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Magnon current generation by dynamical distortion
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The interaction between spin and nanomechanical degrees of freedom attracts interest from the viewpoint
of basic science and device applications. We study the magnon current induced by the torsional oscillation of
ferromagnetic nanomechanical cantilever. We find that a finite Dzyaloshinskii-Moriya (DM) interaction emerges
by the torsional oscillation, which is described by the spin gauge field, and the DM interaction leads to the
detectably large magnon current with frequency the same as that of the torsional oscillation. Our theory paves
the way for studying torsional spin-nanomechanical phenomena by using the spin gauge field.
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The interplay between magnetism and mechanics has a
long history, in which the magnetomechanical effect named
the Einstein-de Haas effect [1,2], as well as the inverse ef-
fect [3,4], still attracts interest [5–9]. Meanwhile, successive
developments in modern technology allow us to decrease the
size of mechanical systems down to the nanoscale with high
accuracy [10,11], which is called a nanoelectromechanical
system (NEMS), where quantum mechanics plays an essential
role [12,13]. In addition to the interest from the viewpoint
of fundamental physics, the application of NEMS diverges
into many branches, such as atomic mass sensing [14], bio-
logical imaging [15], and quantum measurement [16]. With
the developments, the mutual interaction between spin and
nanomechanical degrees of freedom has drawn much atten-
tion, the electron spin flip observed as a nanomechanical
torque [17,18]. Among these, theoretical proposals for spin-
tronic applications by using nanomechanical motion are also
presented, such as magnetization reversal [19], spin polariza-
tion of electric current [20], and detection of spin Hall effect
[21], but most of them are for electronic nanomechanical
systems.

More recently, a ferromagnetic insulating mechanical can-
tilever of submicron scale was first fabricated [22], and by
using such a cantilever, a thermally induced magnetomechan-
ical effect was observed by Harii et al. [23]. In the experiment
on the yttrium-iron-garnet (YIG) cantilever, the spin wave
propagation excited by spin Seebeck effect [24] affects the
mechanical oscillation of the cantilever, where the authors
observe the effect as the resonant frequency modulation of
the oscillation. This experiment is distinguished in a sense
that the effect arises in the absence of conduction electron,
which means that ferromagnetic spins directly couple to the
nanomechanical motion. Here, one may expect the inverse
phenomenon of the effect: Nanomechanical motion induces
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spin wave propagation, which is an interesting effect as fun-
damental physics. It may also stimulate device applications,
e.g., nanomechanical spin-wave generator. However, no one
yet shows such a phenomenon, even in theory.

In this paper, we show that the spin wave propagation is in-
duced by torsional oscillation of a nanomechanical cantilever
composed of the ferromagnetic insulator. Figure 1 depicts the
schematic setup of our theory, where a torsional oscillation
mode is excited by an external force, such as by piezoelectric
actuator, or by laser Doppler vibrometer, which results in the
spin wave propagation, or more strictly speaking, the magnon
current generation with frequency the same as that of the
torsional oscillation. To capture the physics, we begin with
the Lagrangian of a simple localized spin system, which con-
tains the exchange interaction and easy magnetic anisotropy,
where the anisotropy direction is modulated by the torsional
oscillation. By introducing a local rotation in spin space, we
move to the coordinate frame in which the easy magnetic
anisotropy is constant for time and space, which leads to
a kind of Dzyaloshinskii-Moriya (DM) interaction [25,26]
emerging in the rotated frame. In the DM interaction, the spin
gauge field [27] acts as the D vector and is proportional to
the spatial derivative of the torsional oscillation angle, which
indicates that the torsional oscillation can be described by the
spin gauge field. Hence, we evaluate the magnon current as
the linear response to the spin gauge field, which we find is
large enough to be detected, such as by the inverse spin Hall
effect [28–30]. A possible experimental configuration is also
proposed.

