 0 and x > L, which are described by the same Hamilto-
nian, but with vy = vz = 0.

Flux-normalized scattering states of the Hamiltonian (3)
that are incident from the left take the form

ψ in
k⊥

(r) = eik⊥·r⊥√
vxW d−1

t (0)
k⊥

eκ⊥(x−L)|+〉 (4)

for 0 � x � L, where

t (0)
k⊥

= 1

cosh k̄⊥L
, k̄⊥ =

√
k2

y v
2
y + k2

z v
2
z

v2
x

(5)

is the transmission amplitude of the quasiballistic junction.
Further, we abbreviated r⊥ = yey for d = 2 and r⊥ = yey +
zez for d = 3,

κ⊥ =
{
vykyσz/vx, d = 2,

(vykyσz − vzkzσy)/vx, d = 3,
(6)

and

|±〉 = 1√
2

(
1

±1

)
. (7)

The transverse wave vector k⊥ = kyey (k⊥ = kyey + kzez) has
components ky,z = 2πmy,z/W for d = 2 (d = 3), with my and
mz being integers.

From the Landauer formula, one then obtains the dimen-
sionless minimal conductance

gmin ≡ h

e2
Gmin =

∑
k⊥

|tk⊥|2 (8)

per node. In general, gmin depends on L and W and on the
choice of the boundary conditions in the transverse direction.
The dependence on the boundary conditions disappears, and
the dependence on L and W simplifies in the limit W � L, for
which one finds the minimal conductance [3,5,23]

gmin, 2d = W vx

πLvy
, (9)

gmin, 3d = W 2v2
x ln 2

2πL2vyvz
(10)

per node, which simplifies to Eqs. (1) and (2) in the limit of
an isotropic dispersion, vx = vy = vz = v.

III. PERTURBATION THEORY

We now consider a potential U (r) with support 0 < x <

L and calculate its effect on the transmission matrix using
standard perturbation theory:

tk⊥,k′
⊥ = t (0)

k⊥
δk⊥,k′

⊥ + δt (1)
k⊥,k′

⊥
+ δt (2)

k⊥,k′
⊥

+ · · · , (11)

where t (0)
k⊥

is given by Eq. (5). The leading-order correction
reads

δt (1)
k⊥,k′

⊥
= − i

h̄

〈
ψout

k⊥

∣∣U ∣∣ψ in
k′

⊥

〉
, (12)

where ψ in
k⊥

is a flux-normalized scattering state with

incoming-wave boundary conditions [see Eq. (4)] and ψout
k⊥

is
a flux-normalized scattering state with outgoing-wave bound-
ary conditions,

ψout
k⊥

(r) = eik⊥·r⊥√
vxW d−1

t (0)
k⊥

eκ⊥x|+〉 (13)

for 0 � x � L. The second-order correction is

δt (2)
k⊥,k′

⊥
= − i

h̄

〈
ψout

k⊥

∣∣UGU
∣∣ψ in

k′
⊥

〉
, (14)

where Gk⊥ (x, x′) is the Green’s function of the quasiballistic
junction,

Gk⊥ (x, x′) = −
it (0)

k⊥

h̄vx

{
eκ⊥x|−〉〈−|eκ⊥(x′−L), x < x′,
eκ⊥(x−L)|+〉〈+|eκ⊥x′

, x > x′.
(15)

Explicitly, we thus find

δt (1)
k⊥,k′

⊥
= − i

h̄vx
t (0)
k⊥

t (0)
k′

⊥

∫ L

0
dxUk′

⊥−k⊥ (x)〈+|eκ⊥xeκ ′
⊥(x−L)|+〉,

(16)

δt (2)
k⊥,k⊥

= 1

h̄2v2
x

(t (0)
k⊥

)2t (0)
k′

⊥

∫ L

0
dxdx′Uk′

⊥−k⊥ (x)Uk⊥−k′
⊥ (x′)

× [θ (x − x′)〈+|eκ⊥xeκ ′
⊥(x−L)|+〉〈+|eκ ′

⊥x′
eκ⊥(x′−L)|+〉

− θ (x′ − x)〈+|eκ⊥xeκ ′
⊥x|−〉〈−|eκ ′

⊥(x′−L)eκ⊥(x′−L)|+〉],
(17)

where

Uq(x) = 1

W d−1

∫
dr⊥eiq·r⊥U (r). (18)

These equations can then be inserted into the Landauer for-
mula to obtain the conductance. In the following we present
the results for d = 2 and d = 3 separately.

