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The 212 species of structural phase transitions which break macroscopic symmetry are analyzed with respect
to the occurrence of time-reversal-invariant vector and bidirector order parameters. The possibility of discerning
the orientational domain states of the low-symmetry phase by these “vectorlike” physical properties has been
derived using a computer algorithm exploiting the concept of polar, axial, chiral, and neutral dipoles. It is argued
that the presence of a pseudo-Lifshitz invariant of chiral bidirector symmetry in a Ginzburg-Landau functional
of uniaxial ferroelectrics can induce electric Bloch skyrmions in the same way as the Dzyaloshinskii-Moriya
interaction induces bulk magnetic Bloch skyrmions in chiral magnets. It is found that this is possible for three
types of fully ferroelectric phase transitions with a chiral paraelectric phase.
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I. INTRODUCTION

Rapidly growing interest in magnetic Bloch skyrmions
[1-13] has recently inspired several studies in the field
of ferroelectrics [14-21]. Ferroelectric textures with Bloch
skyrmion topology have, indeed, been identified in simula-
tions [15-20] and experiments [21]. So far all these ferroelec-
tric textures appear to contain stray-field skyrmions [10,22],
i.e., topological defects stabilized by material surfaces and
interfaces. Obviously, it is natural to ask whether and when
one can also expect bulk ferroelectric Bloch skyrmions, sta-
bilized by a bulk free-energy term, analogous to the chi-
ral Dzyaloshinskii-Moriya term assumed in the canonical
magnetic Bloch skyrmion theory [1,23]. In particular, it is
worth checking whether the bulk ferroelectric Bloch skyrmion
phases are connected to some particular type of symmetry
breaking.

II. MACROSCOPIC SYMMETRY, GENERALIZED
DIPOLES, AND SKYRMIONS

When the point group symmetry of a crystal is lowered in
response to an isotropic influence like a temperature change,
we deal with a macroscopic symmetry-breaking phase tran-
sition. It is known that point group symmetry allows one
to distinguish 212 distinct species of macroscopic symmetry
reduction [24]. Among other things, attribution to a species
implies how many new (spontaneous) components of a given
tensorial property appear in the low-symmetry phase [24].

Two such properties, spontaneous polarization and spon-
taneous strain, play a very unique role because they are
conjugated to the two most readily available anisotropic ther-
modynamic forces: the electric field and the stress tensor [25].
However, crystals may develop other properties important in
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the context of bulk ferroelectric Bloch skyrmion phases. For
example, there are species with a spontaneous axial vector
[24] or chiral bidirector [26]. These species describe ferroaxial
[27] and chiroaxial [26] phase transitions, respectively. In fact,
from the point of view of rotational symmetry, the polar vector
P, axial vector G, chiral bidirector C, and neutral bidirector N
form a complete set of properties that possess only a single
axis, a modulus, and a binary sign [28] (see Fig. 1). In that
sense, all four vectorlike properties are equally valid for the
classification of species and phase transitions.

In the present work, we have found it convenient to extend
the analogy even more and generalize the concept of the
dipole moment. Obviously, a simple object with polar vector
symmetry is an electric dipole, a pair of points with opposite
charges. We note that a similarly simple object with the
neutral bidirector symmetry N is a pair of points with equal
charges. Likewise, a pair of points with pseudoscalar proper-
ties of opposite signs has the symmetry of the axial vector G,
and a pair of points with an identical pseudoscalar property
has the symmetry of a chiral bidirector C (see Fig. 1).

This paper is organized as follows. We first derive gen-
eral systematic results that are relevant for inspection of the
vectorlike symmetry of any crystallographic phase transition.
Then we present specific results related to bulk ferroelectric
Bloch skyrmions. More specifically, a computer algorithm
has been designed to answer, for each vectorlike property X
and for each of the 212 species, the following questions: (i)
Is the property X allowed in the low-symmetry phase, and
is there any restriction on the property orientation? (ii) Is
the symmetry lowering removing some symmetry restriction
on the property X? (iii) Does the sign or orientation of the
property X allow one to distinguish all or some orientational
domain states? The list of answers yields a table allowing us
to find out whether orientational domain states can be fully
or partially distinguished by a given vectorlike property. We
then extend the argument of Bogdanov and Yablonskii [23]
and propose that bulk ferroelectric skyrmion phases can be

©2020 American Physical Society


https://orcid.org/0000-0002-7058-2822
https://orcid.org/0000-0002-9293-4462
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.024110&domain=pdf&date_stamp=2020-07-27
https://doi.org/10.1103/PhysRevB.102.024110

K. C. ERB AND J. HLINKA

PHYSICAL REVIEW B 102, 024110 (2020)

Identity Mirror Perpendicular
Neutral '—.
+—> —>
Polar ._O
+—
Axial Rr——L: ®—Q—L
Chiral L—Q—L

Mirror Parallel Inversion

_— == m\

—>

ole ce—o-

f]
T4

[ ‘\ ’l-_~ .

r' .
‘Il
L

!

