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Exotic quantum phases including topological states and non-Fermi liquids may be realized by quantum
states with total angular momentum j = 3

2 , as manifested in HgTe and pyrochlore iridates. Recently, an exotic
superconducting state with a nonzero density of states of zero-energy Bogoliubov (BG) quasiparticles, the
Bogoliubov Fermi surface (BG-FS), was also proposed in a centrosymmetric j = 3

2 system, protected by a
Z2 topological invariant. Here, we consider interaction effects of a centrosymmetric BG-FS and demonstrate its
instability by using mean-field and renormalization group analysis. The Bardeen-Cooper-Schrieffer (BCS)-type
logarithmical enhancement is shown in fluctuation channels associated with inversion symmetry. Thus, we
claim that the inversion-symmetry instability is an intrinsic characteristic of a BG-FS under generic attractive
interactions between BG quasiparticles. In drastic contrast to the standard BCS superconductivity, a Fermi
surface may generically survive even with the instability. We propose the experimental setup, a second-harmonic-
generation experiment with a strain gradient, to detect the instability. Possible applications to iron-based
superconductors and heavy-fermion systems, including FeSe, are also discussed.

DOI: 10.1103/PhysRevB.102.020501

Introduction. Electrons on a lattice may form quantum
states with a total angular momentum j = 3

2 , especially with
strong spin-orbit coupling [1]. Cubic and time-reversal sym-
metries may protect the degeneracy of the four states as
in GaAs and HgTe. A minimal model of the j = 3

2 band
structures was provided by Luttinger, the so-called Luttinger
Hamiltonian [2,3], and its low-energy properties are thor-
oughly understood, being the backbone of semiconductor
physics [4].

Recent advances in topology and correlation research
unveiled unconventional phases associated with the Lut-
tinger Hamiltonian. Topological insulators may be realized
by breaking cubic symmetry, for example, applying uniaxial
pressure [5,6], and Weyl semimetals may be formed by break-
ing time-reversal symmetry, for example, the onset of the all-
in-all-out order parameter in pyrochlore iridates [7,8]. In the
presence of the long-range Coulomb interaction, either non-
Fermi-liquid or topological states with broken symmetries
may be realized with renormalized physical quantities [9],
and significant advances in experiments have been reported
recently [10–13]. Furthermore, quantum phase transitions
between the unconventional phases have been investigated,
finding new universality classes [14–18].

Exotic superconducting states with j = 3
2 states were also

proposed [19–34]. In the presence of inversion symmetry,
it was proven that a noninteracting Bogoliubov Hamiltonian
may host a Fermi surface of Bogoliubov quasiparticles, in
drastic contrast to standard nodeless, point node, and line
node gap structures, named the Bogoliubov Fermi surface
(BG-FS). It is characterized by a Z2 topological invariant of
the Hamiltonian [19,35], and several heavy-fermion systems
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such as URu2Si2 and UBe13 are suggested as candidate mate-
rials, although the presence of BG-FS has not been reported
yet [36–39]. Uncovering characteristics of a BG-FS for its
discovery is highly desired.

In this work, we propose enhanced fluctuations of an
inversion-symmetry-breaking order parameter as a key prop-
erty of a centrosymmetric BG-FS. It is shown that a cen-
trosymmetric BG-FS becomes unstable at zero temperature
under infinitesimally weak interaction between BG quasipar-
ticles, and the Fermi-surface manifold may be changed, as
illustrated in Fig. 1. Our results indicate that an inversion-
symmetry-breaking order must be included in a phenomeno-
logical Ginzburg-Landau functional of a centrosymmetric
BG-FS, and we also propose second-harmonic-generation
(SHG) experiments with a strain gradient to identify enhanced
fluctuations of an inversion-symmetry-breaking order param-
eter.

One Bogoliubov pair problem. Let us consider a generic
BG-FS with inversion symmetry. Two states with α, for ex-
ample, angular momentum (|+�k, α〉, |−�k, α〉), are inversion-
partner pairs. With an inversion-symmetry unitary operator
UInv, the single-particle Hamiltonian with the superscript (1)
is characterized by

H (1)
B |�k, α〉 = εk|�k, α〉, UInv|+�k, α〉 = |−�k, α〉.

