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Origin of mean-field behavior in an elastic Ising model
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Simple elastic models of spin-crossover compounds are known empirically to exhibit classical critical
behavior. We demonstrate how the long-range interactions responsible for this behavior arise naturally upon
integrating out mechanical fluctuations of such a model. A mean-field theory applied to the resulting effective
Hamiltonian quantitatively accounts for both thermodynamics and kinetics observed in computer simulations,
including a barrier to magnetization reversal that grows extensively with system size. For nanocrystals, which
break translational symmetry, a straightforward extension of mean-field theory yields similarly accurate results.
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I. INTRODUCTION

The impact of spin-lattice interactions on materials’ phase
behavior has long been a topic of interest in condensed-matter
physics and materials science [1–4]. Microscopic coupling
between spin and geometry in an extended material can endow
it with intriguing and useful properties, such as susceptibility
of the crystal structure to light or pressure [5–9]. Elastic Ising
models provide a minimal representation of such materials.
In a simple variant, the atoms of a crystal lattice interact
with their neighbors via Hookean springs. The natural length
of these springs is determined by the participating atoms’
internal “spin” (which could represent either a literal spin state
or a chemical identity). This type of model has been employed
in studies of lattice-mismatched semiconductor alloys [10,11]
and spin-crossover compounds [12,13]. Despite its substantial
history, one of the most basic aspects of this model’s behavior
remains unresolved. The aforementioned studies employed
Monte Carlo (MC) simulations to demonstrate that elastic
Ising models can exhibit demixing transitions governed by
mean-field critical exponents. However, the microscopic ori-
gin of this behavior has not been explicitly identified, nor has
a quantitative framework for predicting its consequences been
developed.

Here, we present a thorough explanation for the origin of
this mean-field behavior. Drawing from our recent work on a
similar elastic Ising model [14], we show how the coupling
of mechanical fluctuations to spins engenders effective inter-
atomic interactions with infinite spatial extent. These give rise
to the observed mean-field critical behavior. With an explicit
form for the interactions in hand, we develop a straightforward
mean-field theory (MFT) which accurately predicts the free
energy as a function of magnetization as well as the critical
temperature for spontaneous symmetry breaking. MFT yields
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similarly faithful predictions for relaxation dynamics of the
magnetization in the presence of an external field. Finally,
we extend our theory to describe spatially heterogeneous
systems such as nanocrystals. Our results provide a theoretical
basis not only for interpreting the results of a number of
previous computer simulation studies but also for the design
of switchable elastic materials.

II. ELASTIC ISING MODEL AND
EFFECTIVE INTERACTIONS

We consider a collection of N atoms at positions rR =
R + uR. The quantity R denotes a site on a d-dimensional
crystal lattice characterized by unit bond vectors α̂, and uR
is the displacement of an atom from its ideal lattice site. Spin
variables σR = ±1 determine the natural bond length between
neighboring atoms:

l (σR, σR+aα̂) =
⎧⎨
⎩

lAA for σR = σR+aα̂ = 1,

lAB for σR �= σR+aα̂,

lBB for σR = σR+aα̂ = −1,

(1)

where a is the fluctuating lattice parameter, lBB < lAA, and
lAB = (lAA + lBB)/2. We choose the lattice mismatch � =
(lAA − lBB)/2 to be our basic unit of length. An external
pressure p couples directly to the volume cNad , where c is a
geometry-dependent constant of O(1). The Hamiltonian gov-
erning the system is quadratic in deviations of bond lengths
|rR+aα̂ − rR| from their preferred σ -dependent values:

H = K

4

∑
R,α̂

[|aα̂ + uR+aα̂ − uR| − l (σR, σR+aα̂)]2 + pcNad .

(2)

The spring constant K > 0 determines the elastic energy scale
ε = K�2/8. We express all quantities henceforth in units of
� and ε. Due to fluctuations in the lattice parameter a, the
volume appearing in the final term of Eq. (2) is a random
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variable whose statistics are shaped by the externally imposed
pressure.

The Hamiltonian defined by Eq. (2) manifestly couples
spin and displacement variables. We will show how the effect
of fluctuations in the displacements can be captured by an
effective energy function Heff of the spin variables:

Heff[{σR}] = HSR + HLR − h
∑

R

σR, (3)

HSR = 1

2

∑
R,R′

σRV SR
R−R′σR′ , (4)

HLR = 1

2N
V LR

(∑
R

σR

)2

, (5)

where SR and LR stand for “short range” and “long range,”
respectively. V SR

R is an effective interaction potential that
decays steadily with distance |R|, and V LR is a constant that
sets the strength of long-range coupling. This form of spin
interaction guarantees mean-field critical behavior, as will be
discussed below.