A. Dirac node

In the Dirac node case d = 2, the second-order correction
to the conductance g(2) has a particularly simple form in the
large-aspect-ratio limit W/L � 1:

g(2) = v2
x

2h̄2v4
y L4

∫ L

0
dxdx′

∫
dydy′U (r)U

(
r′)

×
∑
±

±(y − y′)2

cosh πvx (y−y′ )
vyL − cos π (x∓x′ )

L

. (19)
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An alternative expression, which does not require the limit
W/L � 1, can be obtained by expanding the impurity poten-
tial U (r) as a sine series in the longitudinal (x) direction,

U (r) =
∑

q

U (q)e−iq⊥·r⊥ sin qxx, (20)

where qx = πmx/L, with mx being a positive integer. The
Fourier components contribute independently to the conduc-
tance at the second order,

g(2) = 1

4h̄2vxvy

W

L

∑
q

π2

q2
x

F

(
qxL

π
,
πvyqy

vxqx

)
|U (q)|2, (21)

where the dimensionless Fourier coefficients are

F = vyq2
x L2

vxπ2W

∑
ky

∑
±

(k̄y + k̄±
y ) sinh[(k̄y + k̄±

y )L]

(k̄y + k̄±
y )2 + q2

x

× 1 + sinh(k̄yL) sinh(k̄±
y L) cosh[(k̄y − k̄±

y )L]

cosh3(k̄yL) cosh3(k̄±
y L)

. (22)

Here, k̄y was defined in Eq. (5), and we abbreviated

k±
y = ky ± qy, k̄±

y = k±
y vy

vx
. (23)

Note that the first argument of the Fourier coefficient F is the
integer mx that labels qx. The Fourier component F (mx, t ),
with t = πvyqy/vxqx, has a well-defined limit when W/L →
∞ and either mx → ∞ or t → ∞,

F (mx, t )|W/L→∞; mx or t→∞ = 4

π

π2 − t2

(π2 + t2)2
. (24)

B. Weyl node

In three dimensions there is no closed-form expression for
g(2) using the real-space representation of the potential U .
Instead, expanding the potential U (r) as in Eq. (20), we find

g(2) = 1

4h̄2vyvz

W 2

L2

∑
q

π2

q2
x

|U (q)|2F

(
qxL

π
,
πvyqy

vxqx
,
πvzqz

vxqx

)
, (25)

where the dimensionless Fourier coefficients F read

F = q2
x L2

8π2

Lvyvz

W 2v2
x

∑
k⊥

∑
±

(k̄⊥ ± k̄±
⊥ ) sinh[(k̄⊥ ± k̄±

⊥ )L][
q2

x + (k̄⊥ ± k̄±
⊥ )2

]
cosh3(k̄⊥L) cosh3(k̄±

⊥L)

(
1 ± v2

y kyk±
y + v2

z kzk±
z

v2
x k̄⊥k̄±

⊥

)

×{3 + cosh(2k̄⊥L) + cosh(2k̄±
⊥L) − cosh[2(k̄⊥ ∓ k̄±

⊥ )L]}. (26)

The rescaled transverse momentum k̄⊥ was defined in Eq. (5).
We further abbreviated k±

y,z = ky,z ± qy,z and

k̄±
⊥ = 1

vx

√
v2

y (ky ± qy)2 + v2
z (kz ± qz )2. (27)

In the limit W/L � 1, the dependence on the transverse
momentum q⊥ is through only the rescaled magnitude

q̄⊥ =
√

v2
y q2

y + v2
z q2

z

v2
x

. (28)

Defining t = π q̄⊥/qx, if one also takes the limit mx → ∞ or
t → ∞, one finds the simple limiting value

F (mx, t )|W/L→∞; mx or t→∞ = 2 ln 2

π

2π2 − t2

(π2 + t2)2
. (29)

