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The Nd magnet, Nd2Fe14B, is an important material because of its high coercivity applied in modern
technologies. However, the microscopic mechanism of the coercivity has not been well understood. We study
the magnetization reversal of a single grain of the magnet at a finite temperature by a real-time stochastic
Landau-Lifshitz-Gilbert simulation of an atomistic model, which enables us to analyze dynamical properties
reflecting the atomic-scale magnetic structure. There exist difficulties to estimate long relaxation times of the
reversal quantitatively, i.e., the limitation of simulation time and also dependence on the damping factor α. Here
we develop a statistical method to estimate precisely long relaxation times in the stochastic region, by which one
can identify an initial transient process and a long-time regular relaxation process. The relaxation time is found to
largely depend on α especially in the stochastic region. However, it is found that a sharp increase of the relaxation
time with lowering an external magnetic field causes a close location of the threshold fields for different values
of α. By making use of this fact, we quantitatively estimate the coercive field at which the relaxation time is 1 s.
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High-performance permanent magnets are indispensable
materials in modern technologies. Especially the Nd magnet,
Nd2Fe14B [1–6], is very important because of its high coercive
field applied in electric motors, electronic devices, etc. [7].
The coercive field of the Nd magnet is estimated from the
viewpoint of the Stoner-Wohlfarth model to be double of the
anisotropic constant divided by the saturated magnetization,
which is more than 10 T at zero temperature. However, the
coercive field at room temperature is less than 3 T. This large
reduction of the coercive field pointed out by Kronmüller
[8] has been a big topic in the study of permanent magnets.
Quantitative estimation of the coercive field theoretically and
computationally is a most difficult problem. The mechanism
of the coercivity has not been well understood yet [9].

So far, theoretical and computational studies for magnetic
properties of permanent magnets have been performed based
on models with continuum magnetization, i.e., the micro-
magnetics, and they have achieved a measure of success in
analyses of qualitative aspects of magnetization reversals,
estimation of coercive force, etc. [10,11]. However, in such
continuum modelings, the microscopic details of crystal struc-
tures and magnetic parameters are not introduced, and the
thermal fluctuation effect cannot be treated properly. For the
understanding of the microscopic mechanisms of coercivity,
atomistic modelings at finite temperatures are important.

*Corresponding author: nishino.masamichi@nims.go.jp

Recently, an atomistic model for the Nd magnet has been
developed to study the finite temperature properties. For
the atomistic model, the microscopic parameters are nec-
essary, which were taken either from first-principles calcu-
lations [12–23], or from an empirical way [24,25]. Quan-
titative properties of the magnet mainly focusing on static
features have been actively investigated on the temperature
dependence of the magnetization [12–15,21], domain wall
profiles [13,15,16,21,22], dipolar-interaction effect [14], fer-
romagnetic resonance [17], inhomogeneity effect [16,18,22–
25], free-energy barriers [19], and surface Nd anisotropy
effect [20].

In contrast to the static properties, quantitative analyses
of the dynamical properties of the magnet by the atom-
istic model have been scarcely developed. The coerciv-
ity is a phenomenon of a magnet, i.e., an ensemble of
many magnetic grains. In practice, however, it is not re-
alistic to study by atomistic model approaches. Thus, as
a first step to understand this phenomenon, it is important
to know how the magnetization of a single grain reverses
as a function of an external field. With the use of the
Wang-Landau Monte Carlo (MC) sampling method [26],
a quantitative estimation of the coercive field of a sin-
gle grain at a finite temperature has been performed very
recently by calculating the free-energy barrier �F of an
atomistic model [19], with the use of the Arrhenius low
for the relaxation time: τ = τ0e�F under the assumption of
τ0 = 10−11 s [27].
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FIG. 1. Unit cell of Nd2Fe14B. Neodymium, iron, and boron
atoms are denoted by red, blue, and yellow spheres, respectively. The
lattice constants [2] for the a, b, and c axes are da = db = 8.80 Å,
and dc = 12.19 Å, respectively. (b) Side view (from the a or b axis).
(c) Top view (from the c axis).

