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Valence bond solid and possible deconfined quantum criticality in an extended kagome lattice
Heisenberg antiferromagnet
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We present numerical evidence for the existence of an extended valence bond solid (VBS) phase at T = 0
in the kagome S = 1/2 Heisenberg antiferromagnet with ferromagnetic further-neighbor interactions. The VBS
is located at the boundary between two magnetically ordered regions and extends close to the nearest-neighbor
Heisenberg point. It exhibits a diamondlike singlet covering pattern with a 12-site unit cell. Our results suggest
the possibility of a direct, possibly continuous, quantum phase transition from the neighboring q = 0 coplanar
magnetically ordered phase into the VBS phase. Moreover, a second phase which breaks lattice symmetries, and
is of likely spin-nematic type, is found close to the transition to the ferromagnetic phase. The results have been
obtained using large-scale numerical exact diagonalization. We discuss implications of our results on the nature
of the nearest-neighbor Heisenberg antiferromagnet.
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Introduction. We expect the unexpected when strong elec-
tron interactions meet geometric frustration. The emergence
of novel exotic states of matter in frustrated quantum magnets
is intensely studied in experiments, theory, and numerical
computations. Several materials and theoretical models ex-
hibit a lack of magnetic ordering even at lowest temperatures.
Instead, genuine quantum many-body states, such as quantum
spin liquids [1,2] or valence bond solids (VBS) can be ob-
served [3–7]. Several experiments also have given evidence
for emerging VBS phases in a variety of materials [8–11].

The nearest-neighbor kagome lattice Heisenberg spin-1/2
antiferromagnet arguably remains one of the most puzzling
conundrums in frustrated magnetism. Various scenarios on
the nature of its ground state have been proposed. It has
been found early on, that a VBS is energetically competitive
[12–16]. However, more recent numerical studies suggest that
different spin disordered states are a more likely scenario.
Several density-matrix renormalization group studies later
suggested the possibility of a gapped spin liquid ground state
[17,18]. More recently, variational Monte Carlo and tensor
network studies also suggested a gapless spin liquid state
being realized [19–24]. While a conclusion on the nature of
its ground state has not unanimously been reached to date
[25], several exotic new states of matter have been clearly
identified in close proximity to the nearest-neighbor model
[26–29]. Among those, a chiral spin liquid has been found in
an extended Heisenberg model with antiferromagnetic second
and third nearest-neighbor interactions [27–29]. The classical
ground-state phase diagram of this model has previously been
established [30,31]. A phase transition between two magnetic
orders has been found for antiferromagnetic interactions. In
the quantum case, the chiral spin liquid phase is located
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along the transition line between these two magnetic phases
and extends close to the nearest-neighbor point. The classical
phase diagram also contains a phase transition line between
two types of coplanar magnetic orders for ferromagnetic sec-
ond and third nearest-neighbor interactions. Given that some
frustrated kagome materials involving both ferromagnetic and
antiferromagnetic couplings are known to exist [32–34], there
is a strong interest to explore whether novel phases also
emerge at or in the vicinity of the classical transition line at
J3 = 2J2 < 0.

Here, we investigate the kagome spin-1/2 Heisenberg an-
tiferromagnet with additional ferromagnetic second and third
nearest-neighbor interactions. We present conclusive numeri-
cal evidence for the appearance of a diamond VBS phase in
an extended parameter range. The VBS phase is located in the
vicinity of the classical transition line between the q = 0 and√

3 × √
3 magnetic orders. Interestingly, the phase extends

close up to the nearest-neighbor Heisenberg point.
Model and phase diagram. We consider the Hamiltonian

H = J1

∑

〈i, j〉
�Si · �S j + J2

∑

〈〈i, j〉〉
�Si · �S j

+ J3

∑

〈〈〈i, j〉〉〉h

�Si · �S j,
(1)

on a kagome lattice geometry, where �Si = (Sx
i , Sy

i , Sz
i ) denotes

spin-1/2 operators, 〈· · · 〉 and 〈〈· · · 〉〉 denote the sum over
nearest- and second-nearest-neighbor sites, and 〈〈〈· · · 〉〉〉h de-
notes the sum over third-nearest-neighbor interactions only
across the hexagons of the kagome lattice [cf. Fig. 1(b)].
In the following, we set J1 = 1 and focus on the case of
ferromagnetic couplings J2 < 0 and J3 < 0.