It is worth mentioning that Eqs. (24) and (29) are consistent
with previous results for anisotropic Dirac or Weyl nodes [23].
In the case of an isotropic two-dimensional Dirac node with
vx = vy = v, the periodic potential U = U0 sin(qxx) cos(qyy)
couples the states labeled by momentum p = pxex + pyey to
those labeled by momenta p + sxqxex + syqyey, with sx,y =
±1. Using polar coordinates, p = p(cos θex + sin θey) and
q = q(cos φex + sin φey), with q2 = q2

x + q2
y , for p 
 q there

is an anisotropic correction δv(θ ) to the Fermi velocity v,
defined by the dispersion relation ε(p) = [v + δv(θ )]p. Up to
second order in U , we find

δv(θ ) = − U 2
0

2h̄2vq2
sin2(θ − φ). (30)

Combining this velocity renormalization with the expres-
sion (9) for the conductivity for an anisotropic Dirac
node [23], one immediately reproduces Eq. (24),

g = W

L

1

π

v + δv(0)

v + δv
(

π
2

) ≈ W

L

1

π

(
1 + q2

x − q2
y

q4

U 2
0

2h̄2v2

)
. (31)

The expression in the case of a three-dimensional Weyl node,
Eq. (29), is similarly reproduced.

The perturbation-theory expressions (19), (21), and (25)
constitute the central results of this work. We emphasize that
they are valid for an arbitrary weak potential U and do not
involve a disorder average.

In Fig. 3 we show the Fourier coefficient F as a function of
t = π q̄⊥/qx and for various values of mx = qxL/π . Figure 3,
as well as the asymptotic expressions (24) and (29) for the
limit mx → ∞, shows that F is positive for small t and
becomes negative if t is sufficiently large. It follows that,
a priori, there is no definite sign for the correction g(2) to
the dimensionless conductance. In particular, a well-chosen
periodic “disorder potential” U (r) ∝ sin(qxx) cos(qyy) in two
dimensions results in a negative correction g(2) if vyqy/vxqx

is sufficiently large. A similar conclusion applies to d = 3.
Finding the magnitude and sign of the conductance correction
for a generic disorder potential requires a statistical analysis
involving the sum of a large number of Fourier components,
which is performed in the next section.

IV. CONDUCTANCE FLUCTUATIONS

We now apply the general results of Sec. III to a random
potential U (r). We take U (r) to have a Gaussian distribution
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FIG. 3. Fourier coefficients (22) and (26) for the second-order
correction to conductance in the limit W/L � 1 in (a) two dimen-
sions and (b) three dimensions, respectively. Solid curves correspond
to mx = 1, 2, 3, and 10; dashed curves describe the thermodynamic
limit mx → ∞ calculated from Eqs. (24) and (29).

with zero mean and with the two-point correlation function

〈U (r)U (r′)〉 = h̄2K

ξ 2(2π )d/2
e−|r−r′ |2/2ξ 2

{
vxvy, d = 2,

vyvz, d = 3,
(32)

where K is the dimensionless disorder strength and ξ is
the correlation length [32]. Disorder potentials of this form
have frequently been used in numerical simulations of the
conductance of disordered Dirac and Weyl nodes (see, e.g.,
Refs. [6,7]).

Upon Fourier transforming the short-range Gaussian disor-
der model (32) according to Eq. (20) we find

U (q) = r(q)e−q2ξ 2/4

√
Kh̄2

LW d−1

{√
vxvy, d = 2,√
vyvz, d = 3,

(33)

where r(qx, q⊥) = r(qx,−q⊥)∗ are (otherwise) mutually in-
dependent standard normal variates each obeying a zero-mean
normal distribution with variance

〈|r(qx, q⊥)|2〉 = 2
(
1 − 1

2δq⊥,0
)
. (34)

We first check the range of validity of our perturbation
theory results by randomly generating a disorder potential
profile from Eq. (33) with K = 1 and subsequently rescale

(a)

(b)

FIG. 4. Comparison of the numerically evaluated exact disorder-
induced correction gexact − g0 to the dimensionless conductance and
the same quantity g(2) in second-order perturbation theory. Each
curve corresponds to a single realization of the random potential
U (r) according to Eq. (33) with K = 1, rescaled by a factor

√
K to

reveal the dependence on the disorder strength. (a) is for an isotropic
two-dimensional Dirac node with L/ξ = 10 and W/L = 10; (b) is for
an isotropic three-dimensional Weyl node with L/ξ = 6 and W/L =
5. Numerical calculations were performed using the approach of
Ref. [7]; perturbation theory results are given by (a) Eqs. (21)
and (22) for d = 2 and (b) Eqs. (25) and (26) for d = 3.

