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Theory of deconfined pseudocriticality
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It has been proposed that the deconfined criticality in (2 + 1)d—the quantum phase transition between a
Néel antiferromagnet and a valence-bond solid (VBS)—may actually be pseudocritical, in the sense that it is
a weakly first-order transition with a generically long correlation length. The underlying field theory of the
transition would be a slightly complex (nonunitary) fixed point as a result of fixed points annihilation. This
proposal was motivated by existing numerical results from large scale Monte Carlo simulations as well as a
conformal bootstrap. However, an actual theory of such a complex fixed point, incorporating key features of
the transition such as the emergent SO(5) symmetry, is so far absent. Here we propose a Wess-Zumino-Witten
(WZW) nonlinear sigma model with level k = 1, defined in 2 + ε dimensions, with target space S3+ε and global
symmetry SO(4 + ε). This gives a formal interpolation between the deconfined criticality at d = 3 and the
SU(2)1 WZW theory at d = 2 describing the spin-1/2 Heisenberg chain. The theory can be formally controlled,
at least to leading order, in terms of the inverse of the WZW level 1/k. We show that at leading order there is
a fixed point annihilation at d∗ ≈ 2.77, with complex fixed points above this dimension including the physical
d = 3 case. The pseudocritical properties such as correlation length, scaling dimensions, and the drifts of scaling
dimensions as the system size increases, calculated crudely to leading order, are qualitatively consistent with
existing numerics.
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Going beyond the Landau paradigm has been a modern
theme in the study of phase transitions. In the context of
quantum magnetism, the prime example is the so-called de-
confined quantum critical point (DQCP)—a direct continuous
transition between a Néel antiferromagnet and a valence-
bond-solid (VBS) state on a square lattice [1,2]. These two
states break very different symmetries (spin rotation for Néel
and lattice rotation for VBS) so a direct, continuous transition
is forbidden in Landau theory without further fine tuning. For
SU(N ) spin systems with sufficiently large N , the existence
of such a non-Landau continuous transition has been firmly
established both theoretically [1,2] and numerically [3], so
there is no question on whether such a non-Landau transition
can exist. However for SU(2) spins—the most interesting
case for condensed matter physicists—the situation has been
murky since the early days.

The continuum field theory describing the DQCP, known
as the (noncompact) CP1 theory, is a strongly coupled gauge
theory with little theoretical control. Therefore, large scale
numerical simulations are needed to determine whether the
transition is truly continuous. Many such Monte Carlo sim-
ulations have been carried out in the past decade, on dif-
ferent lattice realizations of the DQCP [4–23], with lin-
ear system size L measured in units of lattice spacing as
large as 125–256 (quantum spin model [8,12]) or 640 (clas-
sical loop model [13]). Standard signatures of first-order
transition (such as double-peaked probability distributions)
have not been seen at the transitions in these simulations.
Rather the correlation length appears to exceed the (already
quite large) system size at the transition. The critical expo-
nents extracted from finite-size scaling behaviors are roughly

consistent across different simulations. However, the transi-
tion does not behave like a conventional continuous transition
either: the critical exponents show significant dependence on
system size up to the largest size simulated. Specifically,
the two exponents ν and η drift systematically to smaller
values as the system size grows. Even worse, the correlation
length exponent ν extracted from the largest system size
(∼0.44 from Refs. [12,13]) is smaller than the lower bound
on ν (∼0.511) for a continuous transition with a single tun-
ing parameter, found using a numerical conformal bootstrap
[24,25].

Another confusing issue is the emergent SO(5) symmetry
at the DQCP. At the Néel-VBS critical point, an emergent
SO(5) symmetry, rotating among the three components of
Néel vector n and the real and imaginary parts of the VBS or-
der parameter �, was observed numerically [14]. This SO(5)
symmetry, absent in both the lattice models and the continuum
gauge theories (such as CP1), was later rationalized using
dualities between different gauge theories [26,27] (with hints
from earlier works on nonlinear sigma models [28,29]). How-
ever, assuming such an SO(5) symmetry at a true critical point
without further fine tuning, the scaling dimension of the SO(5)
vector (in this case the Néel and VBS order parameters) is
required by the conformal bootstrap [25] to be greater than
0.76. Numerically this scaling dimension was found to be
∼0.62 on the largest systems, significantly smaller than the
bootstrap bound.