We first simplify Eq. (2) by noting that if � is small, H can
be written approximately as (see [14] and the Supplemental
Material [15])

H ≈ 2
∑
R,α̂

[
α̂ · (uR+aα̂ − uR ) − 1

2
(δσR + δσR+aα̂)

− (σ̃0/N − δa)

]2

− Nhδa, (6)

where h = −pcdld−1
AB is dimensionless pressure and δa =

a − lAB. We have partitioned the spin variables into two
components, namely, the net magnetization σ̃0 = ∑

R σR and
the local deviation δσR = σR − σ̃0/N . Using

∑
R uR = 0, we

expand Eq. (6):

H = �H({uR}, {δσR}) + 2(σ̃0/N − δa)2NZ − Nhδa, (7)

where Z is the coordination number of the lattice and

�H = 2
∑
R,α̂

[
α̂ · (uR+aα̂ − uR ) − 1

2
(δσR + δσR+aα̂)

]2

. (8)

Gaussian fluctuations in the lattice parameter δa evidently
couple solely to σ̃0. Working in an ensemble with fixed N , p,
and inverse temperature β = 1/kBT , where kB is Boltzmann’s
constant, we integrate out these fluctuations:

H̄ = −β−1 ln

[∫
d (δa) exp (−βH)

]
(9)

= �H − hσ̃0 + const. (10)

We see that h simply plays the role of an effective field acting
on σ̃0, so spin coupling is contained entirely in �H. We
interrogate this coupling by further integrating out Gaussian
fluctuations in the displacement field [dropping the unimpor-
tant constant term in Eq. (10)]:

Heff = −β−1 ln

[∫ ∏
R

duR exp(−β�H)

]
− hσ̃0. (11)
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FIG. 1. Fourier-space effective potential for the triangular lattice,
Eq. (13). Note that Ṽq is smooth everywhere except q = 0 since Ṽ0 =
0 but limq→0 Ṽq = 8.

If we assume that our system is subject to periodic boundary
conditions, then the required integrals are most easily per-
formed in Fourier space. This yields (see [14])

Heff[{σR}] = 1

2N

∑
q

Ṽq|σ̃q|2 − hσ̃0, (12)

where f̃q denotes the Fourier transform of a generic function
fR [16]. The explicit form of the effective potential Ṽq for the
triangular lattice is given by [14]

Ṽq =

⎧⎪⎨
⎪⎩

4
(

2 cos qx a
2 cos

√
3qya
2 +cos qxa−3

)2

(cos qxa−2)
(

4 cos qx a
2 cos

√
3qya
2 −3

)
+cos

√
3qya

, q �= 0,

0, q = 0,

(13)

where qx and qy are the Cartesian components of q.
The existence of long-range coupling is not immediately

evident from this analysis since the longest-wavelength com-
ponent of the potential Ṽ0 is zero. However, the limit of the
potential as q → 0 is not approached smoothly (see Fig. 1),
a required condition for short-range interactions [17,18]. Ob-
serve that a simple modification of Ṽq does vanish smoothly
as q → 0:

Ṽ SR
q = Ṽq − (1 − δq,0) lim

q′→0
Ṽq′ . (14)

Its inverse transform V SR
R is therefore a well-defined short-

range interaction [19]. The remainder of Ṽq is

Ṽ LR
q = Ṽq − Ṽ SR

q (15)

= const − δq,0 lim
q′→0

Ṽq′, (16)

where the constant term simply generates an irrelevant self-
interaction, which we drop. Plugging this back into the sum in
Eq. (12) and writing all quantities in terms of real-space sums
gives us the promised form (3), with

V LR = − lim
q→0

Ṽq. (17)
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The limit is given explicitly by

lim
q→0

Ṽq = 2Z − 4a(q̂) · A−1(q̂) · a(q̂), (18)

a(q̂) =
∑

α̂

(q̂ · α̂)α̂, (19)

A(q̂) =
∑

α̂

(q̂ · α̂)2α̂α̂, (20)

where q̂ is an arbitrary unit vector. For the triangular lattice,
this simplifies to limq→0 Ṽq = 8.

III. MEAN-FIELD THEORY

That long-range interactions are operative in spin-
crossover compounds has been suggested by several authors
[20–25]. Miyashita et al. [12] conjectured that the long-range
interactions responsible for mean-field behavior in their model
had the same 1/|R − R′|3 decay as that between point de-
fects in three-dimensional continuum elastic media. We have
demonstrated that, instead, an infinitely long range interaction
arises from a discontinuity in the spectrum Ṽq. This nonana-
lytic feature originates physically in a mismatch between the
elastic energy associated with q = 0 and small (but nonzero)
wave vector variations in the magnetization. Schulz et al. [26]
argued that precisely those long-wavelength elastic modes
ought to be responsible for the mean-field behavior of elastic
models of binary alloys.

A model which consists solely of interactions of the form
HLR is described exactly by MFT [27–30]. Its mean-field
critical exponents are robust to the addition of short-range
ferromagnetic interactions [31–33]. Sufficiently strong inter-
actions encouraging other kinds of order may overwhelm
HLR and render the mean-field critical point inaccessible [31],
which appears to be the case in the recent work of Nishino
et al. [34]. Short-range interactions added in Ref. [34] to an
elastic Hamiltonian much like ours yielded antiferromagnetic
ordering whose critical scaling is not mean field in character.
We show in the Supplemental Material [15] that adding these
same interactions to our effective potential Heff similarly
shifts the global energy minimum from q = 0 (as in Fig. 1)
to a nonzero wave vector consistent with an antiferromagnetic
ground state. Absent such added competing interactions, MC
simulations of our elastic model for several different lattice
structures all yield mean-field critical exponents (see the
Supplemental Material [15] for details.) Although it does
encourage antiferromagnetic order on the triangular lattice,
HSR is evidently too weak to impact mean-field universality.