However, magnetization reversal is triggered by a nucle-
ation and is accomplished through the growth of domains with
reversed magnetization. Thus, real-time dynamics studies are
important to catch the mechanism of the coercivity. The
stochastic Landau-Lifshitz-Gilbert (SLLG) equation [28,29]
can be used for the relaxation dynamics quantitatively thanks
to atomistic parameters of the material. By employing this
method, we find the nature of domain wall propagation re-
flecting the microscopic (atomic scale) lattice structure and
magnetic parameters. However, practical simulation time is
around 1 ns, which is too short to study the coercivity, i.e.,
a phenomenon of 1 s. The limitation of the simulation time
is a common problem for long-time dynamics in real-time
simulations with realistic parameters.

Furthermore in the SLLG simulation, the relaxation time
depends on the Gilbert damping factor α [29]. Although
several attempts to estimate the value of the damping factor
have been done [30–39], generally it is difficult to estimate
the value of α including temperature and field dependencies
both experimentally and theoretically. Indeed, the value of α

for the Nd magnet and its temperature and field dependencies
are unknown. These difficulties have prevented us from a
quantitative estimation of the coercive field even if we use the
atomistic parameters.

In the present Rapid Communication, we overcome these
difficulties by the following ingenuities. We introduce a sta-
tistical method which extends the limitation of the simulation
time and makes possible accurate estimation of the relaxation
time. Although the relaxation time is found to largely depend
on α especially in the stochastic region at low fields, a sharp
increase of the relaxation time causes a close location of the
threshold fields for different values of α. Making use of this
property, we quantitatively estimate the coercive field at which
the relaxation time is 1 s by an extrapolation of a fitting
function.

The unit cell of the Nd magnet is shown in Fig. 1(a),
which consists of Fe, B, and Nd atoms. We use the atomistic
Hamiltonian for the Nd magnet [12–14]:

H = −
∑
i< j

2Ji jsi · s j −
Fe∑
i
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(
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i

)2

+
Nd∑
i

∑
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l,i −

∑
i

HextS
z
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The first term denotes the exchange coupling Ji j between the
ith and jth sites, the second one is the magnetic anisotropy
energy for Fe atoms whose constant is Di, the third one
describes the magnetic anisotropy energy for Nd atoms, and
the last term is the Zeeman term. For Fe and B atoms, si

denotes the magnetic moment at the ith site, while for Nd
atoms, it is the moment of the valence (5d and 6s) electrons.
The total moment for Nd atoms at the ith site is Si = si + J i,
where J i = gTJiμB with the magnitude of the total angular
momentum, J = 9/2, and the Landé g factor, gT = 8/11. We
define Si = si for Fe and B atoms. The details of the model
are given in our previous papers [12–14].

To study magnetization reversal dynamics, we apply the
SLLG equation [17,28,29]:

d

dt
Si = − γ

1 + α2
i

Si × (
Heff

i + ξi

)

− αiγ(
1 + α2

i

)
Si

Si × [
Si × (

Heff
i + ξi

)]
. (2)

Here αi is the Gilbert damping factor at the ith site, γ is
the gyromagnetic constant, Heff

i = − ∂H
∂Si

is the effective field
applied at the ith site from the exchange interactions and
the anisotropy terms, and ξi is a white-Gaussian noise. The
temperature of the system is a function of the strength of the
random noise field D̃i:

D̃i = αi

Si

kBT

γ
. (3)

We assume that the damping factor does not depend on
site, i.e., αi = α. We apply a kind of middle-point method
[29] equivalent to the Heun method [28] for the numerical
integration in Stratonovich interpretation. For the time step of
this equation, �t = 0.1 fs is used.

Throughout this Rapid Communication we study a system
of 12 × 12 × 9 unit cells along the a, b, and c axes, respec-
tively, which has an approximately cubic shape (10.56 nm ×
10.56 nm × 10.971 nm), with open boundary conditions. The
side view from the a or b axis and the top view of 4 × 4 × 3
unit cells are given in Figs. 1(b) and 1(c), respectively.

In our atomistic model, the magnetic transition (Curie)
temperature was estimated to be around TC = 870 K, which is
a little overestimated from the experimental values (∼600 K)
due to an overestimation of the exchange interactions [12,13].
We are interested in room temperature properties and set
T = 400 K � 0.46TC, which is close to room temperature
practically.

