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Phonon traces in glassy vibrations
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A numerical approach, based on a local comparative projectional analysis onto symmetry modes of elementary
structural units of glasses and their crystalline counterparts, is developed and used for the analysis of atomic
vibrations in glasses in terms of phonons for the entire frequency range. The results of such an analysis shed
light on the origin of the modes in the controversial low-frequency range, including the boson-peak region.
Comparative analyses undertaken for glass, lattice-glass, and polycrystalline models reveal the role of different
types of disorder in atomic vibrations.
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I. INTRODUCTION

The idea of similarities between atomic vibrations in crys-
tals (phonons) and in glasses has been around for decades
[1–6]. If an arbitrary crystalline lattice is slightly perturbed,
e.g., by introducing atomic defects, then atomic vibrations
can still be approximately expressed in terms of phonons
[7,8]. In network glasses, crystalline order is lost but the short
and midrange order survives in the form of the same atomic
structural building blocks (units) present both in glasses and
in corresponding crystals so that the vibrational motion of
those might share some similarity. In the absence of a direct
comparative analysis of vibrations in glasses and crystals, the
following general questions remained unclear: (i) Do glassy
vibrations in different frequency ranges resemble (originate
from) phonons in corresponding crystals? (ii) If yes, then
what are their frequency-frequency correlations, and what are
the typical length scales on which the vibrations are similar?
(iii) What is the role of different types of disorder in the
formation of the vibrational spectrum of glasses? A particular
question about the origin of the low-frequency boson-peak
(BP) modes in glasses [2,3,9,10] could benefit from such a
comparative analysis as well.

In this paper, we address all the above questions. For
the question about the nature and origin of vibrational
eigenmodes in disordered solids throughout the whole fre-
quency range, our main findings demonstrate clear frequency-
frequency correlations for vibrations of local structural units
in glasses and corresponding crystals in different parts of
the vibrational spectrum and, thus, reveal phonon traces in
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the glassy modes. In particular, we give further evidence in
support of the viewpoint relating the BP modes with strongly
hybridized and pushed-down-in-frequency phonons present
in crystalline counterparts [3,10], thus complementing some
alternative scenarios for the nature of the BP [9,11–17]. These
results have been obtained using an approach for the com-
parison of atomic vibrations in glassy, lattice-glass, polycrys-
talline models, and their crystalline counterparts, by means
of the projection of local atomic vibrations onto symmetry
modes characteristic of structural units.

The paper is structured as follows. In Sec. II, we discuss
the structural models used in the analysis by a comparative
symmetry-mode projection technique outlined in Sec. III. The
results are presented in Sec. IV, and conclusions are given in
Sec. V.

FIG. 1. (a) Unit cell of the α-cristobalite phase of SiO2 contain-
ing four tetrahedral structural units. (b) The corner-shared tetrahedral
network of a v-SiO2 glass model. Oxygen and silicon atoms are
depicted by red and green colors, respectively. Only 648 atoms are
displayed in (b) for clarity of presentation.
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FIG. 2. Structural model of polycrystalline silica (pc-SiO2) con-
sisting of 25 637 atoms in ten α-cristobalite grains shown by different
colors.

II. STRUCTURAL MODELS

Our approach is illustrated by an analysis of vibrations
in large structural models of a prototype glass, vitreous sil-
ica (v-SiO2), as well as a lattice-glass (lg-SiO2), polycrys-
talline silica (pc-SiO2), and their crystalline counterpart α-
cristobalite [1,10,18,19]. Structural models of v-SiO2 (24 000
atoms) and α-cristobalite were produced by means of classical
molecular-dynamics simulations (LAMMPS package [20]), us-
ing the van Beest, Kramer, and van Santen potential [21] with
Wolf’s cutoff for Coulombic interactions [22,23] (see Fig. 1
and the Supplemental Material [24]). In order to prepare an
α-cristobalite model, we varied the elementary cell size to
obtain the phonon band structure most similar to that found
by recent ab initio simulations [25]. Parameters of the α-
and β-cristobalite unit cells used in simulation and found
experimentally [26,27] are presented in the Supplemental
Material [24].