The inversion symmetry of the BG-FS, [H (1)
B ,UInv] = 0, guar-

antees ε+�k (α) = ε−�k (α).
We define the one BG pair problem of the inversion part-

ners as a bound-state quantum mechanics problem between
the partners,

(
H (1)

B,1 + H (1)
B,2 + V

)|� (2)〉 = E |� (2)〉,
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FIG. 1. (a) Example of a BG-FS (blue) in a centrosymmetric sys-
tem. The inversion partners are illustrated with arrows. (b) Gapped
BG-FS (gray) achieved by the fine-tuning condition. Line nodes
(blue lines) remain. (c) A noncentrosymmetric BG-FS generically
survives in the presence of the inversion instability.

where an interaction between pairs V is introduced. The
superscript (2) is to specify a two-body problem. Solv-
ing the quantum-mechanical problem is standard. Intro-
ducing a gap function, �(�k, α, β ) ≡ [E − ε�k (α) − ε−�k (β )] ×
〈�k,−�k; α, β|� (2)〉, we have the integral equation

�(�k, α, β ) =
∑
�k′,γ ,δ

Vαβγ δ (�k, �k′)
E − ε�k′ (γ ) − ε−�k′ (δ)

�(�k′, γ , δ), (1)

with Vαβγ δ (�k, �k′) ≡ 〈�k,−�k; α, β|V |�k′,−�k′; γ , δ〉. Two parti-
cle states, |�k,−�k; α, β〉, whose quantum numbers are (�k, α)
and (−�k, β ), are introduced.

We are interested in pairing between quasiparticles
with the same energy, and generically, it is safe to con-
sider the case of α = β and γ = δ. The antisymmetric
property of fermions restricts a form of a gap function
of the BG pair; only odd-parity functions are allowed.
As a proof of concept, we consider a pairing potential
Vαααα (�k, �k′) = ∑

m=0,±1 λl=1
αα wl=1

k,α wl∗
k′,αY1,m(
�k )Y ∗

1,m(
�k′ ) as-
suming SO(3) symmetry. We omit the band index α below,
and its generalization is discussed in the Supplemental Mate-
rial (SM) [40]. Note that the structure of the integral equation
is similar to the original Cooper pair problem [41], and the
standard self-consistent equation is obtained:

1

|λl=1| = −
∑

�k

∣∣wl=1
k

∣∣
E − 2ε�k

, (2)

where the summation on the right-hand side is logarithmically
divergent for E > 0. For E < 0, a bound-state energy may be
determined by E = −2�e−2/|λl=1|NF (0)W , where the density of
states at zero energy NF (0) of a centrosymmetric BG-FS, the
averaged function over a Fermi surface W ≡ 〈|wl=1

k |2〉FS , and
the UV energy cutoff � are introduced.

A few remarks are as follows. First, the existence of a
bound state implies that a centrosymmetric BG-FS becomes
unstable under an infinitesimally attractive interaction be-
tween BG quasiparticles as in the original Cooper problem.
Second, the pair of BG quasiparticles is nontrivial under inver-
sion symmetry, while a Cooper pair of a Fermi liquid is non-
trivial under continuous charge-conservation symmetry. Thus,
our calculations indicate that a discrete symmetry is enough
to induce an instability of a BG-FS. Third, the summation of
Eq. (2) gives a logarithmic divergence for E � 0 which may
be connected to the standard BCS logarithm as shown below.

Fourth, our calculations may be generalized into a system with
a symmetry lower than SO(3) and a generic pairing potential
form [40]. The former may be achieved by replacing the
quantum numbers (l, m) with a generic representation index,
and the latter may be argued by relying on the Kohn-Luttinger
effect [42]. We stress that the essential part of a pair formation
is the presence of a BG-FS, as in the Cooper pair problem on
a Fermi liquid [41].

Model Hamiltonian. We consider a model BG-FS Hamil-
tonian with normal and superconducting parts. For the normal
part, a Luttinger Hamiltonian in a cubic system is considered,
HN = ∑

�k ξ
†
�k H0(�k)ξ�k , with

H0(�k) = (c̃0�k2 − εF)γ 0 +
3∑

a=1

c̃1da(�k)γ a +
5∑

a=4

c̃2da(�k)γ a.