In Fig. 2 we show snapshots of the magnetization reversal
from the down-spin state for α = 0.1 under a reversed field,
h = 4.0 T, which is in the stochastic region. The system is
relaxed from the down-spin state (the first panel of Fig. 2).

There, we find that the nucleation occurs from a corner,
and a magnetic domain with reversed magnetization grows
parallel to the ab plane (see also Fig. 1) and then grows in the
direction of the c axis. This is because the effective exchange
interactions along the a or b axis are stronger than those along
the c axis [13,16]. The nucleus earns an energy gain, i.e.,
lower energy by expanding parallel to the ab plane. Thus, first
the domain wall (this is a Bloch wall) of the corner domain
moves parallel to the ab plane, and then the domain wall (this
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FIG. 2. Snapshots of the magnetization reversal from the all-
down spin state under a reversed field (h = 4.0 T). Red and blue
parts denote down-spin and up-spin states, respectively.

is a Néel wall) moves in the direction of the c axis. We observe
that this tendency is independent of the value of α.

Under a reversed field, the magnetization relaxation is
observed. We measure the time dependence of the per-site
magnetization,

mz = 1

Nsite

Nsite∑
i=1

Sz
i , (4)

where Nsite is the number of the atoms in the system.
In magnetization reversal there are two typical types of

relaxation, i.e., the deterministic one for large fields, which
is characterized by the multinucleation Avrami process, and
the stochastic one for small fields, which is characterized by
a single nucleation, and the border between them is called the
dynamical spinodal point [40].

In Fig. 3, we depict the time dependence of the magneti-
zation in samples of the relaxation process for α = 0.1 at (a)
h = 8 T and (b) h = 4.1 T. At h = 8 T the samples show short
relaxation times, and they are the deterministic type, while at
h = 4.1 T the samples give large relaxation times, and they are
the stochastic type. In Fig. 3(b), a few samples do not relax,
and thus it is impossible to estimate the average relaxation
time until they relax. A large distribution of the relaxation
time prevents us from a practical estimation of the average
relaxation time. To overcome this difficulty, we introduce a
statistical method to evaluate the relaxation time.

We derive the statistical relation between the reversal
probability and the relaxation time. If an event (relaxation)
occurs with a probability p in a unit time, the probability to
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FIG. 3. Examples of magnetization relaxation curves with time
dependence at (a) h = 8 T and (b) h = 4.1 T. α = 0.1.

have the event for the first time in the period [t, t + �t] is
(1 − p�t )t/�t p�t = pe−pt�t . The mean relaxation time 〈τ 〉
is given by

〈τ 〉 = p
∫ ∞

0
te−pt dt = 1

p
. (5)

The probability P(t ) to have the event in the period [0, t]
is P(t ) = 1 − e−pt . If we perform N times simulations, the
number of the survival (unchanged) samples is Nsv(t ) = N −
Ndone(t ) = Ne−pt . Then, p (and τ ) can be estimated from the
slope of ln [Nsv(t )/N] versus −pt .

We carry out simulations of N = 864–2592 samples. In
Fig. 4 we show the time dependence of ln(Ns/N ) for α = 0.1
at (a) h = 8 T and (b) h = 4.1 T. We find that the function
ln(Ns/N ) shows an upward-convex curve in an early period
and after this period it exhibits a straight line. This suggests
that, in both cases, in the early stage of the relaxation process
from the all-down state, some additional time is needed. For
longer time, the process is governed by a nucleation rate.
Thus, the present method has a merit to identify the initial
transient process which causes a bias in the simple average of
the relaxation time.

We perform a linear least-square fitting (red lines in Fig. 4)
to the straight part to estimate the slope for Figs. 4(a) and
4(b) and obtain p = 2.697 × 1011 [1/s] and p = 1.491 × 109

[1/s], respectively. Using the relation (5), the relaxation time
is obtained as τ = 3.71 × 10−12 s and τ = 6.71 × 10−10 s for
Figs. 4(a) and 4(b), respectively. In the same way, we estimate
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FIG. 4. Time dependence of ln(Ns/N ). Blue circles denote time
dependence of ln(Ns/N ) at (a) h = 8 T and (b) h = 4.1 T. α = 0.1.
For (a) and (b), the slopes p = 2.697 × 1011 1/s and p = 1.491 ×
109 1/s are estimated, respectively, by linear fitting (red lines).
Details are given in the text.
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FIG. 5. Magnetic field dependence of the relaxation time (mag-
netization reversal time) with the damping factor α dependence.
The open circles denote the relaxation time of the Arrhenius law
(τ = τ0e�F ), in which �F is the data of Fig. 1(b) in a Monte Carlo
study [19]. Details are given in the text.