The models of lg-SiO2 were constructed by the rigid
rotation of bridging O atoms in α-cristobalite about the axis
connecting two Si atoms forming a bridge by a random angle
θ normally distributed around zero mean, corresponding to
equilibrium positions of O atoms with a standard deviation
of σθ = 15◦. For this value of σθ , the distribution of the
shapes of tetrahedra characterized by the tetrahedral order
parameter q = 1 − 3/8

∑6
i=1[cos(ψi ) + 1/3]2 (where ψi is an

angle formed by two vectors pointing from a Si atom to two
of its nearest O neighbors, and the sum is taken over all
distinct pairs of O neighbors [28]) in v-SiO2 and lg-SiO2 are
sufficiently similar with q � 0.982 ± 0.015 and q � 0.979 ±
0.016, respectively.

A polycrystalline model (see Fig. 2) consisting of 25 637
atoms was obtained by matching ten grains of α-cristobalite
each containing approximately 200 unit cells. Some of the
unit cells in the crossover (amorphous) regions between grains
were cut under the constraint that the minimal Si-O distance
is not less than 1.5 Å. The model of pc-SiO2 was created by
using the ATOMSK program [29].

Both crystalline and glassy SiO2 structures can be de-
scribed as networks of corner-shared tetrahedra XY4 or
molecular units XY2 (see Fig. 1). The XY4 tetrahedron and

FIG. 3. (a) The partial vibrational density of states (VDOS) for
the Td -symmetry modes of SiO4 units: A1 symmetric stretching
(solid red line), F2s asymmetric stretching (dashed blue line), F2b

bending (dotted magenta line), E bending (dot-dashed green line), F1

solid-unit rotations (double dot-dashed orange line), and total VDOS
(black solid line) for v-SiO2. (b) The partial VDOS of α-cristobalite
with the same color code as in panel (a). The right vertical column
displays tetrahedral structural units with the blue arrows showing the
relative motion of O atoms for the Td group. The dashed red line in
the lowest tetrahedron represents the axis of rotation shown by the
red arrow.

the symmetric XY2 molecule belong to the cubic Td and
orthorhombic C2v point groups, respectively.

III. COMPARATIVE SYMMETRY-MODE
PROJECTION TECHNIQUE

The local atomic vibrations of these structural units can
be characterized by complete orthonormal sets {A(d )} (d =
1, . . . , dM ) of 6,

A(d ) ∈ {
S(A1 ), S(B1 ), B(A1 ), R(B2 )

1–3

}
,

and 12,

A(d ) ∈ {
S(A1 ), S(F2 )

1–3 , B(F2 )
1–3 , B(E )

1–2, R(F1 )
1–3

}
,

symmetry modes belonging to the C2v- and Td -symmetry
groups, respectively, see the Supplemental Material [24] and
Refs. [30,31]. In a local projectional analysis, the nth vibra-
tional eigenvectors for v-SiO2 and α-cristobalite (instanta-
neous normal modes for lg-SiO2 and pc-SiO2 [32]) are split
into the local relative displacement vectors un

i(i′ ) describing the
motion of atoms i′ within the structural unit i and expanded in
the symmetry-mode basis. The coefficients in such an expan-
sion represent the components of a dM-dimensional position
vector,

gn
i = {

un
i · A(d )

i

}
, with d = 1, . . . , dM , (1)

in symmetry-mode space. Their squared magnitudes averaged
over all structural units are used for the local symmetry-mode
assignment both for silica [30,31,33,34] and for α-cristobalite
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FIG. 4. Correlation function P (νμ, νc ) [see Eq. (6)] with ε =
0.95 [see Eq. (3)] for the local vibrations of the Td group in
(a) v-SiO2, (b) lg-SiO2 with σθ = 15◦, and (c) pc-SiO2.

and which show clear correlations in the symmetry of local
vibrations in v-SiO2 and α-cristobalite through the entire
frequency range [cf. Figs. 3(a) and 3(b)]. However, the local
projectional analysis itself does not provide a direct compari-
son of glassy eigenmodes with phonons.