FIG. 1. Transformation properties of four possible time-invariant dipoles. Each row corresponds to one of the dipoles. The first column
indicates the name of the dipole property in the row. Each subsequent column indicates the effect of one selected isometry operation on these
dipoles, which is either an invariance or a sign reversal. Solid and open circles stand for points with opposite scalar properties, while circles
with R and L inside stand for points with opposite pseudoscalar properties (right-handed and left-handed points). Otherwise, the points do not

differ in any other internal property.

found in crystals undergoing certain types of nonferroelastic
ferroelectric phase transitions. Finally, the derived table is
used to identify the desired species.

III. SYMMETRY-BREAKING SPECIES

Before we present our results, it is worth noting that the
concept of species is related to the notion of crystallographic
equivalence. A macroscopic crystal symmetry is described by
a set of all O(3) isometries (proper and improper rotations
around a fixed point in 3D space) that preserve all macro-
scopic material properties of the crystal. If there is an isom-
etry in O(3) that transforms one such crystallographic point
group to another one, the two groups are crystallographically
equivalent. All symmetry groups linked by such an equiva-
lence relation form a crystallographic class. Any 3D lattice-
periodic crystal belongs to one of the 32 crystallographic
classes [29,30]. Likewise, a macroscopic symmetry reduc-
tion is defined by a group-subgroup relation G > F between
point groups G and F of the higher- and lower-symmetry
crystal phases, respectively. If there is an isometry in O(3)
that transforms the G > F pair into another pair G’ > F’,
the two pairs are equivalent. Symmetry pairs linked by such

equivalence relations constitute one of the 212 macroscopic
symmetry-breaking species [24,25].

IV. METHODOLOGY

The above-introduced question (i) is formally solved by
Neumann’s principle, which states that a property is allowed if
the crystal class is a subgroup of the symmetry of the property
[29]. Polar and axial vectors, if allowed, are restricted to a
crystallographic axis or within a crystallographic plane or not
restricted at all. In contrast, bidirectors, if allowed, could be
restricted to an axis or to a triplet of orthogonal axes or to a
plane or to a plane and the perpendicular axis or not restricted
at all. Figure 2 displays vectorlike property restrictions for
groups 222 and 2. In practice, we have designed a computer
algorithm that allows one to place a generalized dipole of
any of the above types in the center of a crystallographic
reference frame and check whether all symmetry operations of
a given point group leave such a dipole intact or not. By going
through the general and all special positions with respect to
the symmetry elements in the group, possible locations of
dipoles are found.

Another algorithm was designed to find a group-subgroup
representative for each species. The released symmetry con-
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FIG. 2. Symmetry-allowed orientation of vectorlike properties in
crystals of 222 and 2 symmetry. Columns correspond to point groups;
rows correspond to N-, P-, G-, and C-type quantities. The symmetry-
unrelated bidirectors have different magnitudes. Under the 222 > 2
symmetry lowering, polar and axial vectors appear along the vertical
diad, while the bidirectors perpendicular to it are released to have an
arbitrary orientation within the indicated plane.

straints on vectorlike properties were obtained by a com-
parison of the symmetry constraints in the G > F pair, thus
answering question (ii). For example, the species 222 > 2
yields new degrees of freedom for all vectorlike properties
(see Fig. 2).

Finally, we have investigated whether the property X
allows us to distinguish all or some of the orientational
domain states in a given species. Up to three independent
generalized dipoles of type X were placed in the center of
a crystallographic reference frame in the most general way
compatible with our representative low-symmetry group of a
given G > F species. This gives a unique description of the
domain state even in the case of bidirectors. When isometries
of the high-symmetry group are applied, either the same or a
different dipole configuration is obtained. After going through
all symmetry elements of G, the number of distinct dipole
configurations ny was counted and compared with the number
of orientational domain states n given by the quotient of the
high-symmetry group’s order and the lower-symmetry group’s
order [35].

The numbers of ferroelectric, ferroaxial, and ferrochiral
domains match the earlier obtained scores [24,26]. Moreover,
we note that the gained neutral bidirector freedom corre-
sponds exactly to the degree of released symmetry constraints
on the components of the second-order symmetric polar ten-

sor. Thus, the possibility to distinguish orientational domain
states fully or partially by N is actually equivalent to full and
partial ferroelasticity.