the random potential with
√

K . A comparison between the
second-order result of Eqs. (21), (22), (25), and (26) and a
numerically exact calculation using the method of Ref. [7]
is shown in Fig. 4. For all disorder realizations we have
generated, the quadratic scaling of g(2) with the strength of
the disorder potential holds for K � 0.1 in a two-dimensional
system with L/ξ = 10 and K � 1 in a three-dimensional sys-
tem with L/ξ = 6. In two dimensions, we find that the range
of validity of our second-order perturbation theory shrinks as
L/ξ grows (data not shown); in other words, for a given K ,
higher-order corrections become progressively more impor-
tant for larger L/ξ . This is consistent with the renormalization
group analysis of the Gaussian disorder in graphene [11,33]:
the leading fourth-order or O(K2) correction depends loga-
rithmically on the infrared cutoff (in this case the length L),
and sufficiently large L/ξ eventually drives the system away
from the quasiballistic regime into the diffusive regime. On
the other hand, in three dimensions, the disorder potential is
an irrelevant perturbation [34–38], and its strength scales as
ξ/L; thus, it is possible that our perturbation theory applies
for K � 1 even in the thermodynamic limit.

We now turn to the cumulants of the probability distribu-
tion of g(2). Inserting Eq. (33) into Eqs. (21) or (25), we have

g(2) = 1

2

∑
q

V (q)|r(q)|2, (35)

where

V (q) = Kξ d−2

2Ld

π2

q2
x

e−q2ξ 2/2F

(
qxL

π
,
πvyqy

vxqx
,
πvzqz

vxqx

)
, (36)
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understanding that the (third) qz argument is absent in two
dimensions. It is now straightforward to find the first few
cumulants of the probability distribution of g(2),

κ1 ≡ 〈g(2)〉 =
∑

q

V (q)

(
1 − 1

2
δq⊥,0

)
, (37a)

κ2 ≡ 〈(g(2) − 〈g(2)〉)2〉 = 2
∑

q

V (q)2

(
1 − 1

2
δq⊥,0

)
, (37b)

κ3 ≡ 〈(g(2) − 〈g(2)〉)3〉 = 8
∑

q

V (q)3

(
1 − 1

2
δq⊥,0

)
, (37c)

κ4 ≡ 〈(g(2) − 〈g(2)〉)4〉 − 3〈(g(2) − 〈g(2)〉)2〉2

= 48
∑

q

V (q)4

(
1 − 1

2
δq⊥,0

)
. (37d)

Below we evaluate these expressions in the limit ξ 
 L
that the correlation length of the disorder potential is much
smaller than the sample length. We also take the limit of
the large aspect ratio, W/L � 1, which allows us to replace
the summations over qy and qz by integrals while keeping qx

finite.

A. Dirac node

In the case of the two-dimensional Dirac node, the ex-
pectation value 〈g(2)〉 is most easily calculated starting from
the real-space expression (19). Due to the short-range corre-
lations, only |r − r′| � ξ contributes significantly, so we can
Taylor expand some of the cosines and hyperbolic cosines in
the integrand and neglect the x + x′ term entirely:

〈g(2)〉 ≈ W v2
x

π2h̄2v4
y L2

∫ L

0
dxdx′

∫
dδy

Kh̄2vxvy

2πξ 2

× v2
y δy2

v2
x δy2 + v2

y (x − x′)2
e−[(x−x′ )2+δy2]/2ξ 2

≈ W

L

K

π2

v2
x

vxvy + v2
y

. (38)

In the second line we have switched to polar coordinates and
performed the radial and angular integrals separately.

The same result can also be obtained using the Fourier
representation (21) of g(2). We briefly discuss this calculation,
too, as it requires some care and because we will need the
Fourier representation to calculate the higher cumulants of
g(2) and to calculate g(2) in the case of the Weyl node. We
first notice that it is possible to replace the coefficient F in
Eq. (21) with its asymptotic expression (24), so that in the
thermodynamic limit W, L → ∞,

〈g(2)〉 ≈2KW

πL2

∑
qx

∫ ∞

−∞

dqy

2π

v2
x

(
v2

x q2
x − v2

y q2
y

)
(
v2

x q2
x + v2

y q2
y

)2 e−q2ξ 2/2.