To resolve these discrepancies, it was proposed [13,26] that
the DQCP for SU(2) spins may actually be “pseudocritical.”
Essentially, one postulates that there is a coupling constant
λ, with a flow equation under renormalization group (RG)
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around λ = 0 given by (up to some redefinition)

dλ

dl
= ε + λ2 + · · · , (1)

where · · · are terms higher order in λ and ε is a small constant
that is not flowing under RG. For ε < 0, there are two fixed
points: an attractive one at λ− = −√|ε|, and a repulsive one
at λ+ = +√|ε|. As ε changes gradually from negative to
positive, the two fixed points collide and annihilate with each
other, and there is no real fixed point left. The pseudocritical
scenario corresponds to a slightly positive ε (ideally 0 < ε �
1). Some simple observations immediately follow:

(1) Assuming λ flows from �−√
ε to �+√

ε. The corre-
lation length, defined as exponential of the “RG time” l spent
along the flow, is given by

ξ = ξ0 exp

(
π√
ε

)
, (2)

where ξ0 is a nonuniversal constant ∼O(1) depending on
the UV value of λ. This can be quite large even for mildly
small values of ε. This is sometimes also called a “walking”
coupling constant.

(2) Most of the RG time is spent around −√
ε � λ � √

ε.
So for small ε the point λ = 0 can be approximately viewed
as a “fixed point” for system size L � ξ . One can then
define notions of scaling dimensions and “relevant/irrelevant”
perturbations around this pseudocritical point. In particular,
the aforementioned SO(5) symmetry emerges (up to the cor-
relation length ξ ) if the microscopic symmetry-breaking terms
are irrelevant around this fixed point λ ≈ 0.

(3) Even though the λ ≈ 0 region behaves almost like a
fixed point for L � ξ , the parameter λ is nevertheless slowly
flowing. This implies that the scaling dimensions, generically
as functions of λ, will be slowly drifting as the system size
increases.

(4) The flow equation (1) does have two complex fixed
points at λ± = ±i

√
ε. The pseudocritical behavior near λ = 0

on the real axis can be viewed as ultimately controlled by the
complex fixed points (even though the fixed points themselves
are unreachable due to unitarity of the underlying quantum
mechanical system).

The above features of the pseudocriticality scenario could
potentially resolve the existing issues in numerics. However
an actual theory of the DQCP that naturally incorporates fea-
tures like pseudocriticality and the emergent SO(5) symmetry,
is currently absent—although a tentative theory for pseudo-
criticality in CPN−1 models has been qualitatively discussed
in Ref. [13]. The goal of this work is to develop such a theory,
and to gain a clearer picture of the origin and contents of
Eq. (1) in the DQCP. Such theories of pseudocriticality have
been developed for certain (3 + 1)d gauge theories [30–32]
and (1 + 1)d q-state Potts models with q > 4 [33–38].

We adopt the sigma-model approach to the DQCP. It is
known that the DQCP has a “caricature” representation in
terms of a nonlinear sigma model [28,29]

S =
∫

d3x
1

4πg
(∇N̂ )2 + k
WZW[N̂], (3)

where N̂ = [n1, n2, n3, Re(�), Im(�)] ∈ S4 represents the
combined Néel-VBS order, g is the coupling strength, and


WZW is the standard Wess-Zumino-Witten (WZW) term
[well defined since π3+1(S4) = Z] with a quantized coeffi-
cient k, and in the case of the DQCP k = 1. The physical
significance of 
WZW is that a vortex of the complex operator
� traps a spin-1/2 moment, manifested as an effective (0 +
1)d WZW term for (n1, n2, n3)—this is exactly the feature
expected for the DQCP from the lattice scale [39].

However, Eq. (3) is only a caricature because, as a con-
tinuum field theory, its dynamics is only well defined in
the weak-coupling regime, where the SO(5) symmetry is
spontaneously broken and 〈N̂〉 �= 0. Turning on a Néel-VBS
anisotropy n2

1 + n2
2 + n2

3 − |�|2 will induce a Néel-VBS tran-
sition, but a strongly first-order one. Realizing the DQCP,
even in the pseudocriticality scenario, requires accessing some
strong-coupling regime which is not well defined on its own.