We emphasize that the present theory is essentially differ-
ent from theories based on the conventional magnetoelastic
coupling [31,32], in which only the symmetric strain tensor
is considered, while we here consider the torsional oscillation
which is described by the antisymmetric strain tensor [33]. In
order to derive the Hamiltonian containing the antisymmetric
strain tensor, an approach similar to ours has been taken by
Jaafar et al. [34], although it is not described by the spin gauge
field and the authors do not mention the DM interaction.
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FIG. 1. Schematic setup of our theory. Considering that an exter-
nal force excites the torsional oscillation mode, which is described
by χ (z, t ), we show that the magnon current jm(t ) is induced by the
torsional oscillation.

Now, we begin with the localized spin Lagrangian, which
is given by

Ls = h̄S
N∑

j=1

(cos θ j − 1)
dφ j

dt
− Hs, (1)

where we expressed the jth spin S j with length S as the
coherent state, S j = S(sin θ j cos φ j, sin θ j sin φ j, cos θ j ), and
N is the total spin number. In this work, to reveal the essence
of physics, we consider a simple situation, where the spins
interact ferromagnetically through the exchange interaction
with the strength Jex and are affected by the easy magnetic
anisotropy, so that the Hamiltonian Hs is given as

Hs = −Jex

∑
i, j

Si · S j −
∑

i

K

2
(Si · n̂i )

2, (2)

where K is the magnitude of the anisotropy and n̂i is the unit
vector representing the anisotropy direction, which is tempo-
rally and spatially varying due to the torsional oscillation of
the sample [see Fig. 2(a)]. We note that for pure torsional
vibration each cross section of the sample performs rotary
vibrations about its center of mass, which remains at rest [33];
the torsional angle χ (r, t ) only depends on the ẑ direction and
time t .

Here, we introduce the rotational matrix R in order to take
a frame fixed in the sample, in which the anisotropy direction
is constant in time and space,

n̂i = n̂(ri, t ) = R(ri, t )n̂0, (3)

where n̂0 is the anisotropy vector in the absence of the
distortion, which is temporally and spatially constant, ri is the
position of ith spin, and R(r, t ) is given by

R(r, t ) =
⎛
⎝cos χ (r, t ) − sin χ (r, t ) 0

sin χ (r, t ) cos χ (r, t ) 0
0 0 1

⎞
⎠, (4)

since we introduced the coordinate as in Fig. 1. We assume
that the torsional oscillation is driven by an external force,
such as by a piezoelectric actuator, and then the distortion
angle χ (r, t ) obeys the following equation of motion [33],

C
∂2χ

∂z2
= ρI

∂2χ

∂t2
, (5)
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FIG. 2. (a) Schematic description of the magnetic anisotropy
vector n̂i changing by the torsional distortion. The gray dotted lines
with arrows represent the coordinate axis in the laboratory frame, the
blue lines with arrows describe the coordinate axis fixed in the cross
section of the sample, and each red arrow stands for the projection
of the anisotropy vector into each cross section of the sample. The
red arrows do not change in the coordinate fixed in the sample but
are modulated in the laboratory frame. (b)–(e) The spatial profile of
the torsional oscillation angle χ (r, t ) of (b) the lowest, (c) second
lowest, and (d) third lowest modes at a certain time, with (e) the
schematic configuration of the sample ferromagnet. We can see that
the torsional oscillation angle depends only on the length direction,
not on the width direction.

where C is an elastic constant defined by the shape and
material of the sample [19], ρ is the mass density, and I is the
moment of inertia of the cross section about its center of mass.
For a plate with thickness d and width w (� d), the quantities
C and I are given as C = μd3w/3 and I � dw3/12, where μ

is the Lamé constant [19]. The solution of Eq. (5) at a certain
time is shown in Figs. 2(b)–2(d) [see Eq. (16) for details].