Most of our results are obtained by exact diagonaliza-
tion (ED) calculations on a N = 36-site kagome lattice with
periodic boundary conditions [35,36]. Its Brillouin zone
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FIG. 1. (a) Approximate phase diagram of the extended kagome
Heisenberg model Eq. 1 for J1 > 0 and J2, J3 � 0 as obtained from
ED on a 36-site simulation cluster. Between two regions of magnetic
q = 0 and

√
3 × √

3 order a diamond VBS and a spin-nematic
phase are emerging. Different colors denote the quantum numbers
of the first excited state. Green: S = 1, �.D6.A2 or �.D6.E2. Blue:
S = 1, �.D6.B1 or K.D3.A1. Pink: S = 0, M.D2.A2. Orange: S =
0, M.D2.A1. Yellow: S = 2, �.D6.A1. Gray: S = 0, various space
group sectors. Gray lines are a guide to the eye. (b) Coupling
geometry for the Hamiltonian Eq. 1. (c) Structure of the diamond
VBS with a 12-site unit cell. Dimer coverings on the diamond
structure are in resonance.

features the K and M points and is hence suited to stabilize
both the

√
3 × √

3 and q = 0 order. Selected results have
been obtained on smaller clusters as well as on the larger
N = 48 cluster [25,35]. We detect ordering by investigating
suitably chosen order parameters and performing tower-of-
states analysis, i.e., comparing quantum numbers of finite-
size energy eigenstates with theoretical predictions. The order
parameters of the ground state and finite-size energy spectra
are calculated on a grid for J2 ∈ [−1, 0] with spacing 0.05 and
J3 ∈ [−2, 0] with spacing 0.1.

For classical Heisenberg spins the phase diagram of this
model has been established in Ref. [31]. The

√
3 × √

3 mag-
netic phase is separated from the q = 0 magnetic phase by a

transition line located at J3 = 2J2. For J3 < −2 and J2 < −1
a ferromagnetic state is stabilized.

In Fig. 1 we present a first exploration of the quantum (S =
1/2) phase diagram based on a map organized by the quantum
numbers of the first excitation above the ground state. The
assignment of the phases is performed based on a tower-of-
states analysis for different candidate phases. According to
this rationale, the blue region indicates the

√
3 × √

3 magnetic
order, the green region indicates the q = 0 magnetic order,
and the pink region the VBS phase. The nematic phase
extends in the yellow and orange region, where two different
quantum numbers are the first excitation. The gray lines
serve as a guide to the eye and determine approximate phase
boundaries. Apart from the expected

√
3 × √

3 and q = 0
coplanar magnetic order phases, we find an unanticipated
diamond VBS and a lattice symmetry breaking spin-nematic
phase located in the vicinity of the classical transition line.
In Fig. 2 we corroborate the spectroscopy picture with an
analysis of corresponding order parameters. The spin-nematic
phase extends close to the classical ferromagnetic phase,
while the VBS phase extends close to the nearest-neighbor
point. We now proceed to characterize the reported phases in
more detail.

Magnetic order. The q = 0 and
√

3 × √
3 magnetic phases

break spin rotational SU(2) symmetry and exhibit patterns of
magnetic ordering shown in the Supplemental Material [37].
We consider the static spin structure factor,

S(q) = 1

N

N∑

k,l=1

e−iq·(rk−rl )〈�Sk · �Sl〉. (2)

For the two magnetic orders, the structure factor is peaked at
the points

M′ = (2π, 2π/
√

3) for q = 0 order, (3)

K′ = (8π/3, 0) for
√

3 ×
√

3 order, (4)

in the extended Brillouin zone (cf. [30]). Hence, S(M′) and
S(K′) shown in Figs. 2(a) and 2(b) identify both magnetic
phases, respectively. The regions where these structure factors
are peaked coincide with the blue and green regions in Fig. 1.
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FIG. 2. ED results on a 36-site simulation cluster: (a) Spin structure factor S(M′) evaluated at M′ = (2π, 2π/
√

3), indicating q = 0
magnetic order. (b) Spin structure factor S(K′) evaluated at K′ = (8π/3, 0), indicating

√
3 × √

3 magnetic order. (c) Diamond VBS order
parameter OVBS as defined in Eq. 7. A diamond VBS phase is emerging in between the two magnetic orders. (d) Nematic phase order parameter
Onem as defined in Eq. 8, indicating the extent of the plaquette-nematic phase. Note the good agreement between the order parameter inferred
phase diagram and the excited state spectroscopy phase diagram of Fig. 1 indicated with the dashed white lines.
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The blue region in Fig. 1(a) is given by the points, where
the first excitation is a triplet, S = 1, state with K.D3.A1 or
�.D6.B1 space group quantum numbers [37,38]. In the green
region in Fig. 1(a), the triplet states, S = 1, with �.D6.A2 and
�.D6.E2 space group quantum numbers are the first excita-
tion. Thus, the spin structure factor and energy spectroscopy
yield consistent results on the extent of these two phases.

