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Temperature scaling of two-ion anisotropy in pure and mixed anisotropy systems
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Magnetic anisotropy plays an essential role in information technology applications of magnetic materials,
providing a means to retain the long-term stability of a magnetic state in the presence of thermal fluctuations.
Anisotropy consists of a single-ion contribution stemming from the crystal structure and two-ion terms
attributed to the exchange interactions between magnetic atoms. A lack of robust theory crucially limits the
understanding of the temperature dependence of the anisotropy in pure two-ion and mixed single-ion and
two-ion systems. Here, we use Green’s function theory and atomistic Monte Carlo simulations to determine
the temperature scaling of the effective anisotropy in ferromagnets in these pure and mixed cases, from saturated
to vanishing magnetization. At low temperature, we find that the pure two-ion anisotropy scales with the reduced
magnetization as k(m) ∼ m2.28, while the mixed scenario describes the diversity of the temperature dependence
of the anisotropy observed in real materials. The deviation of the scaling exponent of the mixed anisotropy from
previous mean-field results is ascribed to correlated thermal spin fluctuations, and its value determined here is
expected to considerably contribute to the understanding and the control of the thermal properties of magnetic
materials.

DOI: 10.1103/PhysRevB.102.020412

Introduction. Anisotropy is a fundamental aspect of mag-
netism. A single magnetic dipole generates an anisotropic
field, and the interaction between dipoles leads to the emer-
gence of the shape anisotropy stabilizing permanent magnets.
In crystals, the spin-orbit interaction couples the direction of
the spin magnetic moment to the local atomic environment,
being the microscopic origin of the single-ion anisotropy.
The interaction between atomic magnetic moments gives rise
to two-ion anisotropy, owing both to dipolar and spin-orbit
coupling effects. The magnetic anisotropy is the driving mech-
anism behind the stabilization of magnetic textures including
domains, domain walls, vortices, and skyrmions [1], which
constitute bits of information in data storage and logic devices
[2,3]. The anisotropy determines the operational frequencies
of ferromagnetic and antiferromagnetic magnon-based appli-
cations [4]. It plays an essential role in defining the lifetime
of the encoded information in nanoparticles [5], and the speed
of ultrafast demagnetization processes. Magnetic applications
based on the anisotropy are also found in power generation
and in hybrid cars.

The precise determination of the temperature depen-
dence of the anisotropy is increasingly important for room-
temperature spintronic and magnonic applications, and for
devices operating at elevated temperatures, such as high-
temperature permanent magnets and heat-assisted magnetic
recording (HAMR). The analytical theory for the temperature
dependence of the single-ion anisotropy was developed by
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Akulov [6], Zener [7], and Callen and Callen [8], accord-
ing to which an anisotropy constant k following the sym-
metry of a spherical harmonic of order n depends on the
dimensionless normalized magnetization m as k(m) = ml at
low temperature, where l = n(n + 1)/2 and k is normalized
to 1 at zero temperature. This yields well-known scaling
exponents of l = 3 for 2nd-order uniaxial and l = 10 for
4th-order cubic anisotropies. While the underlying scaling
is deceptively simple, it almost perfectly describes the ex-
perimental observations on the temperature dependence of
the anisotropy in certain cubic materials such as α-Fe and
CoFe2O4. However, in magnets with a strong itinerant char-
acter such as Co and Ni the anisotropy has a much more
complex temperature dependence not described by the scaling
relations.

Almost two decades ago, research into magnetic 3d5d
intermetallic alloys uncovered a scaling exponent of l = 2.1
in L10-FePt [9], in contrast with the theoretically predicted
scaling exponent of l = 3 for uniaxial anisotropy. Rare-earth–
transition-metal permanent magnets often exhibit even more
complicated behavior with an increase of the anisotropy with
temperature [10–13], corresponding to a negative scaling
exponent. Theoretical work attributed the unusual scaling
exponent in FePt either to the longitudinal dynamics of the
induced Pt moments [14] or to two-ion anisotropy. Within
a mean-field calculation, this term was shown to possess a
scaling exponent of l = 2 [15], which in combination with
the single-ion term (l = 3) successfully reproduced the expo-
nent found experimentally in refined numerical calculations
[16,17]. Despite the fact that the two-ion anisotropy is present
in the vast majority of materials, a more detailed understand-
ing of its temperature dependence, including magnon-magnon
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interactions beyond the mean-field approximation as for the
single-ion case, appears to be lacking.