Taking the continuum limit Si → S(r), we move to the
rotated frame, S̃ = R−1S, where the Hamiltonian is ob-
tained as H0 + HA (see Supplemental Material (SM) [35]
for the detail of the derivation). The first term H0 contains
the corresponding terms to the exchange interaction and
the easy magnetic anisotropy, H0 = ∫

(dr/a3
0)[(J/2)(∂iS̃) ·

(∂iS̃) − (K/2)(S̃ · n̂0)2], where J = 2Jexa2
0 and a0 is the lattice

constant of the sample ferromagnet. In the rotated frame, the
additional term HA appears;

HA =
∫

dr
a3

0

[−JAi · (S̃ × ∂iS̃) − h̄S̃ · At ], (6)

which is proportional to spin gauge field Aμ = (Ax
μ, Ay

μ, Az
μ)

with μ = t, x, y, z. The spin gauge field is connected to the
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rotational matrix as

(R−1∂iR)αβ = Aγ
i εαβγ (7)

with i = x, y, z [36], so that we find Aα
i = (∂iχ )δα,z, and At =

χ̇ ẑ. We here emphasize that the first term in Hamiltonian (6)
is nothing but the Dzyaloshinskii-Moriya (DM) interaction
[25,26], which means that torsional distortion in ferromagnets
induces DM interaction.

Next, in order to use the Holstein-Primakoff (HP) trans-
formation, we further introduce the global rotational ma-
trix R0 defined by n̂0 = R0ẑ and also introduce S̄ = R−1

0 S̃
and Āμ = R−1

0 Aμ. In the frame described by S̄, we safely
use the HP expansion, S̄x(r) � √

2S[a(r) + a†(r)]/2, S̄y(r) �√
2S[a(r) − a†(r)]/2i, and S̄z(r) = S − a†(r)a(r). Hence, the

Hamiltonian in the Fourier space is given as H0 = ∑
q ωqa†

qaq

with ωq = J q2 + , where J = SJ = 2SJexa2
0 and  = SK

[37], and

HA = h̄
∑

p

j̄i(−p)Āz
i (p, t ) + h̄S

∑
p

n̄(−p)Āz
t (p, t ), (8)

where j̄m(p) = h̄ j̄(p) is the magnon current density operator
in the frame described by S̄, with

j̄i(p) = 2J
h̄V

∑
q

qia
†
q−p/2aq+p/2, (9)

and n̄(p) is magnon density operator given by n̄(p) =
V −1 ∑

q a†
q−p/2aq+p/2. Here, V is the volume of the sample

ferromagnet.
According to Eq. (8), the spin gauge field couples to the

magnon current density so that we easily predict magnon cur-
rent generation by the dynamical distortion. We now evaluate
the linear response of the magnon current to the torsional
oscillation, which is given by

j̄m,i(p,�) = h̄〈 j̄i(p,�)〉 = χ̄R
i j (p,�)Āz

j (p,�), (10)

where the response coefficient is obtained from

χ̄i j (p, iωλ) = −h̄2
∫ β

0
dτeiωλτ 〈Tτ j̄i(p, τ ) j̄ j (−p, 0)〉 (11)

with β = 1/kBT , by taking the analytical continuation, iωλ →
h̄� + i0 [38,39]. As standard procedures of the calculation for
the linear response theory, rewriting Eq. (11) by means of the
thermal Green function of magnon, replacing the Matsubara
summation with the contour integral, and taking the analytical
continuation, we then focus on the �-linear term in the
response coefficient,

�

[
∂

∂�
χ̄R

i j (p = 0,�)

]
�=0

= −ih̄��δi j, (12)

where we neglected the p dependence of χ̄R
i j because the spin

gauge field Āz
j is already first order of p, and the lowest order

is of our interest. For the slowly-varying torsional angle, the
lowest order is the main contribution, and the higher order
terms with respect to the momentum and frequency of the
torsional angle are expected to have smaller contributions than
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FIG. 3. Temperature dependence of the function F (β) with the

gap /kB � 0.67 K for YIG [40].

the lowest order term. Here, � is given by

� = 2J
3

1

V

∑
q

(
ωq − 

) ∫ ∞

−∞

dε

2π

(
∂g

∂ε

){
DR

q (ε) − DA
q (ε)