The difference between F and its asymptotic approx-
imation (24) is significant only when qxL/π ∼ 1 and
πvyqy/vxqx ∼ 1, but even in this case Eq. (24) correctly
estimates the order of magnitude of F , as shown in Fig. 3.

Because the dominant contribution to 〈g(2)〉 comes from qx �
1/ξ and qy � 1/ξ , we expect the error caused by the replace-
ment to be O(ξ 2/L2).

It might be tempting at this point to replace the summation
over qx by an integral and perform the integrals over qx and
qy together in polar coordinates. However, this ignores the
fundamental anisotropy of the large-aspect-ratio limit W/L �
1, which requires taking the limit W → ∞ first and then
the limit L → ∞; thus, qy is effectively continuous, whereas
qx is not, and one needs to calculate the qy integral under
the assumption of a nonzero qx. This is achieved by the
substitution ζ = vyqy/vxqx. Integrating by parts, we find

〈g(2)〉 ≈ KW

π2L2

v3
x

v3
y

∑
qx

qxξ
2e−q2

x ξ
2/2

×
∫ ∞

−∞
dζ

ζ 2

1 + ζ 2
e−v2

x ζ 2q2
x ξ

2/2v2
y . (39)

At this point we may replace the summation over qx by an
integral and perform the qx integral before the ζ integral. This
reproduces Eq. (38).

For the isotropic dispersion vx = vy, one recovers the result
of Refs. [11,31] that 〈g(2)〉 = (W/L)K/(2π2). Here, the weak
antilocalization correction to bulk conductivity seen in the
numerical study of Ref. [7] and responsible for the scaling
flow to the diffusive regime [31] in the limit L/ξ → ∞
is absent since we have limited ourselves to the ballistic
regime by considering no more than two scattering events.
Figure 5(a) shows (L/W )〈g(2)〉/K as a function of the disper-
sion anisotropy vy/vx. The average disorder correction 〈g(2)〉
approaches the limiting value for W/L � 1 and L/ξ � 1
from below as W/L or L/ξ increases, respectively. For a fixed
aspect ratio W/L, the average correction deviates from the
limiting value at W/L � 1 more strongly for larger values of
vy/vx.

The cumulants κn with n � 2 behave quite differently from
the mean: The dominant contributions to these cumulants
come from Fourier components with small qx, i.e., with
longitudinal wavelengths comparable to the length L. To see
this, we note that, after replacing the summation over qy by
an integral and performing the integration, the summand in
Eqs. (37b)–(37d) diverges for small qx and is proportional to
W L−2nq1−2n

x vx/vy, so that κn ∝ W vx/Lvy if n � 2. To verify
this scaling, in Fig. 5(b) we show the quantity (Lvyκ2/W vx )1/2

as a function of the ratio vy/vx for two different values
of the aspect ratio W/L and also in the limit W/L � 1.
As expected (Lvyκ2/W vx )1/2 is almost independent of vy/vx

in the limit W/L � 1. In the limit L/ξ → ∞, we find
(Lvyκ2/W vx )1/2/K ≈ 0.0484. The increase with K for K � 1
is consistent with numerical simulations of Ref. [28].

Deviations from a Gaussian form of the probability dis-
tribution of g(2) are characterized by the skewness κ3/κ

3/2
2

and the excess kurtosis κ4/κ
2
2 , which scale proportionally to

(Lvy/W vx )1/2 and (Lvy/W vx ), respectively. The fact that the
skewness and the excess kurtosis are suppressed by pow-
ers of L/W suggests the distribution of g(2) approaches a
normal distribution in the limit W/L � 1. This provides an
estimate of the probability to find a negative disorder-induced
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FIG. 5. (a) Normalized expectation value
(L/W )〈g(2)〉/K and (b) normalized standard deviation
(Lvyκ2/W vx )1/2/K of the second-order disorder-induced
conductance correction g(2) as functions of vy/vx for an anisotropic
Dirac node with an isotropic Gaussian random potential of
dimensionless strength K and correlation length ξ . The data
points correspond to W/L = 10 (red squares) or 20 (blue circles)
and L/ξ = 20; the solid lines represent the limit W/L → ∞ at
L/ξ = 20. The dashed black line in (a) represents the simultaneous
limit W/L, L/ξ → ∞ of Eq. (38). (c) Probability that g(2) < 0
as a function of vy/vx for L/ξ = 20, W/L = 10 (red squares)
and W/L = 20 (blue circles). (d) Probability distribution of g(2)

for K = 0.1, L/ξ = 10, W/L = 10, and vy/vx = 1, 1.8, and 2.4
(from top to bottom), calculated by Fourier transforming the
characteristic function from the perturbation theory. Also shown are
the normalized histograms of the disorder correction to conductance
obtained from the scattering matrix approach with 919, 3593, and
5480 disorder realizations, respectively. For reference, g(2) = 0 is
marked by vertical lines.