There is no such guarantee for nonuniversal quantities such
as the critical temperature Tc, but if the magnitude of V SR

R is
small, then MFT may still predict their values with reasonable
accuracy. We obtained such predictions using standard tech-
niques of MFT [35], which yield a self-consistent equation
for the net magnetization per atom m = σ̃0/N ,

m = tanh (2βV̄ m + h), (21)

as well as a simple expression for the free energy F (m):

FMF(m) = EMF(m) − T SMF(m), (22)

EMF = −NV̄ m2 − Nhm, (23)

SMF/kB = ln
( N

N 1+m
2

)
(24)

≈ −N

[
1 − m

2
ln

1 − m

2
+ 1 + m

2
ln

1 + m

2

]
, (25)

where V̄ = −∑
R �=0 VR/2 characterizes both long- and short-

range contributions to the mean field. The second expression
for SMF, obtained from Stirling’s approximation for large N ,
will be used in mean-field calculations that do not specify sys-
tem size. When h = 0, Eq. (21) implies a critical temperature
Tc = 2V̄ for spontaneous symmetry breaking.

To test the accuracy of MFT, we performed MC simula-
tions of the elastic Hamiltonian (2) on a periodic triangular
lattice. Specifically, we repeatedly proposed changes in a,
{uR}, and {σR} and accepted these changes with probabilities
designed to satisfy detailed balance (see [15] for details.)
Some simulations (described later) were performed using
the effective Hamiltonian (12); for these simulations, only
changes in {σR} were necessary. We employed umbrella
sampling [36] combined with histogram reweighting [37] to
compute free energies. In addition, we located Tc from the
intersection of Binder cumulants computed at different system
sizes [38]. The results agree quantitatively with our mean-field
predictions, as shown in Fig. 2. We found similarly excellent
agreement between MC and MFT for several different lattice
structures in both two and three dimensions [15].

IV. DYNAMICS: QUENCHING AND HYSTERESIS

As a more stringent test of MFT, we consider the dynamics
of our elastic Ising model. Free-energy profiles like that in
Fig. 2 are suggestive of a time-dependent response that would
follow a sudden change in external control parameters. But
this relaxation advances in the high-dimensional space of
spin configurations, through sequential flips of spins that are
correlated in space and in time. Resolving few of these details,
MFT asserts that thermodynamic driving forces determine
time evolution in a simple way. Its success in a dynamical
context would provide powerful tools to predict and under-
stand nonequilibrium response.

The model energy function in Eq. (2) constrains micro-
scopic rules for time evolution but does not specify them
uniquely. To craft a dynamical model we must additionally as-
sign rates to microscopic transitions which are consistent with
Boltzmann statistics. As a simplification, we take relaxation
of the displacement variables uR to be much faster than that
of spin variables. This rapid mechanical equilibration allows
us to consider time variations of the spin field σR alone, biased
by an effective Hamiltonian. In the small-mismatch limit this
effective energy is given by Eq. (3). We adopt transition rates
π (σR → σ ′

R ) among spin configurations proportional to their
Metropolis Monte Carlo acceptance probabilities, π (σR →
σ ′

R ) = τ−1 min [1, exp [−β�Heff ]], where τ is an arbitrary
reference timescale.

The ordering dynamics that follow a rapid quench from
T > Tc to T < Tc are strongly influenced by the long-range
component of Heff . Models with exclusively short-range in-
teractions, such as those described by HSR, develop finite-
wavelength instabilities upon such quenching [39]. These
Ising-like instabilities are visually manifest in the coarsening
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FIG. 2. Comparison between MC and MFT results for the free
energy as a function of magnetization and for the critical tem-
perature. (a) Free-energy profile for a periodic triangular lattice
with N = 168 at T = 6, p = 0. The MC curve was computed with
umbrella sampling for the model of Eq. (2) (see [15] for details),
while the MFT curve was obtained from Eq. (22). (b) MFT estimates
for the triangular lattice critical temperature T MF

c = 2V̄ ≈ 7.31 and
the corresponding value of the Binder cumulant U MF(T MF

c ) [12]
closely predict the intersection point of MC Binder cumulants U for
different system sizes. Specifically, MC indicates that T MC

c ≈ 7.2, so
the MFT result is accurate within ≈2%. MC results for the Binder
cumulants were computed by sampling 106 configurations at each
temperature. These configurations were generated using the effective
energy function of Eq. (12) rather than Eq. (2) in order to avoid
statistical errors associated with insufficient sampling of mechanical
fluctuations.

of spin domains en route to a state of broken symmetry. By
contrast, a model with exclusively infinite-range interactions,
such as that described by HLR, lacks finite-wavelength spatial
correlations entirely and therefore does not exhibit a slowly
growing length scale upon quenching. In dynamical simula-
tions of our elastic Ising model, we observe no distinct domain
growth upon quenching from T = 8 > Tc to T = 4 < Tc, con-
sistent with the observations of Miyashita et al. [12]. Indeed,
our measurements of the time-dependent spin structure factor
M(q, t ) = 〈|σ̃ (q, t )|2〉/N2 (where 〈· · · 〉 denotes an ensemble
average) show that only the q = 0 mode becomes unstable
upon quenching (Fig. 3). This can be understood in detail as a
consequence of the energy gap between the q = 0 mode and
the finite-wavelength modes depicted in Fig. 1. The lack of

t = 0 t = 1 t = 2 t = 3(a)

0.00
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1.00
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=
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t)

(b)
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MFT

0 5 10 15 20 25 30

t (MC sweeps)

0.000

0.002

0.004

0.006

M
(q

=
4π

/
3,

t)

(c)