Diamond VBS phase. To identify the VBS and the lattice
symmetry breaking spin-nematic phase we consider the con-
nected dimer correlations,

Dkl ≡ 〈(�Sk · �Sl )(�S1 · �S0)〉 − 〈�Sk · �Sl〉〈�S1 · �S0〉, (5)

where the sites 0 and 1 are an arbitrary nearest-neighbor
bond chosen as reference. These correlations are long-ranged
in the VBS phase and exhibit specific patterns of positive
and negative correlation that can be predicted for the model
VBS state. For the 48-site cluster we computed the diagonal
Sz-dimer correlations

Dz
kl ≡ 〈(

Sz
kSz

l

)(
Sz

1Sz
0

)〉 − 〈
Sz

kSz
l

〉〈
Sz

1Sz
0

〉
. (6)

The sign structure of these correlations serves as a first finger-
print of the particular VBS phase realized. For the diamond
VBS state the expected sign structure of the dimer correlations
is shown in [37]. Thereby, we define an order parameter of the
VBS phase,

OVBS ≡ 1

N

∑

〈k,l〉
θVBS

kl Dkl , (7)

where θVBS
kl = ±1 denotes the sign as defined in the Supple-

mental Material.
This diamond VBS parameter OVBS is shown in Fig. 2(c),

indicating the extent of the VBS phase. It is located between
the two magnetic orders and extends basically along the whole
classical transition line from J2 = −1 to J2 = 0. The region of
pronounced OVBS also coincides with the pink region in Fig.
1. There, the first excited state is a singlet S = 0 state with
M.D2.A2 space group quantum number.

The precise nature of the reported VBS itself requires
some more care. There are two basic candidate VBS model
states with a 12-site unit cell [17,39–41]. A pinwheel VBS,
where all dimers are static and the pinwheels all share the
same orientation. This particular state is eightfold degenerate,
a factor 4 from the translations and a factor 2 from the
pinwheel orientation. On the other hand, like in many other
VBS scenarios, there is a resonant version of this VBS, where
we consider resonances involving eight-site loops in the shape
of a diamond lozenge. A fully packed state of nonoverlapping
resonances is shown in Fig. 1(c). This state is actually 12-fold
degenerate, a factor 4 from the translations, and a factor 3
from the orientations of the diamond lozenges. The dimer-
dimer correlations in these two model states are identical,
so that dimer correlations alone cannot distinguish the two
states. However, the spectral decomposition [37] reveals that
beyond some common levels the diamond VBS features a
characteristic spin singlet �.D6.E2 level, while the pinwheel
VBS comes with a characteristic �.D6.A2 level. A close in-
spection of the energy spectrum of the VBS phase in Figs. 3(a)
and 3(c) reveals a low-lying spin singlet �.D6.E2 level, and

FIG. 3. Diamond VBS: (a) Energy spectra with quantum num-
bers for J3 = −2 and Sz = 0. Different colors and symbols denote
different quantum numbers. Full (empty) symbols denote even (odd)
spin-flip symmetry eigenstates. The spin-nematic phase extends up to
J2 � −0.9 (orange shaded region). The first excited level is a singlet
with space group quantum number M.D2.A1. The diamond VBS
phase exists in the window (pink shaded region) −0.9 � J2 � −0.7.
The first excited state is a singlet with space group quantum number
M.D2.A2. Beyond, the q = 0 is stabilized with triplet excitations
(green shaded region). The narrow gray shaded region highlights the
putative quantum critical Néel-VBS transition. (b) Energy spectra
as a function of system size for J2 = −0.16 and J3 = −0.4. The
lowest excited level on all lattices is a singlet with momentum M.
For a description of the used clusters, cf. Ref. [36]. (c) Energy
spectra for the C6v symmetric 36- and 48-site clusters at J2 = −0.16
and J3 = −0.4. The lowest excited states again have the same M
momentum and space group sector.

the absence of a low-lying �.D6.A2 level, thus clarifying the
presence of a diamond VBS phase in this parameter region.

The spectral features of the VBS phase can be detected
across various system sizes from N = 24 to N = 48 (only
selected sectors) as shown in Fig. 3. The lowest excited state
on all clusters we studied belongs to the same M momentum
and space group sector, consistent with the diamond VBS
order in the thermodynamic limit. Hence, the evidence for
a VBS is not only robust in the dimer correlations in Fig. 4
for system sizes N = 36 and N = 48 but also in the energy
spectra for all system sizes we studied.