conductance correction,

P(g(2) < 0) ≈ 1

2
erfc

(
κ1√
2κ2

)

≈ 1

2
erfc

[
c

(
L

ξ

)√
W

L

vx

vy

vx

vx + vy

]
, (40)

where erfc(x) is the complementary error function with an
asymptotic expansion erfc(x) ∼ e−x2

/
√

πx in the limit x →
∞ and c(L/ξ ) is a function that depends weakly on its argu-
ment, taking the value c ≈ 1.48 for L/ξ → ∞. We conclude
that the probability of disorder reducing the conductance is
exponentially suppressed as a function of the aspect ratio W/L
in the limit W/L → ∞, although it increases rapidly as a
function of vy/vx. Figure 5(c) shows P(g(2) < 0) as a func-
tion of vy/vx for L/ξ = 20 and different aspect ratios W/L.
While the probability for g(2) < 0 is vanishingly small for an
isotropic dispersion—P(g(2) < 0) ∼ 10−5 when W/L = 10—
we also see that it can become significantly larger when vy/vx

increases, becoming of the order of 0.1 when vy/vx � 3. In
other words, it becomes more likely for isotropic disorder to
reduce the conductance below the quasiballistic value (9) as
the Dirac cone is compressed in the transverse direction.

This is further visualized in Fig. 5(d), where we plot the
probability distribution of g for L/ξ = 10, W/L = 10, K =
0.1, and various values of the anisotropy parameter vy/vx,
accompanied by the normalized histograms of numerical data
from the scattering matrix approach. The probability density
function is calculated by (numerically) Fourier transforming
the characteristic function of g(2), which can be found exactly
because Eq. (35) is quadratic in the normal variates r.

B. Weyl node

We now turn to the case of three dimensions. For simplicity
we assume that vy = vz ≡ v⊥. As in the two-dimensional
case, in the limit L/ξ , W/L � 1 we can approximate the
Fourier coefficient F by Eq. (29), yielding

〈g(2)〉 ≈ W 2Kξ ln 2

πL3

∑
qx

∫ ∞

−∞

dq⊥
(2π )2

× v2
x

(
2v2

x q2
x − v2

⊥q2
⊥
)

(
v2

x q2
x + v2

⊥q2
⊥
)2 e−q2ξ 2/2, (41)

where q⊥ = qyey + qzez. Proceeding analogously to the two-
dimensional case, we make the substitution ζ = v⊥q⊥/vxqx

and switch to polar coordinates for the transverse momentum
q⊥. The sum over qx can then be written as a Jacobi ϑ

function, which is subsequently expanded in an asymptotic
series in ξ/L [39]. This leads to

〈g(2)〉 ≈ W 2K ln 2

πL2

v2
x

v2
⊥

∫ ∞

0

dζ

4π

2 − ζ

(1 + ζ )2

×
[√

v2
⊥

2π
(
v2

⊥ + ζv2
x

) − ξ

2L
+ O

(
ξ 2

L2

)]
. (42)

The ζ integral is convergent for the first term in the square
brackets. For the second term, the integral should be cut off
at ζ ∼ v2

⊥L2/v2
x ξ

2, which is where the asymptotic expansion
fails. The result is

〈g(2)〉 ≈ W 2K ln 2

8π2L2

[
2θ [2 + cos(2θ )] − 3 sin(2θ )

(2π )1/2 sin3 θ cos θ

+ ξ

L

1

cos2 θ

(
c′ + 2 ln

L cos θ

ξ

)]
, (43)

where cos θ = v⊥/vx and c′ is a number of order unity that
cannot be determined from the approximation in Eq. (42) but
which weakly depends on L/ξ (c′ ≈ 1.0 for L/ξ = 6 × 102,
c′ ≈ 0.7 for L/ξ = 2.4 × 104). The second line in Eq. (43)
is a small correction to 〈g(2)〉 that goes to zero in the limit
L/ξ → ∞.