τ for different values of the external field and damping factor,
which are depicted in Fig. 5.

The relaxation time increases steeply below around 4.2 T.
However, the relaxation time depends on the value of damping
factor α, and we find that the dependence in the stochastic
region (low fields) is larger than that in the deterministic
region (high fields). Due to this significant dependence of the
relaxation time on α, it is difficult to estimate quantitatively
the relaxation time without information of the value of α.
However, because of the sharp increase of the relaxation times
in the stochastic region, the threshold fields for all values of
the damping factor are located in a narrow region of the field
for a given relaxation time, which allows us to estimate the
typical value of the threshold field quantitatively.

To examine this feature, we plot the field dependence of the
relaxation time for each value of α with a double exponential
fitting, i.e., the Arrhenius law with a correction term:

τ (h) = Ae−ah + Be−bh = Ae−ah(1 + Ce−dh), (6)

where C = B/A and d = b − a. Concretely, we determine the
parameters A, a,C, d by minimizing the cost function:

χ2 =
∑

k

1

σ 2
k

{log10[τ (hk )] − log10[Ae−ahk (1 + Ce−dhk )]}2,

(7)
where τ (hk ) is the values obtained by the simulation for a
given value of the field hk .

Here we take the smallest four values of hk (k = 1–4) at
which τ is large. We adopt σk = 1 for simplicity. For large
values of τ (hk ), σk should be small, but we confirmed that
this dependence on the estimation is small. In Fig. 6, the
fitted curves of Eq. (6) are plotted for different values of α.
The intersection of each line with τ = 1 s gives the expected
coercive field. The estimated values of the coercive field for
α = 0.1, 0.15, and 0.2 are hc � 3.2, 3.0, and 3.0, respectively,
and we find that the coercive field is around 3 T, hc � 3 T. This
value is close to hc � 3.3 T, estimated from τ = 10−11e�F
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FIG. 6. Extrapolation of the relaxation time for different values
of the damping factor for the estimation of the coercive field. The
dashed line denotes the relaxation time of the Arrhenius law (τ =
τ0e�F ), in which �F is the data of Fig. 1(b) in a Monte Carlo
study [19].

with the free-energy barrier by the MC method [19] (dashed
line in Fig. 6). We find that, although the simulation time of
the dynamical equation is limited and much shorter than 1 s,
the extrapolation of the relaxation time using a fitting function
as τ (h) is available for the estimation of the coercive force.

In summary, in the real-time simulation we found a char-
acteristic nucleation dynamics of the Nd magnet, i.e., a corner
nucleation and a magnetic domain growth which reflects the
orientation dependence of the exchange interactions [13,16].
This is independent of the values of the damping factor (α).
We introduced a useful method to estimate the average relax-
ation time by evaluating the average reversal probability from
many samples, which relieved the difficulty of the estimation
due to the wide distribution of the relaxation time. This
method overcomes the limitation of the simulation time and
also matches well parallel computing. Furthermore, this has
another advantage for getting rid of an early period affected
by the initial state, and it enables us to identify the regular
relaxation region for the accurate estimation of the average
relaxation time. We found that the relaxation time largely
depends on the value of α in the stochastic region. However,
because of the rapid increase of the relaxation time in the
stochastic region, the threshold fields for different values of α

for a long relaxation time are located in a small range. This
fact allows us to estimate the coercive force quantitatively,
even if the value of α is unknown. In this method there is
no need to introduce the attempt time τ0 used in the Arrhenius
formula.

In the present study we did not take into account the
effect of the dipolar interaction, which does not affect the
magnetization reversal practically at 10 nm scale. In a larger
system (many grains) this effect becomes important, but such
a long-range interaction is difficult to study, which is left for a
challenging problem in the future.

This Rapid Communication presented a method to estimate
the coercive force quantitatively with a realistic atomistic
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model at a finite temperature by direct real-time simula-
tion, which will advance studies on the mechanism of the
coercivity.
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