FIG. 3. Magnetization dynamics after a quench from tempera-
ture T0 = 8 to T = 4 on the triangular lattice. (a) Representative
configurations from a single quench trajectory with N = 168. The
time t following the quench is measured in MC sweeps. (b) Time evo-
lution of the q = |q| = 0 (longest-wavelength) Fourier component of
the spin structure factor M(q, t ) following the quench. This mode
grows rapidly at short times and saturates at the equilibrium value
of m2. Solving the mean-field master equation, Eq. (26), for a sys-
tem size N = 168 and initial condition P(m, 0) = exp[−FMF(m; T =
T0 )/kBT0] yields a prediction M(0, t ) = ∑1

m=−1 m2P(m, t ) (labeled
MFT in the plot) which closely agrees with the MC result. (c) Time
evolution of a short-wavelength Fourier component of M with
q = 4π/3 (corresponding to a corner of the first Brillouin zone of
the triangular lattice) computed from MC simulations. This mode
decays rapidly, consistent with the apparent lack of short-wavelength
structure in the configurations. MC curves in both (b) and (c) were
obtained by averaging over 103 independent trajectories initialized
from equilibrium configurations sampled at T0 = 8 and propagated
with Metropolis spin-flip dynamics at T = 4. All MC simulations
here were performed using Heff, Eq. (12).

participation of the finite-wavelength modes in the quench
dynamics suggests that a mean-field framework—in which
the only dynamical quantity is the net magnetization—should
provide a sensible description of our model’s dynamical fea-
tures. Indeed, a mean-field master equation, which will be
described below, predicts the dynamics of M(q = 0, t ) very
accurately [see Fig. 3(b)].

In addition to changes in temperature, one can probe
a system’s response to a cyclically varying parameter that
crosses and recrosses a phase boundary. In the resulting
loop, the distinctness of forward and backward branches
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MFT MC Dyn. MC Local Eq.

FIG. 4. Hysteresis loop at T = 6 from MFT and MC. The MFT
curve was obtained by numerical solution of Eq. (21). Solutions to
this equation which are also local free-energy minima (of which there
are at least one and at most two) comprise the mean-field hysteresis
loop. MC Dyn. (dynamic) results were obtained by sweeping the
field from h = −1.0 to h = 0.9 and back again (direction indicated
by the black arrows) for a simulated system with N = 2688 using
Heff [Eq. (12)]. For each field value, there were ten MC sweeps
of equilibration and ten MC sweeps of production. MC Eq. (equi-
librium) results were obtained by locating the local minima of the
free energy as a function of magnetization [computed with umbrella
sampling using H, Eq. (2)] for different values of h and a system
size of N = 168. Inset schematics illustrate the fact that, in the
thermodynamic limit, barrier crossing does not occur; the system can
escape from a metastable well only once it has reached the limits of
metastability. The yellow star indicates the values of m and h used as
a starting point for dynamics in Fig. 5.

reports on the system’s “memory” owing to a slow degree
of freedom (the net magnetization, in our case). If such an
experiment were performed sufficiently slowly, one would
normally expect differences between the two branches to
vanish. For our model, hysteresis instead appears to persist
for arbitrarily slow cycling. Normally, the free-energy barrier
for nucleating a stable phase is subextensive in scale since the
thermodynamic cost is interfacial in nature. For our model,
finite-size scaling of MC simulation results indicates that the
barrier separating minima in F (m) instead scales linearly
with system size N . This feature is inherent in MFT, which
presumes spatial homogeneity and thus a lack of interfaces.
Thermal fluctuations are insufficient to overcome such an
extensive barrier in the thermodynamic limit, so the system
will persist indefinitely in the state in which it was initialized.
The mean-field nature of the barrier in F (m) is reflected in
Fig. 4, which shows excellent agreement between hysteresis
loops computed from MC and the corresponding prediction
of MFT.

At the ends of the hysteresis loop, F (m) is no longer
bistable, and a system initialized at the location of the for-
merly metastable well mi can relax to the single stable well
at mf without crossing a barrier. Within MFT, this dynamics
can be regarded as a random walk of the magnetization with
step length �m = 2/N taken in discrete time steps �t on
the mean-field energy surface. The probability distribution
P(m, t ) for the magnetization at time t is governed by a master

equation [40]:

P(m, t ) = P(m − �m, t − �t )	+(m − �m)

+ P(m + �m, t − �t )	−(m + �m)

+ P(m, t − �t ){1 − [	+(m) + 	−(m)]},
(26)

with transition rates

	±(m) = 1 ∓ m

2
min [1, e−β[EMF(m±�m)−EMF(m)]] (27)

for incrementally increasing (decreasing) m. The factor (1 ∓
m)/2 accounts for the number of available down and up spins,
respectively, at magnetization m, which imposes an entropic
bias at the mean-field level. These rates satisfy detailed bal-
ance with respect to the probability distribution e−βFMF(m).
The relaxation process of interest is defined by boundary
conditions:

P(m, 0) =
{

1, m = mi,

0, otherwise, (28)

P(mf, t ) = 0, (29)

ensuring that the system always begins at m = mi and the
magnetization can never exceed m = mf. A different set of
boundary conditions was used to compute M(0, t ) for Fig. 3
(details are given in the caption).