The result (43) for the limit W/L, L/ξ � 1 is shown in
Fig. 6(a), together with a numerical evaluation of the disorder
average of the exact result (25) for 〈g(2)〉 for finite W/L and
L/ξ , as well as for W/L → ∞ while keeping L/ξ finite. For
an isotropic dispersion, v⊥ = vx, corresponding to θ = 0 in
Eq. (43), the disorder average 〈g(2)〉 vanishes in the L/ξ →
∞ limit. This is consistent with the fact that short-range
disorder is an irrelevant perturbation for a Weyl semimetal
with the chemical potential at the nodal point [36,37]. On the
other hand, for an anisotropic Weyl cone, isotropic disorder
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FIG. 6. (a) Expectation value 〈g(2)〉 and (b) standard deviation
κ

1/2
2 of the disorder-induced conductance correction as functions

of v⊥/vx for an anisotropic Weyl node with isotropic short-range
disorder. The data points correspond to W/L = 5 (red squares) or 8
(blue circles) and L/ξ = 12; the solid lines correspond to W/L � 1,
L/ξ = 12 (black), 60 (green), and 600 (magenta). The dashed black
line in (a) represents the limit W/L, L/ξ � 1 of Eq. (43). (c) Proba-
bility that g(2) < 0 as a function of v⊥/vx for L/ξ = 12, W/L = 5
(red squares) and W/L = 8 (blue circles). (d) Probability density
functions of g(2) for K = 0.1, L/ξ = 6, W/L = 5, and vy/vx = 1,
1.8, and 2.4 (from top to bottom), overlaid with the normalized
histograms of the disorder correction to conductance obtained from
the scattering matrix approach with 3100, 521, and 458 disorder
realizations, respectively. The reference point g(2) = 0 is marked by
vertical lines.

renormalizes the effective anisotropy v⊥/vx, which enters into
the expression for the quasiballistic conductance (10), which
explains why 〈g(2)〉 is negative for v⊥/vx > 1 and positive for
v⊥/vx < 1 in the limit L/ξ → ∞ [see Fig. 6(a)]. For finite
L/ξ , 〈g(2)〉 becomes negative only when v⊥/vx exceeds a
threshold value larger than unity.

Like in the two-dimensional case, we find that the cumu-
lants κn with n � 2 are controlled by the aspect ratio and
the anisotropy: The summand in Eqs. (37b)–(37d) diverges
for small qx and is proportional to W 2ξ nL−3nq2−2n

x v2
x /v

2
⊥,

so that κn ∝ W 2ξ nv2
x /L2n+2v2

⊥ if n � 2. In contrast to the
two-dimensional case, the cumulants κn have an additional
smallness ∝ (ξ/L)n if L/ξ � 1. For the variance κ2, this
scaling behavior is confirmed in Fig. 6(b). In the limit W/L �
1 and L/ξ → ∞, we find that (L2v⊥/ξW vx )κ1/2

2 /K ≈ 0.030,
independent of v⊥/vx. The suppression of conductance fluc-
tuations for L/ξ � 1 is consistent with the expectation that
disorder is an irrelevant perturbation at the Weyl point.

In the limit of W/L � 1, the skewness κ3/κ
3/2
2 and the

excess kurtosis κ4/κ
2
2 are proportional to (L/W )(v⊥/vx ) and

(L/W )2(v⊥/vx )2, respectively, so the distribution of g(2) again
approaches a normal distribution. In particular, when v⊥ = vx,
using Eq. (43), we can estimate the probability to find a
negative disorder-induced conductance correction as

P(g(2) < 0) ∼ 1

2
erfc

[
0.207

W

L

(
c′ + 2 ln

L

ξ

)]
. (44)

Thus, for an isotropic Weyl cone, the probability of disorder
reducing the conductance is exponentially suppressed as a
function of W 2/L2 in the limit W/L → ∞.