}2
,

where g = (eβε − 1)−1 is the Bose-Einstein distribution func-
tion, and DR(A)

q (ε) is the retarded (advanced) Green function
of magnon,

DR
q (ε) = 1

ε − ωq + iαε
, DA

q (ε) = 1

ε − ωq − iαε
, (13)

which is obtained from the Landau-Lifshitz-Gilbert equa-
tion with the phenomenologically introduced Gilbert damp-
ing constant α. By taking the approximation {DR

q − DA
q }2 �

−(2π/αε)δ(ε − ωq) (see SM [35] for the detail of the approx-
imation), we obtain

� = − 1

6απ2

√


J F (β) (14)

with F (x) = x−1/2
∫ ∞

x dt (t − x)3/2et/t (et − 1)2 (see Fig. 3).
Hence, the real time and space representation of the magnon
current density induced by the spin gauge field is given as
j̄m,i(r, t ) = h̄� ˙̄Az

i (r, t ) in the frame described by S̄, that is,

jm,i(r, t ) = h̄�[n̂0 · Ȧi(r, t )] (15)

in the rotated frame described by S̃. Equation (15) with
Eq. (14) is the main result of this work. The spin polarization
direction of magnon current is almost parallel to n̂0 even in
the laboratory frame, because the torsional oscillation angle
is much smaller, χ 	 1, especially in the fixed edge χ = 0.
We also note that the flow direction of the magnon current
is along the length direction, since Ȧx = Ȧy = 0 and Ȧz =
[∂t∂zχ (z, t )]ẑ.

We now estimate the magnitude of the generated magnon
current. We first determine the dynamics of the torsional oscil-
lation, which is governed by Eq. (5). Assuming the boundary
conditions of χ (z, t ) as χ (0, t ) = 0 and ∂zχ (l, t ) = 0, and
the initial conditions χ (l, t0) = χ0 and ∂tχ (z, t = t0) = 0, we
obtain

χ (z, t ) = χ0 sin kz cos(�t + δ) (16)
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with k = (n − 1/2)π/l and � = vk, where n is a natural
number, and v = (2d/w)

√
μ/ρ. The phase factor δ is deter-

mined from cos(�t0 + δ) = 1 and sin(�t0 + δ) = 0. Hence,
the DM interaction for the lowest oscillation mode n = 1
is evaluated as |JAi|/a0 � 6.7 × 10−9 eV for YIG of J =
5.279 × 10−21 eV m2, a0 = 1.2376 nm, and S = 10 [32] with
l = 1 μm and χ0 ∼ 0.01, which is very weak compared to the
other energy scales, but its time derivative is important for the
magnon current generation, which is large enough to be de-
tected because of � � 4.8 × 109 s−1 for d/w = 0.4 with μ =
75.42 × 109 kg/m s2 and ρ = 5.1 × 103 kg/m3 [41]. Indeed,
the magnon current density at the fixed edge is calculated as
converting the unit into that of the electric current as

Iz(t ) = jm,z(0, t )
2e

h̄
dw (17)

� 2eχ0

3α

√


J
μ

ρ
F (β)

(
n − 1

2

)2(d

l

)2

(n̂0 · ẑ)

� 2 μA, for n = 1.

Here, we used  � 5.8 × 10−5 eV, and α ∼ 10−4 for YIG
[40]. We also assumed χ0 ∼ 0.01, d/l = 0.2, and T = 30 K.
Note that the calculated magnon current Iz depends on the
ratio of the thickness and length, d/l , not on the width w,
and is proportional to the square of the oscillation mode
number n. We further point out that although the emergent
DM interaction is weak for YIG, there would be relevant
phenomena in multiferroic materials, where the exchange
interaction is much more strong, and the distortion scale could
be comparable to the lattice constant [42].

The lattice distortion makes the system lower symmetry,
which may lead to a conventional DM interaction, which
is different from Eq. (6). The conventional DM interaction
should depend on space, not only on z but also x and y, and is
expected to be larger farther from the torsional axis, since the
local distortion is larger farther from the axis [see Fig. 2(a)].
From this, it is suggested that the D vector depends on x
and y as well as z. The distortion-induced conventional DM
interaction is also interesting. However, in order to treat this
conventional DM interaction theoretically, we need to know
more details of the torsional oscillation beyond Eq. (5) and the
atomistic details of material that consists of the ferromagnet.