The results are summarized in Fig. 3; full distinction of ori-
entational domain states by the property (nxy = n) is marked
by the solid circles; partial distinction (1 < ny < n) is marked
by the half-filled circles. Species which do not release any
additional degree of freedom for the property X are marked by
an open circle. This last situation happens either when ny = 1
or when the property is not compatible with the symmetry of
F atall (ny = 0). Differentiation between the last two options
is quite trivial, so we use a common label there.

V. FERROELECTRIC DZYALOSHINSKII-MORIYA
INTERACTION

Let us now turn back to skyrmions. Originally, the
existence of magnetic analogs of Abrikosov vortices, now
called skyrmions, was predicted by inspecting solutions of
the Ginzburg-Landau potential for a ferromagnet with the
free-energy density in the form [23]

1a(VM)? + 18M? — M.H + yw(M), (D

where « is the exchange interaction prefactor, 8 > 0 defines
the easy-axis anisotropy, H is the magnetic field along the
axis, and y is the strength of the Dzyaloshinskii-Moriya
interaction (DMI) [31-33]. The axisymmetric Bloch skyrmion
solution requires that the leading term of the DMI is in the
form [23]
oM, oM, oM, oM,
w=M——-M, -M,— +M,—.
ay ay dx T o0x
This expression does not depend on the rotation of the coor-
dinates around the z axis [23]. Actually, a direct check proves
that it has the full chiral bidirector symmetry. Therefore, the
paramagnetic phase has to allow for a chiral bidirector prop-
erty along the z axis. This implies that the Bloch skyrmion
model of Egs. (1) and (2) holds when the paramagnetic phase
belongs to class 32, 422, 622, 3, 4, or 6, in agreement with
earlier results [23,34].

Let us now assume a ferroelectric material with the same
form of free-energy expansion. Consequently, such a hypo-
thetical material should allow for similar axisymmetric Bloch
skyrmion soliton solutions. When Eqgs. (1) and (2) are written
for the electric polarization P and electric field E, Eq. (1)
describes a proper uniaxial ferroelectric crystal close to a
second-order nonferroelastic phase transition. Interestingly,
the pseudo-Lifshitz term
P, P, 0P, P,

—~_p—~-pP24+p= 3
dy Ay “ox T )

@)

w=P~F

analogous to Eq. (2), still transforms as a chiral bidirec-
tor. Thus, the postulated form of free-energy expansion of
the skyrmion host imposes the same symmetry limitations
on phase G as in the case of the previously considered
magnetic skyrmion hosts. Since proper ferroelectricity im-
plies full ferroelectricity [35], by inspection of Fig. 3, it
can easily be found that there are only three species that
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FIG. 3. Spontaneous vectorlike properties in 212 species of broken macroscopic symmetry. The number of orientational domain states is
given in the column marked n. Solid, half-filled, and open circles indicate whether it is possible to distinguish domain states of the G > F
species (rows) by a given vectorlike property X (fifth through eighth columns) either fully (nx = n), partially (1 < ny < n), or not at all

(nx < 2). See the explanations in the text.

correspond to the above energy functional form: Species 31,
70, and 100. In other words, the present analysis indicates
that in principle, thermodynamically stable bulk ferroelec-
tric skyrmion phases might exist in the field-temperature
diagrams of chiral ferroelectric crystals like quinuclidinol
[36] (species 100) and dicalcium strontium propionate [37]
(species 70).

Finally, let us note that it is the chiral interaction of Eq. (3)
that defines the skyrmion size and interaction radius in the
Bogdanov-Yablonskii theory [38]. Therefore, although the

ferroelectric skyrmions induced by surface and bulk free-
energy terms share the same topology, they deserve to be
considered different phenomena, similar to magnetic stray-
field skyrmions and DMI skyrmions.

VI. CONCLUSIONS

In summary, we introduced the concept of generalized
dipoles and used it to count domain states distinguishable
by vectorlike properties and to list possible property com-
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binations. The idea of generalized dipoles can be extended
to multipoles and time-odd properties [39—-45], and the point
group symmetry-breaking analysis also applies to many other
areas of physics. In addition, it was realized that the ferro-
electric analog of a chiral DMI has the symmetry of a chiral
dipole. This observation was used to predict a scenario for
the appearance of bulk ferroelectric Bloch skyrmion phases

in materials with 32 > 3, 422 > 4, or 622 > 6 symmetry
breaking.
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