In this Rapid Communication, through precise atomistic
computer simulations and Green’s function theory calcula-
tions for classical spins we unravel the role of spin correla-
tions in the temperature dependence of the uniaxial two-ion
anisotropy. In cubic crystals and at low temperature it is found
to scale with the reduced magnetization as k(m) ∼ m2.28

for nearest-neighbor coupling, in contrast to the commonly
accepted mean-field value of k(m) ∼ m2. Notably, in the case
of mixed two-ion and single-ion anisotropy, we find that
the scaling exponent can radically vary, including reaching
negative values microscopically explaining experimental ob-
servations in rare-earth-based permanent magnets [11–13].
For the technologically relevant, highly anisotropic material
L10-FePt, we reproduce its peculiar temperature dependence
of k ∼ m2.1 based on single-ion and two-ion anisotropies of
opposite signs. We find an expression for the temperature
scaling of the effective anisotropy valid in the whole tem-
perature range, up to the Curie temperature. This added body
of knowledge is critical for the design of efficient protocols
for HAMR at elevated temperatures, and for assessing the
stability of room-temperature spintronic applications.

Theory. For describing a generic ferromagnetic system, we
consider the classical atomistic spin Hamiltonian

H = −
∑
i< j

Ji jSi · S j −
∑
i< j

Ki jS
z
i · Sz

j −
∑

i

Ki(S
z
i )2, (1)

where Si, j are unit vectors representing local spin directions
on nearest-neighbor lattice sites i and j, the summations
run over pairs of sites i < j, Ji j is the isotropic exchange
interaction, Ki j is the pairwise exchange or two-ion anisotropy
constant, and Ki is the single-ion anisotropy constant. The
applicability of the Heisenberg approximation relies on the
stability of local moments under rotation and at high tem-
perature where Stoner excitations are generally weak [18].
It is assumed that the electronic properties are temperature-
independent in the range where the system is magnetically
ordered.

Finite-temperature effects are included in the effective
micromagnetic model, defined by the free energy

F =
∫

[A(T )(∇S)2 − Keff (T )(Sz )2]d3r, (2)

with S the spin vector field of unit length, A(T ) the exchange
stiffness, and Keff (T ) the effective anisotropy parameter. The
connection between the atomistic parameters in Eq. (1) and
the micromagnetic parameters in Eq. (2) is determined by the
spin-wave spectrum, given by (cf. Refs. [19,20])

ωq(T ) = γ

μsm(T )
[2K̃i(T ) + zK̃i j (T ) + zJ̃i j (T )(1 − �q)].

(3)
Here γ is the gyromagnetic ratio, μs the atomic magnetic mo-
ment, m is the normalized dimensionless magnetization, z is
the number of nearest neighbors, and �q = z−1 ∑

i, jnn eiqRi j is
the structure factor. The micromagnetic parameters in Eq. (2)

are expressed as

V −1
WSzJ̃i j (T )(1 − �q) = A(T )q2 + O((q2)2), (4)

V −1
WS[K̃i(T ) + zK̃i j (T )/2] = Keff (T ), (5)

via the unit cell volume VWS and the effective atomistic
parameters J̃i j (T ), K̃i(T ), K̃i j (T ).