Defining the column vector

P(t ) = (P(−1, t ), P(−1 + �m, t ), . . . , P(1, t ))T , (30)

where the superscript T denotes the transpose, we can rewrite
Eq. (26) as

P(t + �t ) = � · P(t ), (31)

where the elements of the transition matrix � are given by


m,m′ = δm,m′ [1 − 	+(m) − 	−(m)]

+ δm,m′+�m	−(m) + δm,m′−�m	+(m). (32)

Letting t = n�t , we can write the formal solution to Eq. (31)
as

P(t ) = �n · P(0). (33)

Numerical propagation of Eq. (33) is straightforward, and
with access to P(m, t ) we can compute the average magne-
tization as a function of time,

〈m(t )〉 =
mf∑

m=−1

mP(m, t ), (34)

as well as the first-passage time distribution P (t ),

P (t ) = −∂S (t )

∂t
, (35)

where the survival probability S (t ) is

S (t ) =
mf∑

m=−1

P(m, t ). (36)

We compare the quantities 〈m(t )〉 and P (t ) to their coun-
terparts computed from MC simulations in Fig. 5. In Fig. 6
we plot first-passage time distributions of relaxation from the
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m
(t
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MFT

−1 0

F (m)/N

m

FIG. 5. Average magnetization versus time for phase change
dynamics at the end of the hysteresis loop (left) with T = 6 and
the corresponding free-energy profile (right) with T = 6, h = 0.5.
Gray dashed lines indicate the positions of the formerly metastable
well and the single stable well. The yellow star indicates the initial
state, marked with the same symbol in Fig. 4. The MFT result for
〈m(t )〉 was calculated via Eq. (34) for a system size N = 168, and
the mean-field free energy is given by Eq. (22). The MC result for
〈m(t )〉 was computed by averaging over 104 independent trajectories
of a system with N = 168. These trajectories were propagated by
Metropolis MC according to the effective energy Heff [Eq. (12)].
Their initial configurations were sampled from an equilibrium tra-
jectory whose magnetization m = −0.7 was fixed by performing
Kawasaki dynamics [41]. The MC result for the free energy was
computed via umbrella sampling of a system with N = 168 using
H [Eq. (2)].

formerly metastable well to the stable well. As is evident in
these figures, the dynamics of both the average magnetization
and its fluctuations are captured very well by MFT.

V. BOUNDARY EFFECTS IN FINITE CRYSTALS

In our analysis thus far we have assumed periodic bound-
ary conditions. Any real crystal is, of course, terminated
with surfaces, edges, and corners. The special physical and
chemical properties of nanoscale materials [43], in which
a sizable fraction of atoms lies at the periphery, highlight
the diverse influences of such boundary features. As one
relevant example, experiments on [44,45] and simulations of
[46–49] spin-crossover compounds indicate that boundaries
can provide preferred sites for nucleation of low-spin or high-
spin phases. While some of these studies were performed
in crystalline excerpts nearly macroscopic in size [45], the
setting of many recent studies has been nanocrystals [50–53],
where the impact of the boundary on material properties
ought to be particularly acute. We therefore studied the im-
pact of open boundary conditions on our model, with an
emphasis on “nanoscale” systems that span just tens of lattice
spacings.

While the analysis of fluctuations in δa is insensitive to the
choice of boundary conditions, broken translational invariance
means that a Fourier transform will not diagonalize �H. As a
result, the required integrals in Eq. (11) are more complicated
but still numerically tractable. For a given nanocrystal size and
shape, they can be performed numerically exactly to yield an
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FIG. 6. Probability distribution of the first-passage time for
phase change at the end of the hysteresis loop with T = 6, plotted
on (a) linear and (b) logarithmic scales. For each MC trajectory, the
first-passage time was defined as the number of MC steps taken en
route from the formerly metastable initial state (m = −0.7) to the
bottom of the stable well (m = 0.76). Results are shown for a system
of size N = 168. MFT predictions were computed via Eq. (35) for
the same system size. The long-time exponential tail is characteristic
of diffusion on a bounded interval; its corresponding decay rate is
set by the least negative eigenvalue of � [42]. The entire eigenvalue
spectrum of � is sensitive to changes in N , highlighting the size
dependence of first-passage time statistics that appears to be well
captured by MFT.

effective Hamiltonian:

Heff = 1

2

∑
R,R′

σRVR,R′σR′ − h
∑

R

σR, (37)

where due to broken translational symmetry, the effective
potential depends on both R and R′, not just their difference.
Plots of this potential for a hexagonally shaped nanocrystal
with triangular lattice structure are shown in Fig. 7. Interac-
tions between sites towards the interior of the crystal closely
resemble bulk interactions, although interactions between
sites towards the perimeter of the crystal differ significantly
from bulk interactions (see [14]). These surface interactions
lead to lower energies for compositional defects located on
the perimeter as opposed to the interior of the crystal [15],
consistent with studies reporting nucleation near the surface
of spin-crossover crystals [46,48,49]. Importantly, the interior
interactions largely retain the long-range component, meaning
that MFT might still prove reasonably accurate. Unlike in the
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FIG. 7. Pair interaction function VR,R′ for different locations R of
a tagged atom (outlined in black). The value of VR,R′ for interaction
with another atom at R′ is indicated by color according to the scale
shown.

bulk, sites in the nanocrystal do not all experience the same
average environment. An accurate MFT must take this spatial
variation into account. A set of self-consistent equations for
the average magnetization mR of each site in the nanocrystal
can be written as [15]

mR = tanh

⎛
⎝−β

∑
R′ �=R

VR,R′mR′

⎞
⎠. (38)