It is instructive to look at what happened in a much better
understood case: the WZW sigma model at k = 1 in (1 + 1)d ,
with target space S3 [so the order parameter is an SO(4)
vector]. The Lagrangian takes the same form as Eq. (3) except
every term lives in one dimension lower and N̂ ∈ S3. This
theory is asymptotically free, so the free Gaussian fixed point
is unstable in IR (as required also by Hohenberg-Mermin-
Wagner). The coupling strength will always flow to a critical
value gc which is nothing but the famous SU(2)1 CFT [recall
that SU(2) ∼ S3] [40]. This is also the theory describing the
critical spin-1/2 Heisenberg-Bethe chain [41], and can be
viewed as the close relative of the DQCP in (1 + 1)d .

We now propose a theory of the WZW nonlinear sigma
model, formally defined in space-time dimension d = 2 + ε,
with target space S3+ε [so the symmetry is SO(4 + ε)]. We do
not attempt to explicitly write down the corresponding action
(especially the WZW term) since we do not know how to
precisely define the winding number of S3+ε on another S3+ε .
We simply postulate the existence of such theory as some
kind of analytic continuation of WZW theories in general
(positive integer) d space-time dimensions with target space
Sd+1—actions like Eq. (3) are always well defined for these
theories since πd+1(Sd+1) = Z.

Let us first ask what are the possible scenarios based on
qualitative considerations. We expect the RG flow of g to
look like Fig. 1. At ε = 0 there is a stable fixed point at
g = gc and an unstable Gaussian fixed point at g = 0. At
small positive ε, the attractive fixed point will continue in
some fashion from gc, but the Gaussian fixed point turns
from unstable to stable because Hohenberg-Mermin-Wagner
no longer applies in dimension higher than two. Therefore,
another repulsive fixed point must emerge between the Gaus-
sian (g = 0) and the attractive one (around gc). As ε increases,
both the repulsive and attractive fixed points will continue in
some fashion, but we expect them to collide and annihilate
each other at some critical ε∗—otherwise this would lead
to interacting, nonsupersymmetric CFTs in arbitrarily high
dimensions, which is hard to imagine. As for the physical
case of ε = 1, there are three possible scenarios: (a) 1 <

ε∗, and the attractive fixed point describes the truly con-
tinuous DQCP, (b) ε∗ significantly below 1, and the transi-
tion is strongly first order, and (c) ε∗ slightly below 1, and
the system shows pseudocritical behavior before eventually
crossing over to first-order transition at large system size.
Based on existing numerical results, we expect scenario (c)
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FIG. 1. Schematic RG flow of the coupling strength g of the
WZW sigma model in 2 + ε space-time dimensions with target
manifold S3+ε , at different values of ε. Depending on whether the
physical dimension of the DQCP (ε = 1) is below, well above, or
slightly above ε∗, the system will show critical, strongly first order,
or pseudocritical behavior, respectively.

to be the physical one, and the small constant in Eq. (1) is
ε ∝ (1 − ε∗).

Let us now try to be slightly more quantitative. The WZW
sigma model can be perturbatively controlled if the WZW
level k is large. In this case gc(ε = 0) ∼ 1/k, and we will
see that we also have g∗ ∼ ε∗ ∼ 1/k. Of course k = 1 for
the physical case, so an expansion in 1/k (especially to low
order) may not be trusted quantitatively. Nevertheless, just like
usual small ε or large N expansions, such a calculation can
offer valuable insights, especially when combined with other
approaches such as lattice simulations. We note that another
scheme for a perturbatively controlled study of a nonlinear
sigma model with a WZW term in (2 + 1)d was proposed in
Ref. [42].