We use Green’s function theory [21,22] to derive the finite-
temperature values in Eq. (3) based on the parameters in
the Hamiltonian, Eq. (1). See the Supplemental Material for
details of the derivation [23]. We find universal expressions
for the temperature scaling of the two-ion and the single-
ion anisotropy, along with the isotropic exchange and the
magnetization,

J̃i j (T ) = Ji jm
2[1 + m(1 + �)�2], (6)

K̃i j (T ) = Ki jm
2(1 − m�2), (7)

K̃i(T ) = Kim
2(1 − m�1), (8)

m(T ) = coth(1/�1) − �1, (9)

where �1 = ∑
q �q and �2 = ∑

q �q�q, with �q =
(γ kBT )/(Nμsωq), which is the thermal occupation number
per spin, N is the number of spins, and � = Ki j/Ji j . Equations
(6)–(9) must be solved together with Eq. (3) self-consistently
in order to calculate the temperature dependence of the
parameters.

The set of expressions for the temperature dependence of
the isotropic [Eq. (6)] and anisotropic exchange [Eq. (7)]
interaction, as well as the uniaxial anisotropy [Eq. (8)], is
the main result of this work. Within the molecular-field ap-
proximation (MFA) or random-phase approximation (RPA)
[24], the corrections due to the magnon-magnon interactions,
represented by �1 and �2, are neglected, leading to all
parameters scaling with the square of the magnetization in
the whole temperature range. The correction to the isotropic
exchange is J̃i j/m2 ∝ 1 + m(1 + �)�2 ≈ 1 + m�2, since for
most materials � � 1, while the correction to the two-
ion anisotropy is K̃i j/m2 ∝ 1 − m�2. We note that magnon-
magnon interaction leads to two correction factors with op-
posite signs; whereas this contributes to the increase of the
isotropic exchange component over the RPA estimation, for
the anisotropic exchange the coefficient decreases with re-
spect to the RPA scaling.

The correction to the two-ion and single-ion anisotropies
is of the same sign, but of different magnitude. Their ratio
is given by �2 = ε�1, depending on the crystal structure via
�q; see the Supplemental Material for details [23]. It takes a
value of ε = 0.343 for simple cubic (SC), ε = 0.28 for body-
centered cubic (BCC), and ε = 0.255 for face-centered cubic
(FCC) lattices [19].

In the low-temperature limit, the temperature dependence
of the effective parameters is traditionally formulated as a
power function of the magnetization. Approximating Eq. (9)
as m(T ) = 1 − �1 for �1 � 1, one arrives at the scaling laws

J̃i j = Ji jm
2−ε(1+�), K̃i j = Ki jm

2+ε, K̃i = Kim
3, (10)
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FIG. 1. Scaling of the normalized anisotropy as a function of
the equilibrium normalized magnetization in the low-temperature
limit. Three crystal structures are compared, SC, BCC, and FCC.
Symbols correspond to values gained from computer simulations,
and lines are fits to the data using the scaling function k(T ) =
Keff (T )/Keff (0) = ml (T ). The mean scaling exponent for the three
structures is l = 2.28 ± 0.05, accounting for the spread of values for
different lattices and numbers of neighbors.

the latter already derived in the seminal paper by Callen and
Callen [8]. Note that experimentally the total micromagnetic
anisotropy parameter Keff (T ) may be determined, being a
combination of two-ion and single-ion contributions as ex-
pressed in Eq. (5). In the low-temperature limit, this follows
the scaling law Keff (T ) ∝ ml (T ), with

l = 3Ki + (2 + ε)zKi j/2

Ki + zKi j/2
. (11)

Since the ratio of the single-ion and two-ion anisotropies
significantly varies between different materials, Eq. (11) can
account for a wide range of exponents different from l = 3,
which would be expected in the pure single-ion case.

Simulations. In order to validate the accuracy of the
analytical description, we performed numerical simulations
based on the atomistic Hamiltonian Eq. (1). We computed
the temperature-dependent magnetization and anisotropy of
the system using the constrained Monte Carlo algorithm [25]
with adaptive move [26], at a fixed angle of 45◦ from the z
axis, using quadrature to extract the anisotropic free-energy
difference [25]. The calculations have been carried out using
the VAMPIRE software package [27,28].