The 4×4 identity matrix γ 0 and five Dirac gamma matrices
γ a which form a Clifford algebra are introduced. We use
four-component spinors ξ�k = ( f�k, 3

2
, f�k, 1

2
, f�k,− 1

2
, f�k,− 3

2
)T with

fermionic annihilation operators f�k,α=±3/2,±1/2. The four pa-
rameters of the Luttinger Hamiltonian are the chemical poten-
tial εF and c̃0, c̃1, c̃2 for particle-hole and cubic anisotropies.
The five functions d1(�k) = √

3kxky, d2(�k) = √
3kykz, d3(�k) =√

3kzkx, d4(�k) =
√

3
2 (k2

x − k2
y ), and d5(�k) = 1

2 (2k2
z − k2

x − k2
y )

are used. For the superconducting part, the 8×8 matrix Hamil-
tonian is introduced with a Nambu spinor χT

�k = (ξT
�k , ξ

†
−�k ),

whose explicit form is

H0
�k =

(
H0(�k) �(�k)

�†(�k) −HT
0 (−�k)

)
. (3)

We choose the chiral pairing channel �(�k) = �0(γ 3 +
iγ 2)iγ 12 with a SO(3) symmetric band (c1 = c2) and constant
pairing �0 	= 0 to follow the literature [19]. The contour
of zero-energy states is illustrated in Fig. 1(a). Note that
the BG-FS Hamiltonian enjoys the particle-hole and inver-
sion symmetries, giving the conditions H0(�k) = H0(−�k) and
�(�k) = �(−�k) = −�T (−�k). But the time-reversal symmetry
is explicitly broken, as shown in the form of �(�k). The
symmetries constrain eight-band spectrums of H0

�k .
Interaction effects. Our strategy to investigate interaction

effects of a BG-FS is as follows. First, we construct an effec-
tive two-band model of a BG-FS. Second, we employ stan-
dard mean-field and renormalization group analysis. Then,
we investigate the implications of our results in terms of a
phenomenological theory.

Let us construct an effective two-band model. It is crucial
to notice that the zero-energy states are doubly degenerate at
each momentum because of the particle-hole and inversion
symmetries. Therefore, a two-band model is inevitable to
capture low-energy excitations, and we introduce an effec-
tive low-energy Hamiltonian of a centrosymmetric BG-FS,
Heff

�k,0
= E0(�k)τ z, with a two-component spinor ��k and Pauli

matrices τ x,y,z. The particle-hole and inversion symmetries
may have the forms Uc = τ xK and UInv = τ 0 ≡ I2×2, respec-
tively, with K being the complex-conjugation operator. One
may obtain the effective two-band Hamiltonian and analyze
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symmetry properties by projecting the microscopic eight-band
model H0

�k onto the two-band space [40]. It is useful to study
how the inversion-symmetry-breaking order parameter φ is
coupled in our effective model. The Hermitian properties
constrain the coupling significantly,

Heff
�k,0

→ Heff
�k (φ) ≡ Heff

�k,0
− φ

∑
μ=0,x,y,z

ρμ(�k)τμ. (4)

The inversion symmetry imposes the odd-parity conditions,
ρμ(�k) = −ρμ(−�k), and the particle-hole symmetry gives the
condition ρz(�k) = 0. The energy spectrum of the Hamiltonian

is
√

E0(�k)2 + φ2[ρx(�k)2 + ρy(�k)2] − φρ0(�k) at a given �k.
Next, we incorporate a generic short-range interaction of a

centrosymmetric BG-FS, whose form may be

Htot = H eff
0 − 1

2

∑
μ,ν;�k,�k′

gμνVμν (�k, �k′)(�†
�k τμ��k )(�†

�k′τ
ν��k′ ),

with H eff
0 = ∑

�k �
†
�kH

eff
�k,0

��k . The form of the interaction is

generic, and we consider a separable interaction Vμν (�k, �k′) =
ρμ(�k)ρν (�k′). The particle-hole symmetry imposes the con-
ditions (gz0 = gzx = gzy = 0), while other mixing terms
(gx0, gy0, gxy) are nonzero unless an extra constraint is im-
posed.

We perform the standard mean-field analysis for the ef-
fective two-band model Htot with the ansatz 〈�†

�k τμ��k〉MF ≡
φ cμ

�k . The mean-field Hamiltonian is

HMF = H eff
0 − φ

∑
μ,�k

dμρμ(�k)�†
�k τμ��k + φ2

2

∑
μ,ν

dμg−1
μνdν,

where dμ ≡ ∑
ν,�k gμνρν (�k)cν

�k and gμν is a nonsingular matrix.
To be specific, we consider a Hamiltonian with two channels
(τ0, τx ), and a general case is considered in the SM [40]. The
Hamiltonian may be diagonalized by

HMF =
∑

�k,α=±
E (�k; φ) γ †

α (�k)γα (�k) + E0(φ), (5)

with

E (�k; φ) ≡
√

E0(�k)2 + φ2d 2
x ρx(�k)2 − φd0ρ0(�k)

and

E0(φ) ≡ −
∑

�k

√
E0(�k)2+ φ2d 2

x ρx(�k)2+ φ2

2

∑
μ,ν

dμg−1
μνdν .