The next question is how to compute the perturbative RG
equation in 2 + ε dimensions with a WZW term for S3+ε—
after all we do not even have a Lagragian for such theories.
However we do not need to have a Lagrangian—all we need
to do is to analytically continue the perturbative RG flow
equations in integer dimensions d with target manifold Sd+1.
The flow equations for integer d � 2 take the form

dg

dl
= −εg + 2g2 − F (d )k2g2+d + · · · ,

(4)
dk

dl
= 0,

where the second equation simply comes from level quanti-
zation of the WZW term, the 2g2 term in the first equation
is a standard result for a nonlinear sigma model, the k2g2+d

term is the leading order contribution from WZW term (see
the Supplemental Material [43] for more details), and F (d )
is some function of d . It is known [40] that F (2) = 2. We
assume that the continuation of the second equation to frac-
tional ε is trivially dk/dl = 0, namely we assume that the
WZW level is quantized even for fractional ε [something like
π3+ε (S3+ε ) = Z]. Now assuming an analytic continuation of
F (d ) exists, then for d = 2 + ε with g ∼ ε ∼ 1/k, the leading
order flow equation simply becomes

dg

dl
= −εg + 2g2 − 2k2g4 + · · · . (5)

In particular, we only need the zeroth order value of the
F (2 + ε) term—the calculation would otherwise be much
more complicated.

The fixed points from Eq. (5) are given by
ε

2
= g − k2g3, (6)

which indeed behave as Fig. 1. The critical dimension and
coupling strength are given to leading order in 1/k by

ε∗ = 4

3
√

3k
≈ 0.77

k
,

g∗ = 1√
3k

. (7)

Now consider the theory just above the critical dimension
ε = (1 + α)ε∗ with 0 < α � 1. Equation (5) then reduces
to Eq. (1) to leading order in α, with λ = 2(g − g∗). The
correlation length is now (again to leading order in both 1/k
and α)

ξ = ξ0 exp

(
π√

2αε∗g∗

)
= ξ0 exp

(
3πk√

8α

)
. (8)

Putting k = 1 into the above results, we get ε∗ ≈ 0.77. The
physical case of ε = 1 corresponds to α ≈ 0.3, which then
gives the estimated correlation length ξ ≈ 440ξ0. These are
indeed consistent with pseudocriticality! This is also qualita-
tively consistent with existing numerics, in the sense that it can
be easily larger (but not too much larger) than the simulated
system size.

We can also estimate critical exponents at the deconfined
pseudocritical point to leading order. The scaling dimensions
of rank-l (symmetric traceless) tensors of the SO(4 + ε)
group are given by

�l = l (l + 2)

2
g∗ = l (l + 2)

2
√

3k
, (9)

where the first identity comes from standard nonlinear sigma
model calculations without the WZW term—the WZW only
affects the result through g∗ (Table I) (see the Supple-
mental Material [43]). At k = 1 this gives �[l = 1] ≈ 0.87
and �[l = 2] ≈ 2.3. For l = 1 (Néel/VBS order parameter)
the numerical simulations give �[l = 1]Num = (1 + η)/2 ≈
0.62 ± 0.1, while for l = 2 (Néel-VBS anisotropy) the nu-
merical value is roughly �[l = 2]Num = 3 − 1/ν ≈ 1.0 ±
0.3. The error bar comes from sampling different works,
on difference system sizes, with different schemes used to
extract the exponents. Our estimated value (in 1/k) for the
vector order parameter is in qualitative agreement with the
numerical values. In fact, the estimation is far better than a
similar O(1/k) estimation in two dimensions (2D), where the

TABLE I. Comparison of scaling dimensions of rank-l tensors
�[l] obtained by leading order perturbative calculations with numer-
ical results �[l]Num.

l = 1 l = 2

�[l] 0.87 2.3
�[l]Num 0.62 ± 0.1 1.0 ± 0.3
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exact result is known to be �[l = 1]2D = 3/2(k + 2) = 1/2
while the O(1/k) estimation gives 3/2. In some sense this
means that theories at ε > 0 are less strongly coupled than
the 2D SU(2)1 theory so perturbative calculations become
more reliable. Our estimation for the rank-2 tensor is less
impressive—this is perhaps not too surprising since a similar
estimation in 2D gives even larger error than the vector case.
Furthermore, an estimation of rank-4 tensor shows that it is
strongly irrelevant—this is crucial for the emergence of SO(5)
at the DQCP since, in the context of DQCP, rank-4 tensors are
allowed by microscopic symmetries as perturbations [1,2].