We first consider the intrinsic scaling of pure two-ion
anisotropy, where we take the limit of very low temperatures
for a generic ferromagnet with only nearest-neighbor ex-
change interactions zJi j = 40 × 10−21 J (Tc ∼ 800 K), weak
exchange anisotropy Ki j/Ji j = 0.001, and Ki = 0. From com-
puter simulations we obtain the temperature scaling of the
anisotropy for SC, BCC, and FCC lattice structures, as shown
in Fig. 1. The numerical values of the scaling exponents, as
well as its dependence on the lattice structure or the number
of neighbors, confirm the prediction of 2 + ε in Eq. (10),
provided by Green’s function theory. For simplicity, we define
an average exponent of l = 2.28 ± 0.05, which clearly differs
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FIG. 2. Dependence of the scaling exponent on the ratio of the
total single-ion and two-ion anisotropy constant. The simulations
were carried out for a BCC structure, using a fixed value of Ki j/Ji j =
0.001, while Ki was varied systematically. Horizontal lines indicate
limiting values for the scaling in the pure single-ion (l = 3) and pure
two-ion (l = 2.28) cases.

from the well-established m2 scaling of the RPA. The exact
scaling exponent of the effective anisotropy is expected to be
slightly different for less idealistic Hamiltonians with long-
ranged and oscillatory exchange interactions.

In technologically relevant 3d5d intermetallic uniaxial
magnets, such as CoPt and FePt, the temperature dependence
of anisotropy is more complex [9,15–17] due to the compe-
tition between single-ion and two-ion anisotropies [17]. This
competition may also play a significant role in artificial het-
erostructures [29] and in rare-earth-based permanent magnets.
Therefore, we calculated the scaling exponent of the effective
anisotropy for various ratios of the single-ion and two-ion
anisotropies, as shown in Fig. 2. In the limit of Ki → ±∞ the
scaling exponent converges toward l = 3, while for the case
of Ki = 0 the pure two-ion exponent of l = 2.28 is recovered.
When the ratio of the two anisotropies approaches −1, the net
anisotropy tends to zero at T = 0 K, but the different intrinsic
scaling of the single-ion and two-ion components leads to the
appearance of a finite total anisotropy at finite temperature.
This may be observed as a divergence of the scaling exponent
in Fig. 2. All of these observations are in agreement with
Eq. (11) of the theory, which is displayed as a continuous line
in Fig. 2.

A remarkable consequence of mixed single-ion and two-
ion anisotropies in Fig. 2 is the emergence of negative scaling
exponents of the effective anisotropy at low temperature.
To further explore this effect, we considered the case of
2Ki/zKi j = −0.95. The temperature dependence of the mag-
netization and the effective anisotropy up to Tc are shown in
Fig. 3. Here the negative scaling exponent at low temperature,
l ≈ −4, leads to an increase of the magnetic anisotropy with
temperature, as opposed to a decrease usually expected. How-
ever, at the Curie temperature the magnetic anisotropy has to
tend to zero due to the loss of magnetic ordering, and so the
effective anisotropy shows a maximum around T/Tc ≈ 0.7.
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FIG. 3. Temperature dependence of normalized magnetization
m(T ) and normalized anisotropy k(T ) for a generic BCC ferromag-
net with 2Ki/zKi j = −0.95. Spin temperature rescaling [30,31] was
applied to better approximate the temperature dependence of a real-
istic ferromagnet at low temperature, where the classical spin model
overestimates the fluctuations. The negative exponent corresponds
to an initial increase of the magnetic anisotropy with increasing
temperature, turning into a decrease as T → Tc, where the anisotropy
tends to zero due to the loss of magnetic ordering.

Such a feature is highly characteristic of R2Fe14B permanent
magnets with nonmagnetic rare-earth elements R = La, Lu,
Y, and Ce, where the anisotropy is seen to follow a strikingly
similar behavior [10]. Until now, this behavior was tentatively
assumed to arise due to crystal-field effects related to changes
in lattice constants [10,11], but not perfectly understood on
the microscopic level so far [32,33]. Our findings indicate
an alternative explanation: large and competing single-ion
and two-ion anisotropies arising from the complex crystal
symmetry. First-principles calculations may be suitable for
determining the relative strengths of the various anisotropy
coefficients separately, which would enable a quantitative
comparison between the microscopic theory suggested here
and the experimental results, and the unambiguous identifica-
tion of the origin of the observed behavior.