Since 〈g(2)〉 is nonzero if the dispersion is not isotropic,
the probability to find a negative disorder-induced conduc-
tance correction strongly depends on v⊥/vx: It is significantly
smaller than the estimate (44) if v⊥/vx < 1, whereas P(g(2) <

0) → 1 in the limit W/L, L/ξ → ∞ if v⊥/vx > 1. Figure 6(c)
shows P(g(2) < 0) versus v⊥/vx for L/ξ = 12 and different
W/L, clearly confirming the strong dependence on v⊥/vx for
large aspect ratios W/L. The increase of P(g(2) < 0) with
v⊥/vx is also illustrated in Fig. 6(d), where we plot the prob-
ability density functions of g(2) for L/ξ = 6, W/L = 5, and
various values of v⊥/vx. As in the case of a two-dimensional
Dirac node, isotropic disorder has a larger probability to
reduce the conductance relative to the quasiballistic value as
the Weyl cone is compressed in the transverse directions.

V. DISCUSSION AND CONCLUSIONS

In this work, we have addressed the mesoscopic transport
of an anisotropic Dirac node in a two-dimensional electron
gas or a Weyl node in a three-dimensional semimetal. We
calculated the conductance for Fermi energy at the nodal
point to second order in a perturbing potential and evalu-
ated the statistics of the conductance for a generic model of
short-range disorder. Our theory is controlled close to the
quasiballistic regime in which wave packets scatter only a few
times in the sample.

In two dimensions, the conductance is normally distributed
if the aspect ratio W/L is large, with a variance that scales
as W vx/Lvy, where vy/vx is a measure of the anisotropy
of the dispersion at the nodal point. Isotropic short-range
disorder always increases the conductance on average. Be-
cause conductance fluctuations are small for large W/L, disor-
der fluctuations for which the disorder-induced conductance
correction is negative are extremely rare (although they do
occur). This explains the empirical observation of the absence
of such disorder realizations even in large-scale numerical
simulations.

In three dimensions, disorder is an irrelevant perturbation
in the renormalization group sense [34–38]. Our perturba-
tive calculation of the conductance distribution is consistent
with this observation but also further refines it. In particular,
we find that isotropic short-range disorder affects the mean
conductance if the dispersion is anisotropic—a finding that
may be interpreted as a disorder-induced renormalization of
the dispersion anisotropy. In particular, if v⊥/vx > 1 (Fermi
velocity in the direction of current flow is smaller than the
Fermi velocity transverse to the direction of current flow),
disorder decreases the conductance on average, whereas the
average disorder-induced correction is positive if v⊥/vx < 1.
The conductance fluctuations, however, are proportional to
(vx/v⊥)2(W/L)2(ξ/L)2, which at large L/ξ has an additional
suppression compared to the naive generalization of the two-
dimensional result. It is the absence of disorder-induced con-
ductance fluctuations in the limit L/ξ → 1 that makes these
findings, again, consistent with the expectation from scaling
theory that disorder is an irrelevant perturbation in this case.
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Finally, we would like to make a few comments on the ex-
perimental relevance of this work. Although our results were
obtained in the context of graphene (in two dimensions) or a
Weyl semimetal (in three dimensions) with short-range disor-
der, our perturbative calculation of the conductance applies to
a Dirac spectrum with an arbitrary scattering potential. Hence,
our results may also prove useful in describing nodal-point
transport in engineered mesoscopic structures such as super-
lattices [40] and electrostatic confinement potentials [41], as
long as the potential strength is sufficiently small that the
quasiballistic assumption holds.

Although quite a large number of measurements of meso-
scopic conductance fluctuations of graphene [42–51] and
Dirac/Weyl semimetal devices [52] have been reported in
the literature, a direct comparison of these results with our
theoretical predictions is not possible. The reason is that a
measurement of the conductance fluctuations needs a means
to generate an ensemble of (effectively) different disorder
realizations. Experimentally, this is achieved by considering
variations of gate voltage or a magnetic field, relying on

the ergodic hypothesis, as in the case of conventional two-
or three-dimensional conductors [53]. However, this is not
a viable approach to address the distribution of the minimal
conductance, which requires tuning of the gate voltage to
the nodal point and zero magnetic field. (Indeed, the ergodic
hypothesis is seen to break down in graphene around the Dirac
point [47,48,50], whereas the application of a magnetic field
in Dirac/Weyl semimetals can open up an excitation gap at the
nodal point [54].) The motion of impurities associated with
thermal cycling [55] or low-frequency noise [56,57] would
provide an alternative method to obtain a disorder ensemble
that can be used to measure the conductance distribution at
the nodal point.
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