Below, we develop this framework enabling us to perform
a comparative analysis of glassy and crystalline modes within
the following qualitative idea. Vibrations of an arbitrary struc-
tural unit for any glassy (crystalline) mode can be projected
onto symmetry modes for that unit and, thus, characterized
by a glassy (phonon) position vector. The closeness between
glassy and phonon vectors can be assessed by means of their
cosine similarity which is used in the correlation function
characterizing the similarity between entire glassy and crys-
talline modes.

The comparative analysis begins by defining a “projector”
Pnμ,nc

iμ,ic
for unit-vectors ĝnμ

iμ,mμ
and ĝnc

ic,mc
which describe the

structural units iμ and ic for a glassy eigenmode nμ (μ =

FIG. 5. (a) Correlation function P (νg, νc ) for the local vibrations
of the Td group in v-SiO2. The arrows TA1,2 indicate the contribu-
tions of transverse-acoustic van Hove (VH) modes. (b) Crystallinity
Pc(νg) [see Eq. (5)] of glassy modes (black curve with empty circles)
vs νg and its split into acoustic [(ac), β = 1, 2, 3] and optic [(opt),
β = 4, . . . , 36] contributions. (c) Projection slice of the correlation
function (multicolored curve) at νg � 1.5 THz. (d) Slices of the
correlation function at νc � 2.2, 2.7, 4.5, and 5.5 THz (multicolored
curves). The slices at νc = 2.2 and 2.7 THz are multiplied by a factor
of 2 for better display. The total and reduced VDOS of α-cristobalite
and v-SiO2 are shown in panels (c) and (d) by solid black and dashed
gray curves, respectively. Panels (e) and (f) display P (νμ, νc ) for the
local vibrations of the Td group in lg-SiO2 and pc-SiO2, respectively.

g, lg, pc) and a phonon nc, respectively, i.e.,

Pnμ,nc

iμ,ic
= max

mμ,c

{∣∣ĝnμ

iμ,mμ
· ĝnc

ic,mc

∣∣}. (2)

The index mμ,c ∈ M with M being the set of 2 and 12
permutations of the atoms within the XY2 and XY4 glassy
(crystalline) structural units (see the Supplemental Material
[24] for more details). We aim to find the crystalline eigen-
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FIG. 6. Crystallinity decomposition showing the percentage of
tetrahedra (Td group, ε = 0.95) in the glassy mode with νg �
1.5 THz correlated with phonons of a particular frequency νc

and wave-vector magnitude |q|. Contributions from acoustic (β =
1, 2, 3) and optic (β = 4, . . . , 36) phonons are shown by blue and
red circles, respectively.

modes which most resemble a given glassy mode, and, thus,
we define the binary projector P̂iμ [νμ, (βq)max], which is
related to the maximum value (among all possible crystalline
modes and units) of the projector given by Eq. (2), i.e.,

P̂iμ[νμ, (βq)] =
{

1, if ε < max
nc,ic

{
Pnμ,nc

iμ,ic

}
� 1,

0, otherwise,
(3)

where ε is the close-to-unity tolerance parameter, νμ stands
for the frequency of the glassy eigenmode nμ, and (βq)
describes a phonon with a frequency νc ≡ νβ (q) for which the
maximum value of Pnμ,nc

iμ,ic
is achieved, i.e., (βq) ≡ (βq)max.