The nonmonotonic dependence of the anisotropy on the
temperature in Fig. 3 already demonstrates that the low-
temperature scaling law is insufficient for characterizing the
anisotropy in the whole temperature range. It is well known
that nonlinear spin-wave effects become more pronounced at
higher temperatures [8], which is of particular technological
relevance due to the development of HAMR where the tem-
perature dependence of the magnetic anisotropy close to the
Curie temperature is critical for determining the ultimate data
density achievable for magnetic recording [34,35].

In order to examine the effective anisotropy at higher
temperatures, we performed atomistic calculations on a BCC
lattice with parameters Ji j = 4.5 × 10−21 J, Ki j = +0.0275 ×
10−21 J, and Ki = −0.02 × 10−21 J, which produce compara-
ble magnetization curves to L10-FePt. The simulation results
are presented in Fig. 4. The low-temperature scaling exponent
of l = 2.1 (inset) in our calculations is in agreement with
previous experimental results [9] and multiscale calculations
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FIG. 4. Simulated temperature dependence of the anisotropy for
L10-FePt in a nearest-neighbor approximation. Lines show fits for
the low-temperature exponent l = 2.1 and an expanded fitting l =
[2.1 + ξ (1 − m2)], where ξ = 0.162145 ± 0.000437, valid over the
whole temperature range. Inset displays the scaling in the low-
temperature region.

with ab initio inputs [17] despite the simplification to nearest-
neighbor exchange interactions. Since separately both the
single-ion and two-ion contributions would result in a higher
scaling exponent, the only possibility to observe l = 2.1 for
the effective anisotropy is by assuming opposite signs for the
two terms, as can be deduced from Eq. (11).

In our simulations for FePt, the anisotropy in the full
temperature range is well described by the function

k(m) = m[2.1+ξ (1−m2 )], (12)

where ξ = 0.162145 ± 0.000437, as shown in Fig. 4. This
formula includes a higher-order expansion of the scaling ex-
ponent in the magnetization. Our results show a 25% decrease
in the effective anisotropy close to the Curie temperature
(m ≈ 0.2) compared to extrapolating the low-temperature
m2.1 scaling to this regime, indicating an enhancement of
magnon-magnon interactions at elevated temperature. This
insight has important implications concerning the design of
FePt nanoparticles for digital data recording using thermo-
magnetic techniques such as HAMR, indicating that lower
heating powers than before may be sufficient for decreasing
the anisotropy to a value where the magnetic state can be
switched easily.

Conclusions. In summary, we have applied atomistic sim-
ulations and analytical calculations based on Green’s function
theory to investigate the temperature dependence of the ex-
change or two-ion anisotropy. Simulations and theory agree in
predicting a low-temperature scaling exponent of l ≈ 2.28 ±
0.05 due to the contribution of nonlinear spin-wave effects,
significantly different compared to the mean-field estimate of
l = 2. If both single-ion and two-ion anisotropies are present
in the system, the scaling exponent may become considerably
enhanced or turn negative if the two contributions are of
opposite sign.

The refined understanding of the temperature dependence
of the two-ion anisotropy presented here allows for the
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proper quantitative interpretation of unusual scaling expo-
nents found in experimental data for permanent magnets
[9–11]. First-principles calculations or a careful interpre-
tation of the experimental data may allow the determina-
tion of the relative contributions from single-ion and two-
ion terms. Since the deviations from the mean-field result
are attributed to magnon-magnon interactions, they are ex-
pected to be more pronounced in ultrathin films and het-
erostructures [20,29,36,37], contributing to the design of
stable room-temperature magnonic and nanoscale spintronic
applications. Extending the description to antiferromagnetic
systems should enable the clarification of the role of the

two-ion contribution in the temperature dependence of their
anisotropy [38–40].
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