Figure 4(a) presents the schematics of an experimental
setup to detect the magnon current generated by the torsional
oscillation. We consider a YIG nanomechanical beam struc-
ture attached by a piezoelectric actuator and by a detector
composed by heavy metal with large spin Hall angle. Fig-
ure 4(b) depicts the spatial profile of the torsional oscillation
of the lowest mode, and Fig. 4(c) shows the corresponding
magnon current generated by the torsional oscillation. Al-
though the torsional angle is zero at the edges, the generated
magnon current takes the maximum value at the edges, since
the spatial derivative contributes to the magnon current gener-
ation. Hence, assuming Pt as the heavy metal, whose spin Hall
angle is about 0.9% [30] with the resistivity ρ ∼ 10−7 �m,
the inverse spin Hall current in the heavy metal is the order of
10 nA, or divided by the cross section assumed as 400 nm2

with length 500 nm, we have 1.2 μV, which is detectably
large. We note that the spin polarization of the magnon current

Ferromagnetic beam

Piezoelectric actuator

Heavy metal

V
xy

z

g(x,1)

f(x,1)

−χ0

χ0

0

0

L0
0

w

L0
0

w Imax
z

−Imax
z

x

(b)

(c)

z

(a)

FIG. 4. (a) Schematic description of the possible experimental
setup, where a nanomechanical beam structure of ferromagnetic
insulator is attached by a piezoelectric actuator and by a heavy metal
in which the spin Hall angle is large. The piezoelectric actuator
excites the torsional oscillation of the beam, which induces the
magnon current and then the inverse spin Hall current is detected
in the heavy metal. (b) Spatial profile of the torsional oscillation
angle, and (c) the corresponding spatial profile of the magnon current
generated by the torsional oscillation, where L is the length of the
beam. We note that the magnon current takes a maximum value at
the edge of the sample.

is almost parallel to n̂0, and the magnitude is proportional to
n̂0 · ẑ.

We also note that the magnon current generation proposed
here can be regarded as an extension of the Barnett effect. The
Barnett effect is originally demonstrated for the rigid body
rotation, where the rotation couples to the magnetization as an
effective magnetic field. Thus, the coupling can be interpreted
as a Zeeman coupling due to the rigid rotation. In contrast,
we here show that the spatially nonuniform torsional rotation
couples to the localized spin via the emergent DM interaction,
resulting in generating the magnon current.

Finally, we would like to comment on possible connections
of our theory to strain engineering and flexible magnetoelec-
tronics. The main topics of current strain engineering [43]
and flexible magnetoelectronics [44–46] are related to only
the symmetric strain tensor. As mentioned above, torsional
mechanical motions are related to the antisymmetric strain
tensor and couples to the spin degree of freedom. Our theory
paves the way for studying spin-nanomechanical phenomena
given by antisymmetric strain tensor and will contribute to
developments in strain engineering and flexible magnetoelec-
tronics with torsion.

To conclude, we have considered the nanomechanical
cantilever composed of the ferromagnetic insulator, which
performs torsional oscillation, and shown that the magnon
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current is induced by the torsional oscillation. We find
that the torsional oscillation can be described by the spin
gauge field, which produces a kind of DM interaction. From
the evaluation of the linear response of the magnon cur-
rent to the spin gauge field by using the Matsubara Green
function method, we obtain the microscopic form of the
magnon current. The estimation of the value suggests that
the magnon current is detectably large by the inverse spin
Hall effect. The possible experimental setup is also pre-
sented. As we have seen, the spin gauge field is a power-

ful tool to approach the torsional spin-nanomechanical ef-
fect, and our theory opens an avenue for studying torsional
spin-nanomechanical phenomena by using the spin gauge
field.

We thank Y. Nozaki, H. Chudo, T. Narushima, K. Yamanoi,
T. Horaguchi, G. Okano, and S. Tateno for giving stimulating
information. We also thank Y. Ominato for fruitful discussion.
This work is partially supported by the Priority Program of
Chinese Academy of Sciences, Grant No. XDB28000000.