Spin-nematic-plaquette phase. The dimer correlations also
exhibit a different peculiar sign structure in another parameter
region, as shown for J2 = −1 and J3 = −2 in Fig. 5(a). We see
characteristic positively correlated hexagon patterns suggest-
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FIG. 4. Ground-state dimer correlations in the VBS phase for
J2/J1 = −0.4, J3/J1 = −0.9 from exact diagonalization. (a) Sz

dimer-dimer correlations Dz
kl as defined in Eq. (6) on the 48-site

cluster. (b) Dimer-dimer correlations Dkl as defined in Eq. (5) on the
36-site cluster. The black line is used as the reference bond and the
gray area shows the Wigner-Seitz simulation cell.
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FIG. 5. Characterization of a possibly spin-nematic phase.
(a) Observed ground-state dimer-dimer correlations Dkl in the ne-
matic phase for J2/J1 = −1, J3/J1 = −2 as defined in Eq. 5. Red
(blue) corresponds to positive (negative) correlation. The black line
is used as the reference bond and the gray area shows the 36-site
simulation cell. (b) Quadrupolar ground-state correlations Qkl as
defined in Eq. 9 showing hexagon-ring sign structure. (c) Energy
spectrum for J2 = −1, J3 = −2 in the nematic phase for Sz < 9. The
degeneracy at different Sz gives total spin quantum number S. Odd-S
sectors are not present in the low-energy tower of states, indicating a
quadrupolar spin-nematic phase.

ing a 2 × 2 unit cell superstructure. However, we are unaware
of a singlet VBS model state exhibiting such a correlation
pattern. We analogously define an order parameter for this
lattice symmetry breaking pattern,

Onem ≡ 1

N

∑

〈k,l〉
θnem

kl Dkl , (8)

where the sign θnem
kl = ±1 is defined in the Supplemental

Material. The region in parameter space where its signal is
strong is shown in Fig. 1(d).

Since we are unaware of a singlet VBS with this structure,
and due to the vicinity of the ferromagnet, we explore the
possibility of a phase with additional spin-nematic character,
for example of quadrupolar type [42]. Several examples of
frustrated ferromagnets giving rise to spin-nematic phases
have been discussed [34,43–46]. In Fig. 5(b) we display the
quadrupolar bond correlations,

Qkl ≡ 〈(S+
k S+

l )(S−
1 S−

0 )〉, (9)

exhibiting sizable correlations. We notice a peculiar hexagon-
ring sign structure, where the correlations on hexagons sur-
rounding the middle hexagon are negative, while correlations
on the other hexagons are positive. In Fig. 5(c) we show
an energy spectrum resolved by total Sz and we can see a

low-lying S = 2 level, which could be due to the quadrupolar
character. The lowest singlet excited state is a M.D2.A1
level, which is in agreement with the reported 2 × 2 hexagon
plaquette superstructure. So we see quite strong evidence for
a novel phase, distinct from the other reported phases, but a
detailed characterization of the phase (e.g., a corroboration of
the spin-nematic character) has to be left for future research.

Discussion and outlook. We have explored the appear-
ance of two unexpected phases along the classical transition
line in the S = 1/2 kagome Heisenberg antiferromagnet with
competing ferromagnetic further neighbor couplings. The first
phase is a diamond VBS with a 12-site unit cell. This VBS
or variants thereof have been seen in quantum dimer mod-
els [16,40,41,47,48] and hinted at by fluctuations or weak
correlations in quantum spin models at the nearest-neighbor
point (J2 = J3 = 0) in Refs. [17,25]. We have now firmly
established this VBS phase in the extended model (1). The
location of this VBS phase in the immediate vicinity of the
q = 0 magnetic order, and the apparent second-order nature
of the phase transition between the two phases in exact
diagonalization, places this transition into a contender role
for an example of a deconfined quantum critical transition,
with possibly deconfined spin excitations at the transition
[49]. Recent analytical work on the triangular lattice [50]
and the analysis of the matching VBS and Néel monopoles
in the Dirac spin liquid [51] combined with our numerical
results renders this scenario at least plausible. It will also be
important to work out the connection between the VBS phase
and the Dirac spin liquid state, which is currently a prime
candidate to describe the kagome antiferromagnet at small
antiferromagnetic J2 coupling [19,21–24], before entering the
q = 0 magnetic ordered phase.

This part of the phase diagram is then separated by a likely
first-order phase transition from the

√
3 × √

3 magnetically
ordered phase and the lattice symmetry breaking spin-nematic
phase close to the ferromagnetic phase. The precise nature of
the latter phase is left for future studies.
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