Equation (9) also implies that the scaling dimensions will
drift downward as the system size grows, since g flows slowly
to smaller and smaller values. This feature is also in agreement
with numerical results. We can estimate the amount of drift at
O(1/k, α). Assuming at system size L0 the coupling constant
reaches g∗, then for L not too far away from L0 [specifically
| ln(L/L0)| � ln(ξ/ξ0)], the relative drift in �l is roughly (see
the Supplemental Material for more details [43])

�l (L) − �l (L0)

�l (L0)
≈ −0.23 ln(L/L0), (10)

which appears to be qualitatively consistent with the numer-
ically observed drifts for the correlation length exponent ν

[12,13].
We can also consider the k = 2 case. Repeat the analysis

above one obtains ξ (k = 2) ∼ 190ξ0, which means a weaker
but potentially observable pseudocritical behavior—the actual
number is less reliable since ε∗(k = 2) ∼ 0.38 is further away
from the physical dimension, and therefore the small α ex-
pansion is not justified. Note that since we expect operator
scaling dimensions to reduce as k becomes larger, the k = 2
theory may have additional relevant operators such as the
rank-4 tensors. The k = 2 theory may potentially describe
the Néel-columnar VBS transition of spin-1 antiferromagnets
on a square lattice [44]. However, further fine tuning will be
required, which makes the theory multicritical, if the rank-4
tensors are relevant—this is consistent with recent numerics
on spin-1 systems on a square lattice [45] in which a strong
first-order transition was observed.

In summary, we have proposed a WZW nonlinear sigma
model in a (2 + ε) space-time dimension, with target space
S3+ε and global symmetry SO(4 + ε), as an interpolation
between the SU(2)1 WZW CFT in 2D and the DQCP in 3D.
We argued on general ground that a fixed-point annihilation
should happen at some finite ε∗, above which there is no
real fixed point. We then argued, based on a crude O(1/k)
estimation and its consistency with existing numerics, that
ε∗ is slightly smaller than the physical value ε = 1 for the
DQCP. Therefore the DQCP shows pseudocritical behavior
before eventually crossing over to a first-order transition as
the system size exceeds the large correlation length. The
pseudocritical properties, calculated crudely in O(1/k), are in
qualitative agreement with existing numerics. We emphasize
that, just like many other calculations in critical phenomena
like O(ε) or O(1/N ), our O(1/k) calculation is by no means
a proof of pseudocriticality in the DQCP since in reality

FIG. 2. Schematic phase diagram of pseudocriticality at finite
temperature. The classic critical fan appears as long as the tempera-
ture is well below the microscopic energy scale J and well above a
very low crossover temperature T ∗ ∼ J exp(−π/

√
ε). Below T ∗ the

system crosses over to a conventional first-order transition.

k = 1. Rather it gives a scenario, or a picture, that potentially
describes the correct physics and is broadly consistent with
existing numerics.

There are many possible future directions following our
work. The most obvious one is to try to give the S3+ε WZW
theory an intrinsic definition, instead of simply assuming that
a reasonable analytic continuation from integer dimensions
exists (as we did here). More practically, how do we compute
the perturbative RG flow equation beyond leading order?
Another open problem is to extend the pseudocritical theory
to the easy-plane DQCP (which received stronger numerical
support of the pseudocritical scenario recently [46,47]). Yet
another question is how one could further generalize such
theories, for example to other types of target space beyond
spheres. Specifically, can we find another type of target space
that pushes ε∗ well above 1, so that a true critical point of this
type appears in (2 + 1)d? Can we even push it far enough to
have a nontrivial fixed point in (3 + 1)d? These are all open
questions to be explored in the future.

We end by emphasizing that pseudocriticality is partic-
ularly interesting for quantum phase transitions: at finite
temperature, the classic “critical fan” appears as long as
the temperature is well below the microscopic energy scale
J and well above a very low crossover temperature T ∗ ∼
J exp(−π/

√
ε). Below T ∗ the system crosses over to a con-

ventional first-order transition. The schematic phase diagrams
is shown in Fig. 2.

Note added. During the completion of this manuscript, we
became aware of an independent work [48] by Adam Nahum
which overlaps significantly with ours.

We thank Bert Halperin, Yin-Chen He, Adam Nahum,
Djordje Radicevic, T. Senthil, Ashvin Vishwanath, and Cenke
Xu for helpful discussions and comments. We thank Adam
Nahum for sharing results prior to publication. Research at
Perimeter Institute is supported in part by the Government
of Canada through the Department of Innovation, Science
and Economic Development Canada and by the Province of
Ontario through the Ministry of Colleges and Universities.
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