[1] O. W. Richardson, Phys. Rev. 26, 248 (1908).
[2] A. Einstein and W. J. de Haas, Verh. Dtsch. Phys. Ges. 17, 152

(1915).
[3] S. J. Barnett, Science 30, 413 (1909).
[4] S. J. Barnett, Phys. Rev. 6, 239 (1915).
[5] T. M. Wallis, J. Moreland, and P. Kabos, Appl. Phys. Lett. 89,

122502 (2006).
[6] M. Ganzhorn, S. Klyatskaya, M. Ruben, and W. Wernsdorfer,

Nat. Commun. 7, 11443 (2016).
[7] C. Dornes, Y. Acremann, M. Savoini, M. Kubli, M. J.

Neugebauer, E. Abreu, L. Huber, G. Lantz, C. a. F. Vaz, H.
Lemke, E. M. Bothschafter, M. Porer, V. Esposito, L. Rettig, M.
Buzzi, A. Alberca, Y. W. Windsor, P. Beaud, U. Staub, D. Zhu,
S. Song, J. M. Glownia, and S. L. Johnson, Nature (London)
565, 209 (2019).

[8] M. Imai, Y. Ogata, H. Chudo, M. Ono, K. Harii, M. Matsuo,
Y. Ohnuma, S. Maekawa, and E. Saitoh, Appl. Phys. Lett. 113,
052402 (2018).

[9] M. Imai, H. Chudo, M. Ono, K. Harii, M. Matsuo, Y. Ohnuma,
S. Maekawa, and E. Saitoh, Appl. Phys. Lett. 114, 162402
(2019).

[10] A. N. Cleland, Foundations of Nanomechanics, Advanced Texts
in Physics (Springer Berlin Heidelberg, Berlin, Heidelberg,
2003).

[11] K. L. Ekinci and M. L. Roukes, Rev. Sci. Instrum. 76, 061101
(2005).

[12] A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak,
M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M.
Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, Nature
(London) 464, 697 (2010).

[13] J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A.
Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, Nature
(London) 478, 89 (2011).

[14] K. Jensen, K. Kim, and A. Zettl, Nat. Nanotechnol. 3, 533
(2008).

[15] S. V. Kalinin, B. J. Rodriguez, S. Jesse, E. Karapetian, B.
Mirman, E. A. Eliseev, and A. N. Morozovska, Annu. Rev.
Mater. Res. 37, 189 (2007).

[16] M. D. LaHaye, J. Suh, P. M. Echternach, K. C. Schwab, and
M. L. Roukes, Nature (London) 459, 960 (2009).

[17] P. Mohanty, G. Zolfagharkhani, S. Kettemann, and P. Fulde,
Phys. Rev. B 70, 195301 (2004).

[18] G. Zolfagharkhani, A. Gaidarzhy, P. Degiovanni, S. Kettemann,
P. Fulde, and P. Mohanty, Nat. Nanotechnol. 3, 720 (2008).

[19] A. A. Kovalev, G. E. W. Bauer, and A. Brataas, Phys. Rev. Lett.
94, 167201 (2005).

[20] A. A. Kovalev, L. P. Zârbo, Y. Tserkovnyak, G. E. W. Bauer,
and J. Sinova, Phys. Rev. Lett. 101, 036401 (2008).

[21] J. A. Boales, C. T. Boone, and P. Mohanty, Phys. Rev. B 93,
161414(R) (2016).

[22] Y.-J. Seo, K. Harii, R. Takahashi, H. Chudo, K. Oyanagi, Z.
Qiu, T. Ono, Y. Shiomi, and E. Saitoh, Appl. Phys. Lett. 110,
132409 (2017).

[23] K. Harii, Y.-J. Seo, Y. Tsutsumi, H. Chudo, K. Oyanagi, M.
Matsuo, Y. Shiomi, T. Ono, S. Maekawa, and E. Saitoh, Nat.
Commun. 10, 2616 (2019).

[24] K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K.
Ando, S. Maekawa, and E. Saitoh, Nature (London) 455, 778
(2008).

[25] I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).
[26] T. Moriya, Phys. Rev. 120, 91 (1960).
[27] G. Tatara, H. Kohno, and J. Shibata, Phys. Rep. 468, 213

(2008).
[28] E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Appl. Phys.

Lett. 88, 182509 (2006).
[29] T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa,

Phys. Rev. Lett. 98, 156601 (2007).
[30] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T.