An example of solutions to this set of equations, computed
using the same techniques as in [14], is shown in Fig. 8. The
average net magnetization is then simply computed as

m = 1

N

∑
R

mR. (39)

We used Eqs. (38) and (39) to compute mean-field predictions
for m as a function of temperature for hexagonal nanocrystals
of different sizes. Due to this finite size, thermal fluctuations
will cause the system to cross the barrier separating degen-
erate free-energy minima increasingly frequently as Tc is ap-
proached from below, so that straightforward averaging of an
equilibrium MC trajectory will result in m ≈ 0. In order make
a comparison to MFT predictions, we instead computed MC
estimates for m(T ) by locating the minima of free-energy pro-
files computed with umbrella sampling. MC results obtained

1 2 3 4 5 6 7 8

T

0.0

0.2

0.4

0.6

0.8

1.0

m
R

perimeter

interior

T bulk
c

FIG. 8. Numerical solutions to Eq. (38) for the position-
dependent mean-field magnetization of a hexagonal nanocrystal of
size N = 271 with triangular lattice structure. Curves with different
shades of red represent the magnetization of different sites in the
nanocrystal. Sites near the perimeter of the crystal have smaller
magnetization than sites well within the interior; all sites transition
from zero to nonzero magnetization at a temperature Tc ≈ 6.2. The
vertical dashed line marks the bulk value for Tc; open boundary
conditions thus suppress the nanocrystal Tc compared to its bulk
value.

in this way correspond quite closely with MFT predictions
(see Fig. 9), consistent with long-range interactions in the
nanocrystal effective potential. Furthermore, we found that
the height of the nanocrystal free-energy barrier computed
from umbrella sampling MC simulations for T < Tc scales
linearly with system size N , just as in the bulk (see Fig. 10).
We thus anticipate a similar agreement between MFT and MC
for nanocrystal dynamics.

1 2 3 4 5 6 7 8

T

0.0

0.2

0.4

0.6

0.8

1.0

m

T bulk
c

N = 91
N = 271

bulk

MFT

MC

FIG. 9. Nanocrystal magnetization as a function of temperature
for different system sizes. Bulk magnetization versus temperature
(for a system with N = 168 subject to periodic boundary conditions)
is included for comparison. Nanocrystal MFT curves were obtained
as the numerical solutions of Eqs. (38) and (39). Nanocrystal MC
points were obtained as the minima of free-energy profiles computed
via umbrella sampling of the effective Hamiltonian, Eq. (37), for
each system size. The bulk MFT curve was computed using Eq. (21),
and bulk MC points were obtained from bulk free-energy minima
computed via umbrella sampling using Eq. (2).
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FIG. 10. Nanocrystal free energies per atom for different system
sizes at T = 3, h = 0. Curves were computed via umbrella sampling
of the effective Hamiltonian, Eq. (37), for each system size. These
profiles strongly suggest a free-energy barrier which grows linearly
with N .

VI. ENSEMBLE INEQUIVALENCE

We have thus far sidestepped a subtle, but important,
caveat. Specifically, while the factor of 1/N in V LR ensures
that the energy is extensive, the arbitrarily long interaction
range means that the energy is no longer additive [54,55]. In
turn, this means that derivatives of the free energy F (m) no
longer have a definite sign, and hence, its Legendre trans-
form is no longer a single-valued function [56]. In other
words, the ensemble in which m is fixed and the ensemble
in which m can fluctuate are no longer equivalent [57].
Thus, the modulated structures observed in an ensemble with
fixed magnetization—as in our previous work [14]—are not
equilibrium states in the present ensemble, where the net
magnetization can fluctuate.

VII. CONCLUSION

Our findings have significant implications for functional
elastic materials. We have shown that long-range interac-
tions are a generic consequence of elastic fluctuations in
lattice-mismatched solids. They should thus be operative, for
instance, in spin-crossover compounds. One of the intrigu-
ing features of these compounds is the enhanced metasta-
bility of their high-spin-rich and low-spin-rich phases near
room temperature [6,50,58,59], which makes them promis-
ing for use as molecular switches in next-generation data
storage devices. Our results provide an underlying reason
for this behavior: the extensive free-energy barrier sepa-
rating the two phases means that spin-crossover materials
are robust to fluctuations typically responsible for the de-
cay of metastable states. This barrier scaling also explains
why transitions between high- and low-spin phases under an
applied field are macroscopically sharp. We thus anticipate
that our MFT will provide a simple, quantitative framework
in which to explain and predict further properties of these
materials.
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[6] A. Hauser, J. Jeftić, H. Romstedt, R. Hinek, and H. Spiering,

Coord. Chem. Rev. 190–192, 471 (1999).
[7] J. A. Real, A. B. Gaspar, and M. C. Muñoz, Dalton Trans. 12,

2062 (2005).
[8] P. Gutlich, V. Ksenofontov, and A. Gaspar, Coord. Chem. Rev.

249, 1811 (2005).
[9] Y. Konishi, H. Tokoro, M. Nishino, and S. Miyashita, Phys. Rev.

Lett. 100, 067206 (2008).
[10] B. Dünweg and D. P. Landau, Phys. Rev. B 48, 14182

(1993).
[11] E. M. Vandeworp and K. E. Newman, Phys. Rev. B 55, 14222

(1997).
[12] S. Miyashita, Y. Konishi, M. Nishino, H. Tokoro, and P. A.