The binary projector given by Eq. (3) counts the pairs of
structural units in glass and crystal for which the vibrations
are similar, i.e., the distance between glassy and phonon
symmetry vectors is relatively short. Several glassy units
can contribute to the same phonon and, thus, the quantity
P[νμ, (βq)] averaged over all glassy units,

P[νμ, (βq)] = 1

Nμ

∑
iμ

P̂iμ [νμ, (βq)] (4)

represents the discrete distribution over the phonon spec-
trum of the similarity parameter, called crystallinity. For
a given point q in the Brillouin zone and branch number
β, P[νμ, (βq)] gives the relative number of glassy units in a
glassy mode νμ which exhibit a local motion similar to that of
one of the structural units for this phonon. Finally, integration
over all phonons defines the overall crystallinity Pc(νμ) of a
glassy mode νμ,

Pc(νμ) =
∑
βq

P[νμ, (βq)] =
∫

P (νμ, νc)dνc, (5)

where we introduce the continuous frequency distribution of
crystallinity or frequency-frequency correlation function,

P (νμ, νc) =
∑
βq

P[νμ, (βq)]δ[νc − νβ (q)] (6)

FIG. 7. Relative contributions of Td -symmetry modes F2b

(dashed blue curve), E (dashed-dotted green curve), and F1 (dashed-
dot-dot orange curve) in the VDOS of v-SiO2. The reduced VDOS
is schematically shown by the solid black curve.

being a similarity characteristic between a glassy mode νμ and
phonons with frequency near νc.

IV. RESULTS

The results for P (νμ, νc) are shown in Fig. 4 for tetrahedral
XY4 units (and in Figs. S4(b) and S4(c) of the Supplemental
Material [24] for XY2 and YX2 units). For all models, v-SiO2,
lg-SiO2, and pc-SiO2, the function P (νμ, νc) has the shape of
narrow ridges along the glass frequency axis νμ, exhibiting
peak regions where the glassy (polycrystalline) modes and
phonons show a significant similarity. Qualitatively, these
findings can be explained by assuming that the disordered
material is made from the corresponding crystal by moving
and/or deforming the building blocks (e.g., when constructing
lg-SiO2 and pc-SiO2). Any motion of building blocks likely
destroys the phonon spectrum of the crystal by washing out
and shifting the sharp features of the spectrum. The disordered
vibrational modes, thus, might result from a mixture (hy-
bridization) of phonons within some typical phonon-phonon
interaction frequency scale. The larger this scale, the less
similar are glassy modes to some particular phonons. At the
phonon-band boundaries, the phonon spectrum transforms
to the glassy band tails. These phonon-hybridization effects
might be less significant for glassy modes in the tail regions
because fewer phonons are involved in mixing, i.e., only
the phonons coming from the band producing the tail. In
the midband region, this band-edge effect is suppressed, and
hybridization effects might be stronger.

Our analysis gives strong evidence in support of such
a qualitative picture in v-SiO2, lg-SiO2, and pc-SiO2. The
v-SiO2 vibrational spectrum [see Fig. 3(a)] consists of one
wide band of width �27 THz and one narrow (with a width of
�10 THz) high-frequency band separated by an �3-THz gap
(filled by the tail localized states [35]) and can be imagined
as originating from the very similar phonon spectrum of α-
cristobalite [cf. Figs. 3(a) and 3(b)]. Very clear phonon traces
are seen (see Fig. 4 and Fig. S4 in the Supplemental Material
[24]) for glassy modes near the bottom (νμ � 10 THz) and top
(18 � νμ � 28 THz) of the main wide band and within the
entire high-frequency band (30 � νμ � 40 THz). A typical
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FIG. 8. The phonon dispersion in α-cristobalite, colored accord-
ing to the relative contribution of the F1-symmetry mode of the Td

group. The magnitude of the wave vectors at different symmetry
points in the Brillouin zone (see Fig. S5 in the Supplemental Ma-
terial [24] for more details) are the following: q(
) = 0, q(A) �
1.02, q(Z ) � 0.5, q(X ) � 0.6, and q(M ) � 0.89 Å−1.