Jungwirth, Rev. Mod. Phys. 87, 1213 (2015).
[31] A. Rückriegel, P. Kopietz, D. A. Bozhko, A. A. Serga, and B.

Hillebrands, Phys. Rev. B 89, 184413 (2014).
[32] L. J. Cornelissen, K. J. H. Peters, G. E. W. Bauer, R. A. Duine,

and B. J. van Wees, Phys. Rev. B 94, 014412 (2016).
[33] L. Landau and E. Lifshitz, Theory of Elasticity, 3rd ed.

(Butterworth-Heinemann, Oxford, 1986).
[34] R. Jaafar, E. M. Chudnovsky, and D. A. Garanin, Phys. Rev. B

79, 104410 (2009).
[35] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.102.020406 for details of calculations.
[36] H. Kohno and J. Shibata, J. Phys. Soc. Jpn. 76, 063710 (2007).
[37] We redefined the magnon operators as a(†)(r) → a3/2

0 a(†)(r).
[38] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
[39] J. Fujimoto and G. Tatara, Phys. Rev. B 99, 054407 (2019).
[40] V. Cherepanov, I. Kolokolov, and V. L’vov, Phys. Rep. 229, 81

(1993).
[41] H. M. Chou and E. D. Case, J. Mater. Sci. Lett. 7, 1217

(1988).
[42] M. Mochizuki, N. Furukawa, and N. Nagaosa, Phys. Rev. B 84,

144409 (2011).
[43] Z. Dai, L. Liu, and Z. Zhang, Adv. Mater. 31, 1805417 (2019).
[44] V. Áč, B. Anwarzai, S. Luby, and E. Majkova, J. Phys.: Conf.

Ser. 100, 082025 (2008).
[45] Y.-f. Chen, Y. Mei, R. Kaltofen, J. I. Mönch, J. Schumann, J.

Freudenberger, H.-J. Klauß, and O. G. Schmidt, Adv. Mater.
20, 3224 (2008).

[46] S. Ota, A. Ando, and D. Chiba, Nat. Electron. 1, 124 (2018).

020406-5

https://doi.org/10.1126/science.30.769.413
https://doi.org/10.1103/PhysRev.6.239
https://doi.org/10.1063/1.2355445
https://doi.org/10.1038/ncomms11443
https://doi.org/10.1038/s41586-018-0822-7
https://doi.org/10.1063/1.5041464
https://doi.org/10.1063/1.5095166
https://doi.org/10.1063/1.1927327
https://doi.org/10.1038/nature08967
https://doi.org/10.1038/nature10461
https://doi.org/10.1038/nnano.2008.200
https://doi.org/10.1146/annurev.matsci.37.052506.084323
https://doi.org/10.1038/nature08093
https://doi.org/10.1103/PhysRevB.70.195301
https://doi.org/10.1038/nnano.2008.311
https://doi.org/10.1103/PhysRevLett.94.167201
https://doi.org/10.1103/PhysRevLett.101.036401
https://doi.org/10.1103/PhysRevB.93.161414
https://doi.org/10.1063/1.4979553
https://doi.org/10.1038/s41467-019-10625-y
https://doi.org/10.1038/nature07321
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1016/j.physrep.2008.07.003
https://doi.org/10.1063/1.2199473
https://doi.org/10.1103/PhysRevLett.98.156601
https://doi.org/10.1103/RevModPhys.87.1213
https://doi.org/10.1103/PhysRevB.89.184413
https://doi.org/10.1103/PhysRevB.94.014412
https://doi.org/10.1103/PhysRevB.79.104410
http://link.aps.org/supplemental/10.1103/PhysRevB.102.020406
https://doi.org/10.1143/JPSJ.76.063710
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1103/PhysRevB.99.054407
https://doi.org/10.1016/0370-1573(93)90107-O
https://doi.org/10.1007/BF00722341
https://doi.org/10.1103/PhysRevB.84.144409
https://doi.org/10.1002/adma.201805417
https://doi.org/10.1088/1742-6596/100/8/082025
https://doi.org/10.1002/adma.200800230
https://doi.org/10.1038/s41928-018-0022-3