Rikvold, Phys. Rev. B 77, 014105 (2008).
[13] S. Miyashita, P. A. Rikvold, T. Mori, Y. Konishi, M. Nishino,

and H. Tokoro, Phys. Rev. B 80, 064414 (2009).

[14] L. B. Frechette, C. Dellago, and P. L. Geissler, Phys. Rev. Lett.
123, 135701 (2019).

[15] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.102.024102, which includes Refs.
[50–52,60–62], for details of additional calculations and
Monte Carlo simulations.

[16] Note that we have dropped δ in front of σ̃q. That is because
δσ̃q = σ̃q − δq,0σ̃0, but Ṽ0 = 0, so σ̃0 simply does not contribute
to the sum.

[17] D. Dantchev and J. Rudnick, Eur. Phys. J. B 21, 251 (2001).
[18] E. M. Stein and R. Shakarchi, Complex Analysis (Princeton

University Press, Princeton, NJ, 2003).
[19] The function V SR

R is generally anisotropic; for the triangular
lattice, its slowest decay is 1/|R|4 along (certain linear com-
binations of) triangular lattice basis vectors [14].

[20] N. Willenbacher and H. Spiering, J. Phys. C 21, 1423 (1988).
[21] H. Spiering and N. Willenbacher, J. Phys.: Condens. Matter 1,

10089 (1989).
[22] C. P. Köhler, R. Jakobi, E. Meissner, L. Wiehl, H. Spiering, and

P. Gütlich, J. Phys. Chem. Solids 51, 239 (1990).
[23] K. Boukheddaden, I. Shteto, B. Hôo, and F. Varret, Phys. Rev.

B 62, 14796 (2000).

024102-8

https://doi.org/10.1063/1.1740453
https://doi.org/10.1063/1.1743060
https://doi.org/10.1103/PhysRevLett.24.447
https://doi.org/10.1088/0022-3719/8/21/036
https://doi.org/10.1016/S0009-2614(99)01036-2
https://doi.org/10.1016/S0010-8545(99)00111-3
https://doi.org/10.1039/B501491C
https://doi.org/10.1016/j.ccr.2005.01.022
https://doi.org/10.1103/PhysRevLett.100.067206
https://doi.org/10.1103/PhysRevB.48.14182
https://doi.org/10.1103/PhysRevB.55.14222
https://doi.org/10.1103/PhysRevB.77.014105
https://doi.org/10.1103/PhysRevB.80.064414
https://doi.org/10.1103/PhysRevLett.123.135701
http://link.aps.org/supplemental/10.1103/PhysRevB.102.024102
https://doi.org/10.1007/s100510170201
https://doi.org/10.1088/0022-3719/21/8/017
https://doi.org/10.1088/0953-8984/1/50/011
https://doi.org/10.1016/0022-3697(90)90052-H
https://doi.org/10.1103/PhysRevB.62.14796


ORIGIN OF MEAN-FIELD BEHAVIOR IN AN ELASTIC … PHYSICAL REVIEW B 102, 024102 (2020)

[24] K. Boukheddaden, I. Shteto, B. Hôo, and F. Varret, Phys. Rev.
B 62, 14806 (2000).

[25] H. Fourati, E. Milin, A. Slimani, G. Chastanet, Y. Abid, S. Triki,
and K. Boukheddaden, Phys. Chem. Chem. Phys. 20, 10142
(2018).

[26] B. J. Schulz, B. Dünweg, K. Binder, and M. Müller, Phys. Rev.
Lett. 95, 096101 (2005).

[27] M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, J. Math. Phys. 4,
216 (1963).

[28] S. A. Cannas, A. C. N. de Magalhães, and F. A. Tamarit, Phys.
Rev. B 61, 11521 (2000).

[29] B. B. Vollmayr-Lee and E. Luijten, Phys. Rev. E 63, 031108
(2001).

[30] T. Mori, Phys. Rev. E 82, 060103(R) (2010).
[31] H. W. Capel, L. W. J. den Ouden, and J. H. H. Perk, Phys. A

(Amsterdam, Neth.) 95, 371 (1979).
[32] T. Nakada, P. A. Rikvold, T. Mori, M. Nishino, and S.

Miyashita, Phys. Rev. B 84, 054433 (2011).
[33] M. Nishino and S. Miyashita, Phys. Rev. B 88, 014108 (2013).
[34] M. Nishino, C. Enachescu, and S. Miyashita, Phys. Rev. B 100,

134414 (2019).
[35] D. Chandler, Introduction to Modern Statistical Mechanics

(Oxford University Press, New York, 1987).
[36] G. M. Torrie and J. P. Valleau, J. Comput. Phys. 23, 187 (1977).
[37] S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and

P. A. Kollman, J. Comput. Chem. 13, 1011 (1992).
[38] K. Binder, Phys. Rev. Lett. 47, 693 (1981).
[39] J. W. Cahn, J. Chem. Phys. 42, 93 (1965).
[40] Mean-field dynamics can also be accessed by directly simulat-

ing the MC dynamics of a mean-field Hamiltonian; see [15] for
details.