The unitary transformation of ��k determines the annihilation
operator γα (�k), with α = ±.

The ground-state energy is EMF
G [φ] = E0(φ) +

2
∑

�k∈M− E (�k; φ), where the negative-energy manifold M−

is specified by the condition E (�k; φ) < 0. A zero energy is

FIG. 2. Schematic mean-field phase diagrams at different tem-
peratures. Parameters of the separable interactions are ρ0(�k) =
ky/|�k|, ρx (�k) = kx/|�k|. The relative coupling constants (gxx/gx0 ) and
(g00/gx0 ) and dimensionless temperature T̃ ≡ T/� with a UV cutoff
scale are introduced for each axis. A centrosymmetric BG-FS is
stable for weak-coupling regions (green) at each temperature and
becomes unstable for strong-coupling regimes, where its inversion
symmetry is broken (φ 	= 0). The regions of a BG-FS shrink with
decreasing temperature (red arrow) and eventually vanish at T = 0.

obtained by the condition

E0(�k)2 + φ2d 2
x ρx(�k)2 = φ2d2

0 ρ0(�k)2, (6)

which gives a Fermi surface. In Fig. 2, a mean-field phase
diagram is obtained by minimizing the mean-field free energy,
FMF = −T ln[Tr(e−HMF/T )].

The main results of our mean-field calculations are sum-
marized as follows. First, the centrosymmetric BG-FS is ab-
sent at zero temperature. The ground-state energy difference,
�EMF

G [φ] ≡ EMF
G [φ] − EMF

G [0], is

�EMF
G [φ] =

∑
�k

[|E0(�k)| −
√

E0(�k)2 + φ2d 2
x ρx(�k)2

] + · · · .

The logarithmic divergence manifests the BCS-type instabil-
ity,

∂�EMF
G [φ]

∂φ2
|φ=0 = −d 2

x

2

∑
�k

ρx(�k)2

|E0(�k)| ∝ − ln

(
�

μ

)

where the UV and infrared energy cutoffs � and μ are
introduced. Thus, the inversion symmetry must be broken
at T = 0. Second, a centrosymmetric BG-FS whose regime
diminishes at lower temperatures survives at nonzero temper-
ature, as shown in Fig. 2. Third, the original Fermi surface is
transformed by the inversion-symmetry breaking, and a Fermi
surface of BG quasiparticles survives unless it is fine-tuned.
More details of the fine-tuning condition are discussed in
the SM [40]. In Fig. 1(b), one example of a fine-tuned case
[ρx(�k) = ρ0(�k) = kx/|�k|] is illustrated. Generically, the two
functions [ρ0(�k), ρx(�k)] are independent even for a separable
interaction. We stress that the survival of a Fermi surface after
the instability of inversion symmetry is drastically different
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from the standard BCS superconductivity due to the presence
of the τ 0 channel. In Fig. 1(c), one example of a noncen-
trosymmetric BG-FS is illustrated [ρx(�k) = ρ0(�k) = kx/|�k|].

To go beyond the mean-field analysis, we perform the
renormalization group analysis. For simplicity, we illustrate
the case with two channels (τ0, τx ), and the generic cases are
discussed in the SM [40]. Introducing dimensionless coupling
constants g̃μν which are averaged quantities over a Fermi
surface weighted by ρμ(�k), we find

dg̃xx

dl
= g̃2

xx,
dg̃x0

dl
= g̃x0g̃xx,

dg̃00

dl
= g̃2

x0, (7)

with l being the scale variable of the renormalization group
analysis. In the long-wavelength limit (l → ∞), the BCS-type
logarithmic dependence manifests in g̃xx. It is obvious that the
first two equations have positive eigenvalues, and the right-
hand side of the third one is always positive. Thus, the original
BG-FS is unstable at T = 0 for attractive bare interactions,
which is consistent with the mean-field results.

The above instability calculations indicate that the
inversion-symmetry-breaking order parameter should be in-
cluded in a phenomenological Ginzburg-Landau theory of
BG-FSs from the beginning. The Ginzburg-Landau functional
is obtained by integrating out fermions,

F[�,φ] = r�Tr[�†�] + rφφ2 + · · · . (8)

A BG-FS may be considered by the condition r� < 0, and our
instability calculation indicates rφ = r0

φ − 〈O〉FS ln( �
T ) with a

positive-definite quantity averaged over a BG-FS, 〈O〉FS ∝
d2

x 〈ρ2
x 〉FS + d2

y 〈ρ2
y 〉FS, if a negative interaction channel ex-

ists [40]. Note that the sign of higher-order Ginzburg-Landau
coefficients may determine either the natures of transitions or
whether the two orders compete or cooperate.