frequency scale for these traces �ν ∼ 5 THz along the νc

axis gives an estimate for the strength of the phonon-phonon
interactions. The correlations are especially strong for all
types of structural units in the high-frequency band where
the vibrational motion has sufficiently local character, evident
from low values of the participation ratio (PR) (see Fig. S6
in the Supplemental Material [24]), and dominated by the A1-
and F2s-symmetry modes of the Td group in v-SiO2, lg-SiO2,
pc-SiO2, and α-cristobalite. No noticeable traces are observed
in the midband region (10–20 THz). In the low-frequency
range, the reconstruction of the phonon spectrum occurs in
a peculiar way due to the presence there of acoustic and
optic phonons. The optic phonons are hybridized and pushed
down the spectrum due to level-repelling effects [3] from the
bulk of the band in a similar way as near the top of the
band where they are pushed up the spectrum. On the way
down the spectrum, the optic phonons can also be hybridized
with acoustic phonons when they enter the frequency range
of acoustic branches. The acoustic phonons are also mixed
between themselves, exhibiting less mixing with decreasing
frequency because the long-wavelength acoustic waves are
less affected by disorder.

This qualitative scenario is supported by the results of our
analysis (see Fig. 5) in the low-frequency domain containing
the glassy modes, including the BP modes, the origin of
which is highly debated [3,9–14]. It is evident from Fig. 5
that the local vibrations in glassy modes from the BP re-
gion (�1.5 THz) are very similar to the local vibrations for
phonons of several types. The highest degree of similarity
is found for transverse-optic phonons with frequencies at
�5.5 THz, indicated by a sharp narrow trace in Fig. 5(a) and
by a pronounced peak in the multicolored curve in panel (c).

Slightly less pronounced similarity is observed for a group
of transverse-optic phonons with frequencies at �4.5 THz
shown by a wider and less color-intense bulletlike trace in
panel (a) and by a broad and structured peak in (c). Finally,
a moderate doublet trace, the low-frequency bimodal peak in
the multicolored curve in panel (c), corresponds to phonons
with frequencies near the van Hove singularities at �2.2 and
2.7 THz for two transverse-acoustic branches [36], which
also share some similarity in local vibrational motion with
the BP modes. Panel (d) in Fig. 5 shows cross sections of
P (νg, νc) along the horizontal lines in (a), corresponding to
phonons with local dynamics similar to the BP modes. All of
them exhibit relatively broad maxima near the BP frequency.
Moreover, the crystallinity, a cumulative characteristic of the
similarity of local vibrations in a glassy mode with any of the
phonons, shows a peak [see Fig. 5(b)] remarkably coincident
with the BP. This means that the BP modes exhibit the
maximum similarity in local vibrations with phonons and, in
fact, with optic phonons [cf. optic and acoustic contributions
in Fig. 5(b)].

All models, v-SiO2, lg-SiO2, and pc-SiO2, exhibit very
similar correlation functions in the whole frequency range
[cf. (a), (b), and (c) in Fig. 4] including the low-frequency
domain �8 THz [cf. panels (a), (e), and (f) in Fig. 5]. Both
lg-SiO2 and pc-SiO2 models can be considered as toy models
for silica glass which are created by using different types of
disorder. The lg-SiO2 model, by construction, preserves the
network structure of perturbed tetrahedra, is free of topo-
logical disorder, and is globally anisotropic. In contrast, the
pc-SiO2 model consists of nonperturbed tetrahedra present in
α-cristobalite but is globally isotropic. Our analysis demon-
strates that the type of disorder introduced in a crystal does
not play a significant role in the reconstruction of the phonon
spectrum. Once disorder is introduced in a crystal, the spec-
trum transforms in a rather general way, such as band broad-
ening and density tail formation, exhibiting very clear traces
of the original spectrum where hybridization effects are not
strong enough. These robust traces of phonons, e.g., with fre-
quencies around 4.5 and 5.5 THz in the low-frequency range
[see Figs. 5(a), 5(e) and 5(f)], are clearly seen for all models.

The three groups of phonons most similar to BP modes
are characterized by the range of the wave vectors which
are displayed in Fig. 6. In particular, the transverse-optic
phonons with νc � 4.5 and 5.5 THz are characterized by
wave-vector magnitude q � 0.15–0.35 and 0.05–0.15 Å−1,
respectively, whereas the transverse-acoustic phonons from
the low-frequency doublet at νc � 2.2 and 2.7 THz have
q � 0.35–0.45 Å−1. These phonon wave-vector magnitudes
are consistent with those of typical wave vectors of transverse
plane waves q � 0.2–0.5 Å−1, contributing to the dynamical
structure factor [37] in the BP range νg ∼ 0.5–2.5 THz (see
Fig. S8 in the Supplemental Material [24]).