[41] K. Kawasaki, Phys. Rev. 145, 224 (1966).
[42] S. Redner, A Guide to First-Passage Processes (Cambridge

University Press, Cambridge, 2001).
[43] M. V. Kovalenko, L. Manna, A. Cabot, Z. Hens, D. V. Talapin,

C. R. Kagan, V. I. Klimov, A. L. Rogach, P. Reiss, D. J.
Milliron, P. Guyot-Sionnnest, G. Konstantatos, W. J. Parak, T.
Hyeon, B. A. Korgel, C. B. Murray, and W. Heiss, ACS Nano
9, 1012 (2015).

[44] S. Pillet, V. Legrand, M. Souhassou, and C. Lecomte, Phys. Rev.
B 74, 140101(R) (2006).

[45] A. Slimani, F. Varret, K. Boukheddaden, C. Chong, H.
Mishra, J. Haasnoot, and S. Pillet, Phys. Rev. B 84, 094442
(2011).

[46] C. Enachescu, L. Stoleriu, A. Stancu, and A. Hauser, Phys. Rev.
Lett. 102, 257204 (2009).

[47] C. Enachescu, M. Nishino, S. Miyashita, L. Stoleriu, and A.
Stancu, Phys. Rev. B 86, 054114 (2012).

[48] C. Enachescu, M. Nishino, S. Miyashita, K. Boukheddaden, F.
Varret, and P. A. Rikvold, Phys. Rev. B 91, 104102 (2015).

[49] M. Nishino, C. Enachescu, S. Miyashita, P. A. Rikvold, K.
Boukheddaden, and F. Varret, Sci. Rep. 1, 162 (2011).

[50] I. Boldog, A. B. Gaspar, V. Martínez, P. Pardo-Ibañez, V.
Ksenofontov, A. Bhattacharjee, P. Gütlich, and J. A. Real,
Angew. Chem. Int. Ed. 47, 6433 (2008).

[51] I. Gudyma, V. Ivashko, and A. Bobák, Nanoscale Res. Lett. 12,
101 (2017).

[52] C. Enachescu and W. Nicolazzi, C. R. Chim. 21, 1179 (2018).
[53] M. Mikolasek, K. Ridier, D. Bessas, V. Cerantola, G. Félix,

G. Chaboussant, M. Piedrahita-Bello, E. Angulo-Cervera,
L. Godard, W. Nicolazzi, L. Salmon, G. Molnár, and A.
Bousseksou, J. Phys. Chem. Lett. 10, 1511 (2019).

[54] T. Mori, Phys. Rev. Lett. 111, 020601 (2013).
[55] A. Campa, T. Dauxois, and S. Ruffo, Phys. Rep. 480, 57

(2009).
[56] R. K. P. Zia, E. F. Redish, and S. R. McKay, Am. J. Phys. 77,

614 (2009).
[57] In a related context, Vandeworp and Newman [11] previously

noted inequivalence between canonical and grand-canonical
ensembles for a Keating model of a semiconductor mixture.

[58] S. Hayami, Z.-z. Gu, H. Yoshiki, A. Fujishima, and O. Sato,
J. Am. Chem. Soc. 123, 11644 (2001).

[59] M. Paez-Espejo, M. Sy, and K. Boukheddaden, J. Am. Chem.
Soc. 140, 11954 (2018).

[60] M. Matsumoto and T. Nishimura, ACM Trans. Model. Comput.
Simul. 8, 3 (1998).

[61] F. R. M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman,
P. Alken, and M. Booth, GNU Scientific Library Reference
Manual, 3rd ed. (Network Theory, Bristol, UK, 2009).

[62] D. Frenkel and B. Smit, Understanding Molecular Simulation:
From Algorithms to Applications, 2nd ed. (Academic, San
Diego, 2001), Chap. 7.

024102-9

https://doi.org/10.1103/PhysRevB.62.14806
https://doi.org/10.1039/C8CP00868J
https://doi.org/10.1103/PhysRevLett.95.096101
https://doi.org/10.1063/1.1703946
https://doi.org/10.1103/PhysRevB.61.11521
https://doi.org/10.1103/PhysRevE.63.031108
https://doi.org/10.1103/PhysRevE.82.060103
https://doi.org/10.1016/0378-4371(79)90024-4
https://doi.org/10.1103/PhysRevB.84.054433
https://doi.org/10.1103/PhysRevB.88.014108
https://doi.org/10.1103/PhysRevB.100.134414
https://doi.org/10.1016/0021-9991(77)90121-8
https://doi.org/10.1002/jcc.540130812
https://doi.org/10.1103/PhysRevLett.47.693
https://doi.org/10.1063/1.1695731
https://doi.org/10.1103/PhysRev.145.224
https://doi.org/10.1021/nn506223h
https://doi.org/10.1103/PhysRevB.74.140101
https://doi.org/10.1103/PhysRevB.84.094442
https://doi.org/10.1103/PhysRevLett.102.257204
https://doi.org/10.1103/PhysRevB.86.054114
https://doi.org/10.1103/PhysRevB.91.104102
https://doi.org/10.1038/srep00162
https://doi.org/10.1002/anie.200801673
https://doi.org/10.1186/s11671-017-1844-z
https://doi.org/10.1016/j.crci.2018.02.004
https://doi.org/10.1021/acs.jpclett.9b00335
https://doi.org/10.1103/PhysRevLett.111.020601
https://doi.org/10.1016/j.physrep.2009.07.001
https://doi.org/10.1119/1.3119512
https://doi.org/10.1021/ja0017920
https://doi.org/10.1021/jacs.8b04802
https://doi.org/10.1145/272991.272995