Let us consider a schematic phase diagram of the
Ginzburg-Landau functional. Adjusting the parameters
(r�, rφ), one may obtain four possible phases: (A)
r� > 0, rφ > 0, a centrosymmetric metal; (B) r� < 0, rφ > 0,
a centrosymmetric BG-FS; (C) r� > 0, rφ < 0, a polar metal;
or (D) r� < 0, rφ < 0, a noncentrosymmetric superconductor.
Note that an intermediate phase between (A) and (B)
may be present. For example, a time-reversal-symmetric
superconductor may appear if (A) is a time-reversal-
symmetric metal. Our instability calculations indicate
that phase (D) always appears at low temperature. As
discussed above, a Fermi surface generically survives in
a noncentrosymmetric BG-FS similar to the ones in the
literature [20,43–45]. Furthermore, Ginzburg-Landau theory
indicates that a phase transition from (A) to (D) generically
happens with two-step transitions unless it is fine-tuned to go
through O.

Discussion and conclusion. Based on our instability results,
we propose enhanced fluctuations of an inversion-symmetry-
breaking order parameter are a key property of a centrosym-
metric BG-FS. This is analogous to the fact that a Fermi
liquid is always susceptible to a superconducting instability,
as shown by the seminal work by Kohn and Luttinger [42].
In Fig. 3(b), we illustrate a schematic phase diagram with
a tuning parameter of quantum fluctuations of an inversion-
symmetry-breaking order parameter. Our results indicate that

FIG. 3. (a) Generic phase diagram of the four phases. O = (0, 0)
is the multicritical point. The phase (B) becomes unstable at low
temperatures. (b) Schematic phase diagram with the two parameters,
a quantum fluctuation parameter rQ and temperature T . The phase
X is BG quasiparticle excitations at zero temperature. Our results
indicate that the phase X is absent if BG quasiparticles are well
defined on a BG-FS.

a weakly interacting centrosymmetric BG-FS is unstable, and
the phase X is absent. On the other hand, it is an interest-
ing question whether strongly interacting BG quasiparticles
stabilize a centrosymmetric BG-FS. The recent work of a
pairing instability in a non-Fermi liquid [46] suggests that a
stable BG-FS may be possible down to zero temperature if its
excitations lose their quasiparticle nature.

Enhanced fluctuations of an inversion-symmetry-breaking
order parameter φ may be captured by inversion susceptibility.
Motivated by recent advances in flexoelectricity, we note that
a strain gradient on a sample breaks inversion symmetry
and plays the role of an external field of φ. Moreover, it is
well known that the SHG experiment is a probe to identify
an inversion-symmetry-breaking order parameter, providing
information about its onset, φ ∼ (Tc − T )β , with Tc being
the inversion-symmetry-breaking critical temperature [47].
Combining the two methods, we propose a SHG experiment
with a strain gradient to measure inversion susceptibility and
expect to obtain information about the susceptibility, χφ ∼
|Tc − T |−γ . Note that the susceptibility has a nontrivial signa-
ture even at higher temperatures, T > Tc, in sharp contrast to
the absence of an order parameter at higher temperatures. We
believe the SHG with a strain gradient may be applied in both
superconducting and normal states with enhanced inversion
fluctuations since inversion symmetry acts in the same way.
It is desired to test the experiment in the candidate heavy-
fermion materials, including URu2Si2 and UBe13. Recently,
FeSe was also proposed to be a candidate system of a BG-
FS [48], and we believe that inversion-symmetry-breaking
order parameter fluctuations may be enhanced in FeSe.

In conclusion, we investigated the interaction effects of
a centrosymmetric BG-FS and found its instability in the
inversion-symmetry channel if a negative interaction chan-
nel exists. Condensation of BG pairs induces the instabil-
ity, similar to the BCS instability of Fermi liquids where
Cooper pairs condense and break U(1) symmetry. On the
other hand, in contrast to the standard BCS superconductiv-
ity [49], a Fermi surface generically survives unless it is fine-
tuned. The instability enforces a phenomenological Ginzburg-
Landau functional to include an inversion-symmetry-breaking
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order parameter from the beginning. Future works including
disorder and strong quantum fluctuations are highly desired.
Microscopic calculations of SHG with a strain gradient and
analysis to find intriguing phases near the BG-FS based on
quantum Monte Carlo simulation would also be useful.

Note added in proof. Recently, we became aware of a
preprint by Tamura et al. which considered multiple order
instabilities of BG-FS [34].
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