The strong similarity in local motion for BP modes and
optic phonons near 5 THz can be explained as follows. The
local projectional analysis for BP modes shows that these
modes are mainly of F1 symmetry for the Td group (tetrahedral
rotations) with the relative partial vibrational density of states
reaching a maximum value of �0.8 near the BP (see Fig. 7). A
similar analysis for phonons reveals that the maximum contri-
bution from vibrations of the same F1 symmetry is observed
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FIG. 9. (a) PR for glassy modes: original modes before demix-
ing (empty black squares), nonlocalized plane-wave-like vibrational
modes (NLMs) (filled blue diamonds), and bare localized modes
(BLMs) (empty red circles) after demixing see the Supplemental Ma-
terial [24] and Ref. [38]. The demixing parameters are �ν/ν = 0.3
and pc = 0.25 (see the Supplemental Material [24]). The inset shows
the reduced VDOS for the original glassy modes (black curve),
NLMs (dashed-dotted blue curve), and BLMs (dashed red curve)
after demixing and the sum of BLMs and NLMs after demixing
(solid gray curve). (b) Correlation function given by Eq. (6) for the
original glassy modes, BLMs, and NLMs for projections onto the Td

group.

for optic phonons with frequencies near 5 THz with 0 � q �
0.5 Å−1 (see Fig. 8) and, thus, not surprisingly, exactly these
phonons are very similar to the BP modes. Therefore, the BP
modes in v-SiO2 can be locally described in terms of coupled
tetrahedral rotations which mainly are very similar to those
for transverse-optic phonons (cf. the qualitative picture given
in Refs. [11,39,40]).

The vibrational modes found numerically at frequencies
below the BP can be split into two types: (i) extended
plane-wave-like states with PR � 0.5, combined in discrete-
frequency groups, characteristic of finite-size models;
(ii) quasilocalized optic tail states with PR � 0.4 [see
Fig. 9(a)]. The origin of the quasilocalized states and their
possibly important role in determining the thermal conduc-
tivity are under active study [12,13,41]. The quasilocalized
states can be considered as a mixture of NLMs and BLMs
[38,42]. By applying a demixing technique [24,38], we sep-
arated the NLMs and BLMs [see Fig. 9(a)] and performed
a comparative local symmetry-mode projectional analysis in
order to reveal the phonon traces in these states. The results
shown in Fig. 9(b) do not reveal any significant differences
in local vibrational motion before and after demixing so that
the dominant contributions in local motion (which is of F1-
rotation type) for both NLMs and BLMs come from groups
of transverse-optic phonons at 4.5 and 5.5 THz similar to
BP modes. This means that, even for the lowest-frequency
(�0.57 THz for our finite-size model) plane-wave-like glassy
modes, the local tetrahedral vibrations are similar to those
for optic phonons with frequencies of 4.5 and 5.5 THz in
α-cristobalite.

V. CONCLUSIONS

To conclude, a local symmetry-mode comparative pro-
jection technique has been developed and used for reveal-
ing phonon traces in glassy vibrational modes for all fre-
quency ranges. In particular, strong optic-phonon traces are
found for the BP modes and quasilocalized modes in the
low-frequency range. The similarity in phonon traces dis-
covered for glass, lattice-glass, and polycrystalline models
with different types of disorder signify the presence of a
common mechanism for the reconstruction of the phonon
spectrum, independent of the type of disorder. The method
described in the paper is general and can be applied to a
broad class of monatomic and binary materials, e.g., Si, Ge,
GeO2, P2O5, GeSe2, Si3N4, B2O3, Ta2O5, HfO2, etc., in
which local atomic triplets belonging to the C2v group, A-A-A
or A-B-A are present [43].
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